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Abstract 
Problem: Several approaches to analyze survey data have been proposed in the 
literature. One method that is not popular in survey research methodology is 
the use of item response theory (IRT). Since accurate methods to make pre-
diction behaviors are based upon observed data, the design model must over-
come computation challenges, but also consideration towards calibration and 
proficiency estimation. The IRT model deems to be offered those latter op-
tions. We review that model and apply it to an observational survey data. We 
then compare the findings with the more popular weighted logistic regression. 
Method: Apply IRT model to the observed data from 136 sites within the 
Commonwealth of Virginia over five years collected in a two stage systematic 
stratified proportional to size sampling plan. Results: A relationship within 
data is found and is confirmed using the weighted logistic regression model 
selection. Practical Application: The IRT method may allow simplicity and 
better fit in the prediction within complex methodology: the model provides 
tools for survey analysis. 
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1. Introduction 

When sampling methodology is complex, initiatives are employed in statistical 
analysis to extract the most reliable information from data through the model 
and its parameters. The goal of this manuscript is to apply the item response 
theory (IRT) to analyze survey data, and compare the output with one classical 
test theory (CTT) called logistic regression models as a point of reference. 
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The sampling methodology used to collect data has a two stage design asso-
ciated with primary sampling unit (PSU) strata from 15 counties and secondary 
sampling units (SSU) from 136 road segments within the counties, under Na-
tional Highway Transportation Safety Authority (NHTSA) guidelines [1]. If 
sampling weights are ignored, then the model parameter estimates can be biased 
[2]. In fact, since the sample is collected from a two stage stratified sampling de-
sign, standard underlying assumptions of parametric statistical models may be 
violated, and guidelines based on the statistical design cannot be ignored. [3] [4] 
and [5] have given suggestions for such complex methodologies. Other authors 
have applied the methodology to studies. Our intent is to apply the seat belt 
sampling methodology to predict the seatbelt usage. [6] [7] and [8] have used 
such methodologies and they concluded that females are more likely to wear 
seatbelts than males. The relationship between vehicle type and seatbelt use has 
been explored by [9] [10] and [11] who concluded that seatbelt use in pickup 
trucks is lower than other passenger vehicles. [12] suggested that passenger and 
driver use are related. [13] asserts that the seatbelt use is increased in those states 
within the United States that have primary seatbelt enforcement laws and ac-
tively enforce seatbelt use. Studies have also explored relationships between race, 
socio-economic status, age, rural/urban environments, law enforcement type 
(primary, secondary), the amount of fines, and the type of road traveled (prima-
ry, secondary, tertiary). [14] employed a multivariate approach using the afore-
mentioned factors along with cultural variables to explain the differences in 
seatbelt use between states using self-reported information, direct observation, 
and crash reports. However, the validity of self-reported seatbelt use in surveys is 
questionable compared to observed seatbelt usage [15]. While the methodology 
is simple to describe, the challenge is found in the statistical analysis tool used to 
make prediction, especially in the presence of behavioral variables, such as driver 
gender, vehicle type, traffic volume, road segment length, weather conditions, 
driver cellphone use, passenger presence, lane, and passenger seatbelt use. The 
goal is to get meaningful information that can be translated into quantitative 
measures. [16] and [17] propose the addition of a score variable due to the mea-
surement of concern. Those researchers have incorporated latent traits of data in 
a score function. 

The manuscript presents a comparison of the popular logistic regression pre-
sented here along suggestion of the Item Response Theory (IRT) model, and its 
simple version called the Rasch model [18]. 

Moreover, ignoring weights may lead to imperfection in the sample (as de-
parting from the reference population) and serious bias in latent variable models 
[19]. To avoid that problem, we apply a weight function. [14] cautioned about 
the use of other factors to develop more effective countermeasures for increasing 
seatbelt use. We propose the weighted logistic and IRT models after variable se-
lections and compare the findings. The manuscript is organized as follows. In Sec-
tion 2, we present background of data, then build the reference model in Section 3. 
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In Section 4, the weighting scales are built into the models. The IRT model is 
presented. We end with a conclusion in Section 5. 

