
Old Dominion University
ODU Digital Commons
Civil & Environmental Engineering Faculty
Publications Civil & Environmental Engineering

2016

Backward Dijkstra Algorithms for Finding the
Departure Time Based on the Specified Arrival
Time for Real-Life Time-Dependent Networks
Gelareh Bakhtyar
Old Dominion University, gbakh001@odu.edu

Vi Nguyen
Old Dominion University, vnguy025@odu.edu

Mecit Cetin
Old Dominion University, mcetin@odu.edu

Duc Nguyen
Old Dominion University, dnguyen@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/cee_fac_pubs

Part of the Aerospace Engineering Commons, Civil and Environmental Engineering Commons,
and the Mechanical Engineering Commons

This Article is brought to you for free and open access by the Civil & Environmental Engineering at ODU Digital Commons. It has been accepted for
inclusion in Civil & Environmental Engineering Faculty Publications by an authorized administrator of ODU Digital Commons. For more information,
please contact digitalcommons@odu.edu.

Repository Citation
Bakhtyar, Gelareh; Nguyen, Vi; Cetin, Mecit; and Nguyen, Duc, "Backward Dijkstra Algorithms for Finding the Departure Time Based
on the Specified Arrival Time for Real-Life Time-Dependent Networks" (2016). Civil & Environmental Engineering Faculty
Publications. 24.
https://digitalcommons.odu.edu/cee_fac_pubs/24

Original Publication Citation
Bakhtyar, G., Nguyen, V., Cetin, M., & Nguyen, D. (2016). Backward dijkstra algorithms for finding the departure time based on the
specified arrival time for real-life time-dependent networks. Journal of Applied Mathematics and Physics, 4(1), 1-7. doi:10.4236/
jamp.2016.41001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Old Dominion University

https://core.ac.uk/display/217290731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcee_fac_pubs%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/cee_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcee_fac_pubs%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/cee_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcee_fac_pubs%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/cee?utm_source=digitalcommons.odu.edu%2Fcee_fac_pubs%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/cee_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcee_fac_pubs%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.odu.edu%2Fcee_fac_pubs%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=digitalcommons.odu.edu%2Fcee_fac_pubs%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.odu.edu%2Fcee_fac_pubs%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/cee_fac_pubs/24?utm_source=digitalcommons.odu.edu%2Fcee_fac_pubs%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

Journal of Applied Mathematics and Physics, 2016, 4, 1-7
Published Online January 2016 in SciRes. http://www.scirp.org/journal/jamp
http://dx.doi.org/10.4236/jamp.2016.41001

How to cite this paper: Bakhtyar, G., Nguyen, V., Cetin, M. and Nguyen, D. (2016) Backward Dijkstra Algorithms for Finding
the Departure Time Based on the Specified Arrival Time for Real-Life Time-Dependent Networks. Journal of Applied Mathe-
matics and Physics, 4, 1-7. http://dx.doi.org/10.4236/jamp.2016.41001

Backward Dijkstra Algorithms for Finding
the Departure Time Based on the Specified
Arrival Time for Real-Life Time-Dependent
Networks
Gelareh Bakhtyar1, Vi Nguyen2, Mecit Cetin1, Duc Nguyen1,3
1Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, USA
2Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, USA
3Department of Modeling, Simulation, and Visualization Engineering, Old Dominion University, Norfolk, VA,
USA

Received 9 November 2015; accepted 5 January 2016; published 12 January 2016

Abstract
A practical transportation problem for finding the “departure” time at “all source nodes” in order
to arrive at “some destination nodes” at specified time for both FIFO (i.e., First In First Out) and
Non-FIFO “Dynamic ” Networks is considered in this study. Although shortest path (SP) for dy-
namic networks have been studied/documented by various researchers, contributions from this
present work consists of a sparse matrix storage scheme for efficiently storing large scale sparse
network’s connectivity, a concept of Time Delay Factor (TDF) combining with a “general piece-
wise linear function” to describe the link cost as a function of time for Non-FIFO links’ costs, and
Backward Dijkstra SP Algorithm with simple heuristic rules for rejecting unwanted solutions
during the backward search algorithm. Both small-scale (academic) networks as well as large-
scale (real-life) networks are investigated in this work to explain and validate the proposed dy-
namic algorithms. Numerical results obtained from this research work have indicated that the
newly proposed dynamic algorithm is reliable, and efficient. Based on the numerical results, the
calculated departure time at the source node(s), for a given/specified arrival time at the destina-
tion node(s), can be non-unique, for some Non-FIFO networks’ connectivity.