2. Overview of Data 

Data collected in the summers of 2012, 2013, 2014, 2015, and 2016 for Virginia 
seat belt use is used as evidence. As mentioned in the previous Section, the data 
is collected under a two stage design. Primary sampling units (PSU) are county 
aggregates and were stratified using the five-year average annual VMT (vehicle 
miles traveled) in millions. Out of 97 total county aggregates, 57 account for 87.2 
percent of passenger vehicle crash related fatalities. The 57 eligible county ag-
gregates were grouped by VMT into three strata: low, medium, and high. Within 
each stratum, five PSU’s were selected with PPS where the measure of size 
(MOS) was the five-year average annual VMT. The PSU sampling weights are 
calculated by taking the inverse of the five year average annual VMT, and varied 
from approximately 0.089 to approximately 0.967. Secondary sampling units 
(SSU) are road segments. Road segments were stratified by type (primary, sec-
ondary, and local) and by segment length (short, medium and long) within each 
county. The eligible SSU were then selected by PPS with segment length as the 
MOS resulting in 136 selected road sites for observation. The SSU weights are 
calculated by taking the inverse of the segment length and varied from approx-
imately 0.0001 to approximately 0.1657. 

The weighting was added so that information from the whole population 
would be captured. If the selection mechanism is not informative, the parameter 
estimates will remain consistent regardless of the weights, and weights should be 
excluded from the model [20]. Moreover, if the strata sample sizes are large 
enough, the parameter estimates are unbiased. In sampling surveys, it is not al-
ways possible to determine whether the weights are informative. However, the 
observations should reflect the sampling weights to avoid biased sampling. 

The data collected includes the following observed binary data: driver seat belt 
use (yes, no), driver gender (female, male), passenger present (yes, no), passen-
ger seatbelt use (yes, no), and visible driver cellphone use (yes, no). The other 
observed data is categorical: vehicle type (car, truck, SUV, van, or minivan), lane 
of the road (1 - 5, where lane 1 represents the lane furthest to the right and lane 
5 denotes the fifth lane from the right in the direction of travel), and weather 
(sunny/clear, light rain, cloudy, fog, or clear but wet conditions). The VMT for 
each site observed is classified (Road Class) within each county aggregate as 
lower, average, and upper. Vehicle type was assigned in no particular order, and 
later we reclassified it to describe the size of the vehicle which crudely correlates 
to seatbelt use. Weather is also not ordered in its assignment, and we reclassify it 
based on severity and impediment of driving ability. The data set also includes 
the following continuous variables: VMT, road segment length, and selection 
probabilities determined in the sampling design stage. 
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3. Unweighted Analysis and Results 

Generalized linear models are usually considered in the investigation of the data. 
First, a classic linear model was suggested to obtain a general relationship be-
tween the response (driver seatbelt use) and predictive variables. However, use 
of a linear model on binary responses is not recommended [21], since predicted 
values may be outside of the domain of the response variable. From this point 
forward, a classic model also known as classical test theory (CTT) is considered. 
We consider first fitting a logistic model to the data. 

3.1. Logistic Model 

In this model, p = P(Y = 1) is the probability that the driver is wearing a seat 
belt, and 1 − p = P(Y = 0) is the probability that the driver is not wearing a seat-
belt. The initial model is: 

Model 1: Log
1

p
p

 
 − 

 = β0 + βvXv + βrXr + βgXg + βsXs + βlXl 

+ βcXc + βwXw + βppXpp + βpsXps 

where β0 denotes the intercept of the model, Xv denotes Vehicle Type (car, truck, 
SUV, van, or mini-van), Xr denotes Road Classification for VMT (low, average, 
high), Xg denotes Driver Gender (male/female), Xs denotes the road segment 
length in mile, Xl denotes Lane in which vehicle observed (right to left), Xc de-
notes Driver Cell Phone Use (yes/no), Xw denotes Weather (clear, light rain, 
cloudy, foggy, or clear but wet), Xpp denotes Passenger Present (yes/no), Xps de-
notes Passenger Seatbelt Use (yes/no). This notation is used consistently 
throughout this manuscript. The weights ijw  are obtained as ( )*ij i j ip p p=  
where ip  is the selected probability of the selected county, and ( )j ip  is the se-
lection probability of the jth road type selected within the 𝑖𝑖 th county; 

1,2 ,15i =  , and 1, 2, , ij n=  . 
The estimated non-weighted seat belt use for each year is ˆ 0.83 for 2012,p =  

ˆ 0.81 for 2013,p =  ˆ 0.79 for 2014,p =  ˆ 0.84 for 2015,p =  and ˆ 0.81 for 2016.p =  
To simplify the model, the logistic fit is processed with stepwise selection at a 

0.15 significance level for both entry into the model and retention in the model. 
The results are verified using forward selection and backward selection options. 
The three procedures produce the same results. 

Analysis of the effects of weather on seatbelt use revealed inconsistent associa-
tions between seatbelt use and weather severity for the five years. Further, the 
selection process does not identify weather as significant for any combined data. 
Hence, weather has been removed from the model and the analysis repeated. 
Analysis of the predictor variables reveals a high correlation (Spearman’s corre-
lation coefficient, 0.94, 0.0001sr p value= − < ) between road segment length 
and road class which indicates a confounding condition. Other correlations are 
less than 0.15 and do not indicate the presence of other confounding effects. As a 
result, road segment length was removed from the model and the analysis per-
formed again. 
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Table 1 provides the Wald Test for significance in the selected Model with va-
riables as Vehicle type, Road class, driver gender, and so on. For 2012-2013 
combined data, all remaining predictors are significant at p = 0.01, while pas-
senger presence is removed due to a p-value > 0.15. For 2012-2014, all predictors 
are significant at p = 0.05. For the combined 2012-2015 data, predictor variables 
have p-values < 0.005. For the combined data for 2012 through 2016, all five of 
the remaining predictors are significant at p < 0.005. 

The close agreement between the models may indicate that the aggregate data 
follows a standard model which also fits the individual data sets. The test of the 
global hypothesis of null model, shown in Table 2, of 0 fori j i jβ β= = ≠  
versus at least one 0 ( , , , , , ,or i i j r g l c r ppβ ≠ =  depending upon the model) 
indicates significant evidence exists (p < 0.0001) to support the claim that the 
models are not explained solely by the intercept (i.e. the response is not a con-
stant) for all four presented models which is consistent with the Wald Test re-
sults in Table 1. 

Computational efficiency is measured by Akaike Information Criterion (AIC) 
numbers [22], displayed in Table 3, which assess the goodness of fit of the mod-
el: smaller numbers indicate a better fit. AIC is defined as follows: 

2 log ,rSSAIC p n
n

 = +  
 

 

where p is the number of parameters in the model, SSr is the residual sum of 
squares, and N is the number of observations in the dataset. 

 
Table 1. Type 3 analysis of effects. 

 2012-2013 2012-2014 2012-2015 2012-2016 

Effect DF Wald ChiSq Pr > ChiSq Wald ChiSq Pr > ChiSq Wald ChiSq Pr > ChiSq Wald ChiSq Pr > ChiSq 

Vehicle Type 4 513.796 <0.0001 773.573 <0.0001 1005.152 <0.0001 1302.209 <0.0001 

Road Classification 2 62.387 <0.0001 63.925 <0.0001 58.591 <0.0001 57.832 <0.0001 

Driver Gender 1 51.262 <0.0001 58.242 <0.0001 107.301 <0.0001 145.8213 <0.0001 

Lane 4 52.370 <0.0001 57.563 <0.0001 95.317 <0.0001 101.7103 <0.0001 

Driver Cell Phone Use 1 25.645 <0.0001 49.523 <0.0001 67.574 <0.0001 75.4237 <0.0001 

Passenger Present 1 2.809 0.0937 5.360 0.0206 8.138 0.0043 9.2257 0.0024 

 
Table 2. Testing global null hypothesis: β = 0. 

 2012-2013 2013-2014 2012-2015 2012-2016 

Test Chi-Square Pr > ChiSq Chi-Square Pr > ChiSq Chi-Square Pr > ChiSq Chi-Square Pr > ChiSq 

Likelihood Ratio 917.515 <0.0001 1299.731 <0.0001 1758.810 <0.0001 2225.1421 <0.0001 

Score 972.383 <0.0001 1377.571 <0.0001 1872.449 <0.0001 2380.1704 <0.0001 

Wald 918.137 <0.0001 1305.655 <0.0001 1771.882 <0.0001 2250.9919 <0.0001 

DF 13 13 13 13 
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The results of the AIC for logistic regression performed on the significant va-
riables identified during the selection process are in the 10 thousands. Since the 
intercept alone is not a sufficient explanation of the model, we use the values for 
intercept and covariance. The AIC numbers obtained for individual years are 
approximately 30% lower than those obtained by [14]; however, the combined 
data is significantly higher. The significantly higher numbers for the combined 
data indicate a significant amount of variation in the model, or a less than opti-
mum fit. 