Keywords
Backward Dijkstra, Dynamic Networks, Piece-Wise Linear Function, Specified Arrival Time

1. Introduction
For most people who have to commute from their homes to their work-places, they want to have the answers for
either of the following questions: if we leave our home at a specified time, what time we will arrive at the office?

Email: gbakh001@odu.edu, vnguy025@odu.edu, mcetin@odu.edu, dnguyen@odu.edu

+~:• Scientific
•~ Research
••:• Publishing

http://www.scirp.org/journal/jamp
http://dx.doi.org/10.4236/jamp.2016.41001
http://dx.doi.org/10.4236/jamp.2016.41001
http://www.scirp.org

G. Bakhtyar et al.

2

Or what time we should depart from home in order to arrive at the office at a specified time? Similar questions
have been asked by long distance travelers, etc.

The vast majority of Shortest Path Problem (SPP) publications have dealt with static (i.e., non-time-dependent)
networks that have fixed topology and constant link costs. In recent years, there has been a renewed interest in
the study of Time-Dependent Shortest Path Problems (TDSPP). Thus, one of the fundamental network problems
in such applications is the computation of the shortest paths from all nodes to a set of destination nodes for all
possible departure time, in a given time-dependent network.

Orda and Rom [1] have presented an algorithm for finding the shortest path and minimum delay under various
waiting constraints, and for all instances of time. The properties of the derived path (under arbitrary functions
for link delays) are also investigated in their studies. Daganzo [2] have solved the backward SSP on a network
with FIFO links. The FIFO property means “First In First Out” and states that if a vehicle leaves node i at time

1t and the other one leaves the same node at time 2 1t t> , then the second vehicle cannot arrive at node j before
the first one. Chabini and Ganugapati [3] have proposed an efficient dynamic solution algorithm, call algorithm
DOT, and prove that no sequential algorithm with a better worst-case computational complexity can be devel-
oped. Wuming and Pingyang [4] introduced an algorithm to solve the shortest paths in time-dependent network
by converting Non-FIFO network to a FIFO network and solve the problem using the traditional SSP algorithms.
Ding, Yu, and Qin [5] have proposed a new Dijkstra-based algorithm by decoupling path-selection and time-re-
finement in the starting-time interval T. They have also established/proved the time complexity and space com-
plexity based on their proposed 2 step approached. Through extensive numerical studies, they have also con-
cluded that their dynamic algorithm outperforms existing solution algorithms in terms of efficiency.

Bidirectional Dijkstra search is a standard technique to speed up computations on static networks. However,
since the arrival time at the destination is unknown, the cost of time-dependent links around the target node
cannot be evaluated, thus bidirectional search cannot be directly applied on time-dependent networks. Nannicini
[6] has proposed a solution to the above problem by using a time-independent lower bounding function in the
backward search.

Computational strategies for families of Frank-Wolfe (FW), Conjugate FW, Bi-conjugate FW Deterministic
User Equilibrium (DUE) algorithms for static networks have also been reported by Allen [7].

The focus of this paper is to find the departure time at the source node(s) for a given (or specified) arrival time
at the destination node(s) in FIFO, and Non-FIFO networks. This present work consists of a sparse matrix sto-
rage scheme for efficiently storing large scale sparse network’s connectivity, a concept of Time Delay Factor
(TDF) combining with a general piece-wise linear function to describe the link cost as a function of time (for
Non-FIFO links’ costs), and Backward Dijkstra SP Algorithm with simple heuristic rules for rejecting unwanted
solutions during the backward search algorithm.