3.2. Variable Standardization and Reclassification 

Since vehicle types are listed in no particular order, vehicle type is reclassified to 
indicate size of the vehicle which negatively correlates to driver seatbelt use: i.e. 
in general, the drivers of larger vehicles tend to wear seatbelts less often than 
drivers of smaller vehicles as suggested in [9]. Preliminary analysis of the data 
appears to support this hypothesis, so smaller vehicle types are given a larger 
value to indicate that the driver is more likely to wear a seatbelt. Table 4 con-
tains the reclassifications of vehicle type. The remaining five predictor variables 
have positive correlations to driver seatbelt use and reclassification is not neces-
sary. It is known that the variance is larger for population parameters with large 
values than for population parameters with smaller values. In order to make the 
variance between variables more homogenous and reduce the overall model va-
riance, each variable of interest was standardized by dividing its value by its 
third quartile (Q3) in an approach similar to [23]. Standardizing the variables 
may affect whether they are selected in the model, so all six of the potential pre-
dictors are standardized. The Q3 values of the variables after reclassification are 
listed in Table 5. Note that the Q3 values are the same for all five years, and 

 
Table 3. Model fit statistics. 

 2012-2013 2012-2014 2012-2015 2012-2016 

Criterion Intercept and Covariates Intercept and Covariates Intercept and Covariates Intercept and Covariates 

AIC 23015.856 35333.162 48803.129 58559.330 

SC 23129.764 35452.647 46926.938 58686.246 

−2 Log L 22987.856 35305.162 46775.129 58531.330 

 
Table 4. Reclassification of variables. 

Vehicle Type Original Value New Value for Size 

Car 1 3 

Truck 2 1 

SUV 3 1 

Van 4 1 

Mini-Van 5 2 
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thus the combined Q3 values are constant across time. 

3.3. Model Fitting after Standardized and Reclassified Variables 

The logistic selection process with p = 0.15 for entry and retention in the model 
is performed on the reclassified and standardized variables. The significant va-
riables indicated prior to standardization in 3.2 above remain significant (Table 6). 
The model fit statistics are comparable to the previous analysis (Table 7). The 
global null hypothesis test indicates that the model is not sufficiently described 
solely by the intercept (Table 8). All variables selected are significant (p-value < 
0.0001) for all datasets analyzed. In this analysis, it is reasonable to select the 
model fit by the combined 2012-2016 data: 

 
Table 5. Third quartiles after reclassification (No weight). 

Variable 
2012-2013: 

75th Percentile (Q3) 
2012-2014: 

75th Percentile (Q3) 
2012-2015: 

75th Percentile (Q3) 
2012-2016: 

75th Percentile (Q3) 

Vehicle Type 3 3 3 3 

Gender 1 1 1 1 

Lane 2 2 2 2 

Road Class 3 3 3 3 

Cell Phone 1 1 1 1 

Passenger Present 1 1 1 1 

 
Table 6. Type 3 analysis of effects for standardized and reclassified variables. 

 2012-2013 2012-2014 2012-2015 2012-2016 

Effect DF Wald ChiSq Pr > ChiSq Wald ChiSq Pr > ChiSq Wald ChiSq Pr > ChiSq Wald ChiSq Pr > ChiSq 

Vehicle Type 2 158.944 <0.0001 198.594 <0.0001 244.374 <0.0001 303.008 <0.0001 

Road Classification 2 63.0613 <0.0001 62.6709 <0.0001 59.2485 <0.0001 59.5541 <0.0001 

Driver Gender 1 167.328 <0.0001 227.771 <0.0001 361.160 <0.0001 482.711 <0.0001 

Lane 4 67.3511 <0.0001 76.9267 <0.0001 125.775 <0.0001 140.465 <0.0001 

Driver Cell Phone Use 1 25.9062 <0.0001 48.904 <0.0001 64.3876 <0.0001 72.7005 <0.0001 

Passenger Present 1 7.5306 0.0061 14.047 0.0002 20.3291 <0.0001 22.2701 <0.0001 

 
Table 7. Model fit statistics for standardized and reclassified variables. 