The remaining of this paper is organized as following. Dynamic networks are discussed in Section 2, where
the concept of TDF in conjunction with piece-wise linear time function for the links’ costs are also introduced in
this section. A small numerical example of a dynamic network (with 5 nodes and 9 links) is used in Section 3 to
facilitate the discussions of the Polynomial LCA and Forward Dijkstra algorithms for finding the arrival time at
the destination node, based on the known departure time at the source node. Furthermore, this same dynamic
network will also be used in Section 3 for finding the departure time at the source node in order to arrive at the
destination node at a given time. The issue of unique (or non-unique) solution for this focused problem (i.e.
finding the departure time at the source node for a specified arrival time at the destination node) is also dis-
cussed in Section 3. Real-life (large-scale) dynamic transportation networks are investigated, using the proposed
time-dependent Backward Dijkstra algorithm, and the numerical results are presented in Section 4 to validate the
proposed dynamic algorithm. Finally, conclusion is summarized in Section 5.

2. Time Delay Factor and Piece-Wise Linear Time Function in Dynamic Networks
For dynamic networks, the time to travel from node “i” to node “j” of a particular link “k” is no longer a con-
stant. The actual travel time on link “k” will depend on the departure time at node “i”. In this work, the follow-
ing formulas are employed for a typical link “k”, connected by node “i” to node “j”:

()AT DT CST TDF DT= + ∗ (1)

where AT = Arrival Time at node “j” for a typical link “k”, DT = Departure Time at node “i” for a typical

0

G. Bakhtyar et al.

3

link “k”, CST = Constant “Static” Time for a typical link “k”, ()TDF DT = Time Delay Factor (TDF),
which is dependent on DT and can be defined as Equation (2), and ()y DT is the appropriated time function
for a typical link “k”.

() ()1TDF DT y DT= + (2)

In this work, the time function (which depends on DT) can be represented as shown in Figure 1 where
piece-wise linear time function is used. For typical travel time in real dynamic networks, travel time will be in-
creased during certain hours of the day, say during 6 am - 8 am in the morning (due to morning rush, since trav-
elers drive to work), and say during 16 hours-18 hours (or 4:00 pm - 6:00 pm, since travelers leave their offices
for heading homes).

In Figure 1, the coordinates (, ()DT y DT) of such points O, A, B, C, D, E, F, G, H, and I are defined as the
input parameter (provided by the software user). Thus, this piece-wise linear time function can be (conveniently,
and appropriately) provided to take into account of different local traffic congested time. In general, one may
have different function ()y DT for different links. However, in our research work, we assume that all links (see
Figure 2(a)) will have the same travel behavior as the one shown in Figure 1.

The value of ()y DT can be varied (say, from 0.00 to 1.00 as indicated in Figure 1). Thus, for static net-
works, the TDF defined in Equation (2) is equal to 1 (by setting ()y DT = 0.00), while for dynamic networks,
the value of TDF could be any where within the range [1.00 2.00]− , depending on the value of ()y DT . The
following 2 important observations can be made:

1) On a typical link “k”, if the departure time at node “i” is known, then the arrival time at node “j” can be
uniquely and easily computed (by using Equation (1-2), and Figure 1).

2) On a typical link “k”, if the arrival time at node “j” is known, then the departure time at node “i” can also
be computed (by using Equation (1)-(2), and Figure 1). However, in this case, the computed departure time at
node “i” may NOT be unique. Some sorts of elimination (heuristic) rules need be developed in order to find an
acceptable single solution.

3. Finding the Departure Time at the Source Node(s) Based on the Specified
Arrival Time at the Destination Node(s)

In this section, a dynamic network with 5 nodes and 9 links, shown in Figure 2(a), will be analyzed. For con-
venience, all links will be assumed to have the same time function as illustrated in Figure 1. The following
problem’s cases will be investigated.

Problem 1. Use the polynomial LCA (time dependent) method to find the time dependent shortest path from
any source node, say 5s = to any destination node, say 2t = at the following three possible departure time:

Case (a): 9 hrs. = 9:00 am (to simulate right after rushed /busy hours, see Figure 1).
Case (b): 15 hrs. = 3:00 pm (to simulate right before rushed /busy hours, see Figure 1).
Case (c): 16.75 hrs. = 4:45 pm (to simulate during rushed /busy hours, see Figure 1).

 Figure 1. Piece-wise linear time function for a typical link “k”.

y(DT)

1

Y2

Y1
A

0 5

Heavy Traffic Time Delay

D

8 9

Ys

0

F

Ya

E H

15 16 18 19 24 DT

G. Bakhtyar et al.

4

(a) (b)

Figure 2. (a) A dynamic network topology; (b) A dynamic reversed network
topology with 5 nodes and 9 links.

This problem is rather straight forward, since the departure time ()DT is known at the source node 5. For

any subsequent links i j− , since the departure time of node “i” for links i j− is known, hence:
The function ()y DT can be easily/uniquely determined (from Figure 1), the Time Delay Factor ()TDF

can be easily/uniquely determined (from Equation (2)), and the arrival time ()AT at node “j” can be easily/
uniquely determined (from Equation (1)). Eventually, the AT at node 2 (for all cases a, b, and c) were found
and presented in Table 1.

Problem 2. Re-do problem 1 (for all cases a, b, and c), but using the regular forward time dependent Dijkstra
algorithm.

The final results are identical to the one obtained in Problem 1 (using Polynomial LCA time-dependent algo-
rithm (see Table 1)).

Problem 3. Find the departure time for the known arrival time using dynamic backward Dijkstra algorithm
for all three cases of the previous problem. Based on the numerical results obtained in problems 1 and 2, we
knew that if the driver departs from the source node 5 at 9:00am (case a), or at 3:00pm (case b), or at 4:45pm
(case c), then he/she will arrive at the destination node 2 at 16.00 (or 4:00pm), or at 24.00 (or mid-night), or at
26.25 (or 2:15am next day), respectively.

To find the solutions for the above questions, our proposed modified dynamic backward Dijkstra algorithms
can be summarized in the following major steps:

Step 1. Revised the links’ direction of the given network (see Figure 2(b)). The given arrival times (obtained
from problems 1 and 2) can be used as the known departure time at the source node 2.

Step 2. In this step, we would like to find “what time the driver should depart from the source node i (for link
i j−), in order to arrive at the destination node j at a specified time?”. For this situation, Equation (1) can also
be used. However, the known variables are AT and CST , and the unknown variable is DT . This is com-
pletely different from the defined problems 1 and/or 2, where the known variables are DT and CST , and the
unknown variable is AT . While the unknown variable AT can be easily (and uniquely) found from Equation
(1) for Problems 1 and 2, the unknown variable DT for Problem 3 may not be easily (and/or uniquely) found
from Equation (1). Combining Equation (1) and Equation (2), one obtains:

[1 ()]AT DT CST TDF y DT= + × = + (3)

The only unknown in Equation (3) is Departure time (DT). To illustrate this point, the following numerical
details are provided and explained for Problem 3, case (b), where we start with the known AT at node 2 as
24.00 (or mid-night). Starting from node 2j = , find all the connected out-going links j i− (based on Figure
2(b)).

Start first iteration, when { }0distance Inf Inf Inf Inf= , { }0 0 0 0 0predecesor = , { }2S =
(the array of explored nodes), 24.00AT = (Given arrival time at destination node). For Outgoing link 2-1, we
have 1, 24.00jnode AT= = , and (2 1) 2.5CST for link − = , Equation (3) will give the 9 computed DT val-
ues (corresponding to the 9 time functions 1 2 3 9, , , ,y y y y… shown in Figure 1) as following:

{ }
{ }

1 2 3 4 5 6 7 8 9

21.5 9.71 19 0.67 21.5 16.9 19 17.3 21.5

DT DT DT DT DT DT DT DT DT

=
 (4)

However, Figure 1 implies that the time function 1()y DT is only valid if DT is within the range [0.00 -
5.00 hours], the time function 2 ()y DT is only valid if DT is within the range [5.00 - 6.00 hours], the time

0

G. Bakhtyar et al.

5

Table 1. Numerical Results for Dynamic Network in Figure 2.