 2012-2013 2012-2014 2012-2015 2012-2016 

Test Chi-Square Pr > ChiSq Chi-Square Pr > ChiSq Chi-Square Pr > ChiSq Chi-Square Pr > ChiSq 

Likelihood Ratio 575.7315 <0.0001 741.4629 <0.0001 1022.7639 <0.0001 1258.4637 <0.0001 

Score 560.1672 <0.0001 722.7031 <0.0001 997.0795 <0.0001 1227.8707 <0.0001 

Wald 544.4533 <0.0001 704.7331 <0.0001 972.4031 <0.0001 1198.5248 <0.0001 

DF 11 11 11 11 
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Table 8. Global null hypothesis: β = 0 for Standardized and reclassified variables. 

 2012-2013 2012-2014 2012-2015 2012-2016 

Criterion Intercept and Covariates Intercept and Covariates Intercept and Covariates Intercept and Covariates 

AIC 23353.640 35887.431 47535.175 59522.009 

SC 23451.276 35989.846 47641.298 59630.794 

−2 Log L 23329.640 35863.431 47511.175 59498.009 

 

Model 2: Log
1

p
p

 
 − 

 = β0 + βvXv + βrXr + βgXg + βlXl + βcXc + βppXpp. 

The variable significance is displayed in Table 6, and the fit estimates are 
shown in Table 7. The AIC and SC numbers remain undesirably large (Table 8) 
and indicate that reclassification and standardization are not sufficient actions to 
improve model fit. Therefore, we investigate the cause for the poor model fit. 

In all the previous sections, the AIC, BIC and log likelihood have been used as 
best measures of goodness fit for the most parsimonious models. They turn out 
to be high, which is an evidence of over-dispersion, which could be an indication 
there is more variability in the data than expected from the fitted model, which 
is an indication of a poor fit. Since the sample size is large, the corrected AIC 
does not lead us to better improvements. Variables have been selected for each 
dataset and the selection process results in similar models. We will use these cri-
teria as comparisons when adding the weights to the models considered in the 
next section. 

4. Weighted Statistical Models 
4.1. Weights 

In all of the above analyses, the weights associated with the data were ignored. 
However, driver seat belt behavior is intricate and quite certainly involves 
non-collected data. Ignoring sample weights leads to inflated standard errors 
and biased estimates [2]. [3] provide guidelines for data analysis under weighted 
and designed data which reduces bias that would result in over sampled strata. 
The weights are stratum size and length of road segments. The inclusion of 
weights results in a significantly different model than selected in Section 3 above 
as inferred by [5]. Additionally, the goodness of fit criteria is significantly re-
duced (improved). The sampling plan for the data in this manuscript was de-
veloped as a joint effort between two of the authors (N. Diawara and B.E. Porter) 
and NHTSA. Therefore, in order to correct for bias due to stratum size and 
length of road segment, we included the weight designed for this analysis in our 
model, in accordance with NHTSA requirements [1] as: 

( ) ( )Weight Road Segment Length County Selection Probability= × . 

In this section, we will compare the results of the analysis based on the sam-
pling weights and validate the appropriateness of the use of the weights. 
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4.2. Weighted Logistic Models 
4.2.1. Model Fitting: Weighted Logistic Regression 
Prior to performing analysis on the reclassified and standardized variables, the 
75th percentiles for the weighted reclassified variables is determined. The 
weighted third quartile values are the same as the unweighted values listed in 
Table 5. 

The selection process using the weighted logistic regression model and the 
SAS® logistic procedure resulted in three significant predictors at p = 0.15: driver 
gender, passenger presence, and vehicle type for 2012-2013 data. The selection 
process for both the 2012-2014 data and the 2012-2015 data additionally indi-
cates that cell phone use is significant at p = 0.10. In the aggregate data for 
2012-2016, the selection process results in three significant variables at p = 0.05 
(see Table 9). There appears to be an increasing significance in the prediction of 
driver seat belt use by cell phone use (p > 0.15 to p ≈ 0.05) over time. The model 
is significant as indicated by the global null hypothesis test in Table 10. 

There is significant decrease in the AIC when the weights are added to the 
model, matching in [24] that, in the context of behavioral ecology, a simple con-
trolled model does not show all the complexity of the data. Table 11 contains the 
AIC and SC values, which are lower than the corresponding unweighted models 
by a factor of approximately 20. The weights have improved the accuracy of 
model as it helps reduce the residual variance. 

Figure 1 displays the predicted probability of seat belt use (for drivers using a 
cellphone with a passenger present) versus the vehicle type for each gender. The 
same general upward trend exists in the weighted model and the unweighted 
model but using less predictors. Please note that the authors have only included 

 
Table 9. Type 3 analysis of effects for weighted, standardized and reclassified variables. 

 2012-2013 2012-2014 2012-2015 2012-2016 

Effect DF Wald ChiSq Pr > ChiSq Wald ChiSq Pr > ChiSq Wald ChiSq Pr > ChiSq Wald ChiSq Pr > ChiSq 

Vehicle Type 2 9.3692 0.0092 11.2742 0.0036 13.2448 0.0013 16.9144 0.0002 

Driver Gender 1 10.3672 0.0013 12.5182 0.0004 19.3154 <0.0001 24.8218 <0.0001 

Driver Cell Phone Use 1 - - 3.1076 0.0779 3.5323 0.0602 3.7706 0.0522 

Passenger Present 1 2.1891 0.1390 2.9222 0.0874 4.2446 0.0394 4.4189 0.0355 

 
Table 10. Global null hypothesis: β = 0 for weighted, standardized, and reclassified variables. 

 2012-2013 2012-2014 2012-2015 2012-2016 

Test Chi-Square Pr > ChiSq Chi-Square Pr > ChiSq Chi-Square Pr > ChiSq Chi-Square Pr > ChiSq 

Likelihood Ratio 26.3513 <0.0001 35.1654 <0.0001 46.8481 <0.0001 57.6230 <0.0001 

Score 25.3421 <0.0001 34.1321 <0.0001 45.6491 <0.0001 56.2349 <0.0001 

Wald 25.5806 <0.0001 33.1892 <0.0001 44.4985 <0.0001 54.8916 <0.0001 

DF 4 5 5 5 
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Table 11. Model fit statistics for weighted, standardized and reclassified variables. 

 2012-2013 2012-2014 2012-2015 2012-2016 

Criterion Intercept and Covariates Intercept and Covariates Intercept and Covariates Intercept and Covariates 

AIC 1201.336 1812.153 2396.299 3000.441 

SC 1242.273 1863.365 2449.364 3054.837 

−2 Log L 1191.336 1800.153 2384.299 2988.441 

 

 
Figure 1. Model 3: Multivariate weighted logistic regression on model with p = 0.15 selection (2012-2016 Data). 

 
model but using less predictors. Please note that the authors have only included 
one chart for this model due to the excessive space required to depict all 24 such 
combinations. 

4.2.2. Model Selection: Weighted Logistic Regression 
The final model selected for the 2012-2016 aggregate data is 

Model 3: Log
1

p
p

 
 − 

 = β0 + βvXv + βgXg + βcXc + βppXpp 

where β0, βv, βg, βc, and are the estimates calculated using the weights. 
As expected, the combination of the data results in an improvement in the 
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significance of the predictors compared to individual models. However, the 
models have different selected variables and one of the variables selected for the 
2012-2016 combined data has a p-value > 0.05 indicating the necessity for a dif-
ferent analytical method. 

One suggestion is to develop an IRT model for prediction of seatbelt use, and 
it is advisable to include only very significant predictor variables (p ≤ 0.05). All 
four selected variables in the aggregate 2012-2016 data model have significance 
levels less than or very close to 0.05. We explore an IRT model using a selection 
process with p = 0.05 significance on the combined data. 

4.3. Weighted Item Response Theory Model 
4.3.1. Background 
To analyze dichotomous events or polytomous level response data (as usually 
found in the quality of life field), the item response theory (IRT) model provides 
a complement to the classical test theory (CTT) as the behavior and characteris-
tic of the driver is not directly understandable. The measurement of driver beha-
vior is not suitable since it is based on qualitative indicators such as the type of 
vehicle used, and other ad hoc parameters that are not easy to translate into 
quantitative information to be used in a CTT statistical analysis. Because of that, 
IRT and its famous Rasch model have also been implemented to measure driv-
ers’ behaviors. The IRT model allows the inclusion of the latent factor common 
to all drivers that can be described by a score function. We applied such a model 
based on specified traits that reflect the dichotomy of the data such as gender, 
and made comparisons. We then compare the efficiency and effectiveness of the 
overall indicators by computing goodness of fit statistics. 