Case Source
Node

Destination
Node

Departure
Time

Arrival
Time

Shortest
Time (Cost) Path Number of

Explored Nodes

Polynomial LCA & Forward Dijkstra

a 5 2 9 16 7 5 3 2 5

b 5 2 15 24 9 5 3 1 2 5

c 5 2 16.75 26.25 9.5 5 3 2 5

Backward Dijkstra

a 2 5 9 16 7 2 3 5 4

b 2 5 15.5714 24 8.4286 2 3 5 4

c 2 5 19.25 26.25 7 2 3 5 4

function 3()y DT is only valid if DT is within the range [6.00 - 8.00 hours], the time function 4 ()y DT is
only valid if 𝐷𝐷𝐷𝐷 is within the range [8.00 - 9.00 hours], the time function 5 ()y DT is only valid if DT is
within the range [9.00 - 15.00 hours], the time function 6 ()y DT is only valid if DT is within the range
[15.00 - 16.00 hours], the time function 7 ()y DT is only valid if DT is within the range [16.00 - 18.00 hours],
the time function 8 ()y DT is only valid if DT is within the range [18.00 - 19.00 hours], and the time function

9 ()y DT is only valid if DT is within the range [19.00 - 24.00 hours].
For the above reasons/restrictions, out of the 9 computed DT (shown in Equation (4)), we can only accept

the value 9 21.5DT DT= = hours, with the value ()9 0.00y DT = , which correspond to the 1.0TDF = . We
can update our information as below:

() (()) distance jnode distance S end link cost TDF= + × ,

{ }2.5 0distance Inf Inf Inf= , { }2 0 0 0 0predecesor = .

For outgoing link 2-3, we have 24.00AT = , and CST (for link 2 - 3) = 4.5, Equation (3) will give the 9
computed DT values (corresponding to the 9 time functions: 1 2 3 9, , , ,y y y y… , shown in Figure 1) as follow-
ing:

{ }
{ }

1 2 3 4 5 6 7 8 9

19.5 7.6 15 6 19.5 15.8 15 18.9 19.5

DT DT DT DT DT DT DT DT DT

=
 (5)

Based on the restrictions imposed on the 9 functions ()y DT , shown in Figure 1, out of the 9 computed
DT (shown in Equation (5)), there were 3 possible solutions for 6 15.8DT DT= = , or 8 18.9DT DT= = , or

9 19.5DT DT= = hours. The corresponding values for { } { }6 8 9 0.8182 0.1429 0.00y y y = , and

{ } { }6 8 9 1.82 1.14 1.00TDF TDF TDF = . Among the 3 possible solutions for DT (such as 6DT DT= , or

8DT DT= , or 9DT DT=), we select the largest 9 19.5DT DT= = hours, since this choice will correspond to
the smallest 9 1.00TDF TDF= = . In other words, our selected choice will give the smallest 𝐷𝐷𝐷𝐷𝑇𝑇which will give
the smallest travel cost for this particular link. We can update our information as below:

19.5,DT = () ()() distance jnode distance S end link cost TDF= + × ,

{ }2.5 0 4.5distance Inf Inf= , { }2 0 2 0 0predecesor = .

The next node to explore is node 1 (i.e., 1next =), so the second iteration can start by searching toward all
the outgoing links from node 1 in which the arrival time at node 1 is 21.5 (21.5AT =), and { }2 1S = . The
algorithm will stop when the next node to explore is the destination node.

Eventually, the AT at node 5 for all cases a, b, and c of the problem were found, and presented in Table 1.
Thus, for certain dynamic networks, there may be more than one solution for the departure time at node i (say

0

G. Bakhtyar et al.

6

5i =) which still give the same specified arrival time at node j (say 2j =). By using the suggested criterion to
select the value of DT , the resulted path will also often corresponds to the SP as well.

4. Numerical Result for Large Scale Real-Life Networks
In this section, 12 large-scale examples based on real-life networks data have been solved using the regular for-
ward Dijkstra, and backward Dijkstra algorithms. The regular forward Dijkstra algorithm is employed to find the
arrival time at the destination node j, based on the known departure time at the source node i. The backward
Dijkstra algorithm is employed to find the departure time at the source node𝑖𝑖, based on the known (specified)
arrival time at the destination node j. For cases where multiple solutions for DT do exist, we will select the
DT which gives the smallest value of min()y DT y= , which corresponds to the smallest value for minTDF TDF= .
This is the criterion which has been used in Section 3.

For convenient purposes, the arrival time at the destination node j of the Forward Dijkstra algorithm will be
used as the departure time for the destination j of the Backward Dijkstra algorithm, for the same network with
reversed links’ directions. All numerical results are compiled and tabulated in Table 2.

For the problem of finding the departure time at the source node(s) based on the specified/given arrival time
at the destination node(s), and based on the numerical results presented in Table 2, the following major observa-
tions can be made:

a) Unique solution has been obtained in all examples except example 2 and 11.
b) Multiple (or non-unique) solutions have been found in examples 2, and 11. For these examples, different

departure time at the source node can lead to the same specified arrival time at the destination node. In example
2, if the driver departs at the source node 25 at either 6.00 hours, or at 7.236 hours, he/she still arrives at the des-
tination node 110 at the specified time 21.7647 hours. Of course, if the driver departs at the source node 25 at
7.9032 hours, then not only he will arrive at his destination node on time (at the specified time 21.7647 hours),
but this selected path will also be the shortest path.

Table 2. Comparisons of forward and backward Dijkstra results for real networks.

Example Network
Name

Source
w.r.t.

Forward
Search

Destination
w.r.t.

Forward Search

Forward Search Backward Search (Ymin)

Departure
Time

Arrival
Time Cost Back Calculated

Departure Time Cost

1 Winnipeg 5 100 6 16.494 10.494 6 10.494

2 Winnipeg 25 110 6 21.764 15.764 7.236 14.528

2 Winnipeg 25 110 7.236 21.764 14.528
3 Barcelona 5 400 6 10.587 4.5876 6.0002 4.587

4 Barcelona 15 400 5 11.954 6.954 5 6.954

5 Austin 56 1800 1 22.855 21.855 1 21.855

6 Austin 156 1500 6 18.735 12.735 6.0007 12.734

7 Austin 5 6100 23 53.041 30.041 23 30.041

8 Austin 1 7388 6 22.797 16.797 5.9993 16.797

9 Philadelphia 6 560 1 13.481 12.481 1 12.481

10 Philadelphia 36 510 7 22.7 15.7 6.9996 15.700

11 Philadelphia 48 1415 1 63.352 62.352 1.5262 61.826

11 Philadelphia 48 1415 1.526 63.352 61.826
12 Philadelphia 100 1429 6 57.165 51.165 6.0001 51.165

13* Winnipeg 25 110 6 25.020 19.020 6 19.020

14* Philadelphia 48 1415 1 199.32 198.32 1 198.32
*FIFO Network (example 1 through 12 correspond to Non-FIFO Network).

0

G. Bakhtyar et al.

7

c) In example 11, the driver departs from source node 48 at 1.00 hour (=1:00am), and he/she will arrive at the
destination node 1415 at 63.3523 hours (=63.3523 − 48 = 15.3523 hours, two days later), based on the Forward
Dijkstra search. Based on the Backward Dijkstra search, the driver should depart (at the same source node) at
1.5262 hours (=1:5262 am hours), if he/she wishes to arrive at the same destination node at the specified time
63.3523 hours.

5. Conclusions
In this paper, the well-known polynomial LCA, and the Regular Forward Dijkstra algorithms have been conve-
niently applied to dynamic (time dependent) networks, through the concept of piece-wise linear function and
Time Delay Factor (TDF) which is a function of the departure time (DT) at node “i” for a typical link i j− .