4.3.2. Model 
Because the model requires consideration of several conditions, the Rasch model 
is considered, as it provides a tool to analyze characteristics even when they are 
latent. Such a model can be included in the class IRT in the framework proposed 
by [17]. Driving habits can be seen as a variable which depends on many factors. 
Our primary focus is on seat belt use and indicators which give additional in-
formation to evaluate seat belt use. We propose to extend the theory of logistic 
regression to include characteristics associated with driver seatbelt use which is 
translated into the driver’s condition as an associated score. In such a context, 
the Rasch model ([18] [25]) is an option where we can include each driver’s be-
havior regarding seat belt use. One main concern is the associated measurement 
of the score. That score is based on the qualitative information to be translated 
into quantitative measure. Using ideas from [26], we develop a score function 
that can be used to build the sensitive attributes and behaviors of drivers. As 
mentioned in [27], the bias reduction is achieved through appropriate weight 
adjustments. 

A score function is built using a linear combination of significant predictor 
variables. The proposed score attempts to capture the features of vehicle type 

https://doi.org/10.4236/ajor.2018.81002


M. K. Ledbetter et al. 
 

 

DOI: 10.4236/ajor.2018.81002 28 American Journal of Operations Research 
 

driven, driver gender, passenger presence, and driver cellphone use. Those fea-
tures can alter the probability of seat belt use and they can be seen as sufficient 
statistics for the response (See [16]). In our case, due to the logistic analysis on 
driver seat belt use, we propose to use a score function composed of driver 
gender, vehicle type, passenger presence, and handheld cellphone use as follows: 

S = Xg + Xv + Xpp + Xc 

where Xg = driver gender (male = 0 and female = 1), Xv = size of vehicle driven 
standardized by the 3rd quartile (1/3 = SUV/Van/Truck, 2/3 = Minivan, and 1 = 
car), Xc = passenger presence (present = 1 and not present = 0), and Xc = driver 
cellphone use (no = 0 and yes = 1). 

The final model is 

0 1Log .
1

p S
p

β β
 

= + − 
 

4.3.3. Results 
The logistic regression analysis yields parameter estimates (standard error) 

0
ˆ 0.7229β =  (0.1384) and 1

ˆ̂ 0.4130β =  (0.0609) for the 2012-2016 combined 
data (Table 12). 

The AIC values (Table 13) are comparable to the AIC values in the weighted 
logistic analysis shown in 4.2.1 indicating a satisfactory fit of the model. The 
model is significant as indicated by the global null hypothesis test given in Table 
14. The odds ratio estimate and its confidence interval are provided in Table 15. 
Figure 2 shows the regression line and 95% confidence limits for predicted 
probability of seatbelt use versus the weighted score function. The narrow con-
fidence band and the linear upward trend also indicate a satisfactory fit of the 
model to the data. All such results conform with the findings by [27] in the bias 
reductions even in the nonresponse situation, and provide an improvement on 
their suggested approach. 
 
Table 12. Analysis of maximum likelihood estimates. 

Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq 

Intercept 1 0.7229 0.1384 27.2767 <0.0001 

Score 1 0.4130 0.0609 46.0207 <0.0001 

 
Table 13. Model fit statistics. 

2012-2016 

Criterion Intercept and Covariates 

AIC 3002.597 

SC 3020.729 

−2 Log L 2998.597 
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Table 14. Testing global null hypothesis: BETA = 0. 

Combined 2012, 2013, and 2014 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 47.4665 1 <0.0001 

Score 46.7357 1 <0.0001 

Wald 46.0207 1 <0.0001 

 
Table 15. Odds ratio estimates. 

Effect Point Estimate 95% Wald Confidence Limits 

Score_Std_Reduced 1.511 1.341 1.703 

 

 
Figure 2. Logistic regression of seatbelt use versus weighted score. 

 
The present IRT model offers many more advantages than the classical test 

theory (CTT) methods developed in Section 3. The model is parsimonious and 
allows driver seat belt behavior to be easily estimated from scaled psychometric 
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item measures under a weighted design model. 

5. Conclusions 

Driver seatbelt use in the Commonwealth of Virginia may be satisfactorily de-
scribed using driver gender, vehicle type, passenger presence, and cellphone use 
in a multivariate logistic model using weights designed specifically for the data-
set. However, prediction of seatbelt behavior is more appropriate using item re-
sponse theory. As such, we have endeavored to build a score function consider-
ing driver gender, vehicle type driven, passenger presence, and cellphone usage 
by applying the IRT model with weights within the model. Fitting a weighted 
model results in significant improvements in goodness of fit statistics, such as 
AIC numbers, by factor of approximately 20. 

We suggest that a weighted IRT model is more appropriate and it may also 
potentially include other factors. Such a model could be used to develop pro-
grams and more applications of the IRT models. 
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