The practical problems of finding the departure time at the source node(s) based on the specified/given arrival
time at the destination node(s) can be efficiently solved by using the proposed Backward Dijkstra algorithm,
which basically employs the Forward Dijkstra algorithm on the same dynamic network with all links’ direction
are reversed. Extensive numerical results based on a small-scale (academic) dynamic network (with 5 nodes, and
9 links), as well as using 12 real-life (large-scale) dynamic networks, seem to indicate that:

i) The proposed Backward Dijkstra (time dependent) algorithms always find the correct departure time at the
source node “i” that will guarantee to arrive at the destination node “j” at the specified/given arrival time.

ii) For FIFO dynamic networks, the computed paths correspond to the shortest paths, and the solution is
unique.

iii) For certain NON-FIFO dynamic networks, the computed paths often correspond to the shortest paths, al-
though SP is not a requirement for the type of time-dependent problems considered in this work.

iv) Depending on the particular NON-FIFO dynamic network, the computed solution(s) might be unique or
non-unique where multiple solutions do exist.

Acknowledgements
This paper was in part funded by Mid-Atlantic Transportation Sustainability University Transportation Center
(MATS UTC, for the third author), and by the NSF grant#1440673 (for the last author).

References
[1] Orda, A., and Rom R. (1990) Shortest Path and Minimum Delay Algorithms in Networks with Time-Dependent Edge

Length. J. ACM, 37, 607-625. http://dx.doi.org/10.1145/79147.214078
[2] Daganzo, C.F. (2002) Reversibility of the Time-Dependent Shortest Path Problem. Transportation Research Part B:

Methodological, 36, 665-668. http://dx.doi.org/10.1016/S0191-2615(01)00012-1
[3] Chabini, I. and Ganugapati, S. (2002) Parallel Algorithms for Dynamic Shortest Path Problems. International Transac-

tions in Operational Research, 9, 279-302. http://dx.doi.org/10.1111/1475-3995.00356
[4] Luo, W.M. and Han, P.Y. (2007) Study on Non-FIFO Arc in Time-Dependent Networks. Eighth ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing.
http://dx.doi.org/10.1109/SNPD.2007.445

[5] Ding, B., Yu, J.X. and Qin, L. (2008) Finding Time-Dependent Shortest Paths over Large Graphs. EDBT’2008 Pro-
ceedings of the 11th International Conference on Extending Database Technology: Advances in Database Technology,
205-216. http://dx.doi.org/10.1145/1353343.1353371

[6] Nannicini, G. (2009) Point-to-Point Shortest Paths on Dynamic Time-Dependent Road Networks. Ph.D. Dissertation,
Ecole Polytechnique, France.

[7] Allen, S.E. (2013) Parallel Implementations of the Frank-Wolfe Algorithms for the Traffic Assignment Problem. M.Sc.
Thesis, MSVE Department, Old Dominion University, Norfolk, USA.

0

http://dx.doi.org/10.1145/79147.214078
http://dx.doi.org/10.1016/S0191-2615(01)00012-1
http://dx.doi.org/10.1111/1475-3995.00356
http://dx.doi.org/10.1109/SNPD.2007.445
http://dx.doi.org/10.1145/1353343.1353371

	Old Dominion University
	ODU Digital Commons
	2016

	Backward Dijkstra Algorithms for Finding the Departure Time Based on the Specified Arrival Time for Real-Life Time-Dependent Networks
	Gelareh Bakhtyar
	Vi Nguyen
	Mecit Cetin
	Duc Nguyen
	Repository Citation
	Original Publication Citation

	Backward Dijkstra Algorithms for Finding the Departure Time Based on the Specified Arrival Time for Real-Life Time-Dependent Networks
	Abstract
	Keywords
	1. Introduction
	2. Time Delay Factor and Piece-Wise Linear Time Function in Dynamic Networks
	3. Finding the Departure Time at the Source Node(s) Based on the SpecifiedArrival Time at the Destination Node(s)
	4. Numerical Result for Large Scale Real-Life Networks
	5. Conclusions
	Acknowledgements
	References

