Old Dominion University ODU Digital Commons

October 13, 2017: New and Updated Science and Projects

Hampton Roads Sea Level Rise/Flooding Adaptation Forum

10-13-2017

City of Virginia Beach Comprehensive Sea Level Rise and Recurrent Flooding Response Plan

Shanda Davenport *City of Virginia Beach*

Follow this and additional works at: https://digitalcommons.odu.edu/hraforum_18

Repository Citation

Davenport, Shanda, "City of Virginia Beach Comprehensive Sea Level Rise and Recurrent Flooding Response Plan" (2017). *October* 13, 2017: New and Updated Science and Projects. 7. https://digitalcommons.odu.edu/hraforum_18/7

This Presentation is brought to you for free and open access by the Hampton Roads Sea Level Rise/Flooding Adaptation Forum at ODU Digital Commons. It has been accepted for inclusion in October 13, 2017: New and Updated Science and Projects by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

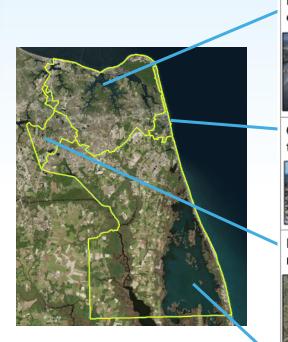
City of Virginia Beach Comprehensive Sea Level Rise and Recurrent Flooding Response Plan

Study Goal and Outcomes

Goal:

Produce information and strategies that will enable Virginia Beach to establish long-term resilience to sea level rise and associated recurrent flooding

Outcomes:


- A full understanding of flood risk and anticipated changes over planning and infrastructure time horizons
- Actionable flood resilience plans that combine engineered protection measures, accommodation, and/or land use management strategies
- A fine-tuned public outreach process to advance resilience initiatives

2 October 13, 2017

Watershed Level Plans

 Economic and environmental diversity require 4 distinct plans
 Planning Area/Natural Resources Defining Characteristics Challes

Planning Area/ Natural Resources	Defining Characteristics	Challenges		
Lynnhaven / Tidal sheltered bay, estuarine, fringing marsh	Mixed residential, military, commercial, lower elevation properties with high tax base. High quality natural resources. Assets at vulnerable elevations.	Addressing repititive losses from recurrent flooding and preservation of low-lying natural resources.		
Oceanfront / Ocean, headland beaches, tidal inlet, bay	Dense commercial and residential development. Tourism as primary economic driver. Redevelopment opportunities. USACE Civil Works flood risk reduction project.	Protecting existing development and economic base while instilling resilience as a keystone in redevelopment.		
Elizabeth River / Estuarine, fringing marshes	Dense residential, commercial, industrial development. Aging infrastructure.	Upgrading infrastructure and maintaining water-based industrial economy with higher sea levels.		
Southern / Ocean, barrier beaches, back bays and extensive marshes	Light residential, military, rural, recreational, waterfowl and land preserves. Agriculture important economic concern. Low elevation gradients.	Establishing land use strategies that preserve resources and limit new development and infrastructure in areas susceptible to future flooding.		

🏶 Dewberry[.]

Comprehensive SLR Study Approach

3. Implementation Planning the actions

2. Adaptation Strategies Tailoring the solutions

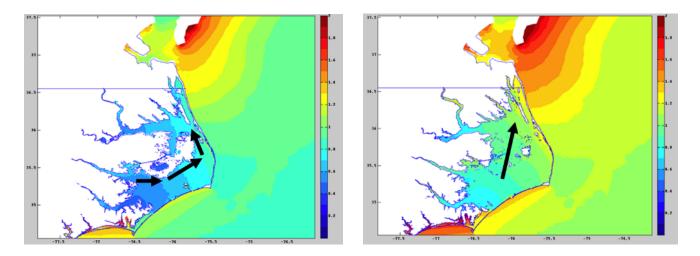
1. Sea Level Rise/ Recurrent Flooding Impacts Defining the problem

🖲 Dewberry[.]

Phase 1: Sea Level Rise/Recurrent Flooding Impacts

- Objective: Identify the location, frequency and potential cost of existing and future flood risk to the City
- How will vulnerability change with increasing flood levels due to SLR?
 - Where will we see the flood footprint expand?
 - How much more frequent will flooding occur?
 - What assets are vulnerable?
 - What are the losses, how will they change?
 - What assets are at the highest risk?

VB SLR Planning Scenarios


Life Cycle Alignment	Time Horizon/ Time Period	SLR Value	Relevance	Use
Municipal Planning	20-40 years 2035-2055	1.5 ft	Comprehensive Plan & Outcomes Short end of Commercial and Utility life-cycles	Vulnerability assessment Key planning value Basis for evaluation of all adaptation strategies
Critical Infrastructure Long-term awareness Adaptive Capacity	50-70 years 2065-2085	3.0 ft	Utility Infrastructure life-cycle Transportation infrastructure lifecycles Residential structure lifecycles	Secondary vulnerability assessment to provide insight into long-term risk Basis for long-term infrastructure decisions Evaluate cost-effectiveness of additional protection for adaptable resilience strategies

Flood elevations - Not a static increase!

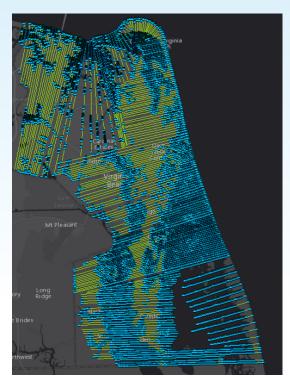
• SLR Integration:

- 1.5 ft SLR scenario
 - Added as a static increase to surge elevations
 - Non-linear aspects captured through re-evaluation of dune erosion and wave modeling over increased water levels.
- 3 ft SLR scenario
 - Detailed modeling from USACE and North Carolina used to integrate nonlinear response in surge elevations
 - Wave modeling and dune erosion also re-evaluated.

Flood Assessment Conditions

Tidal

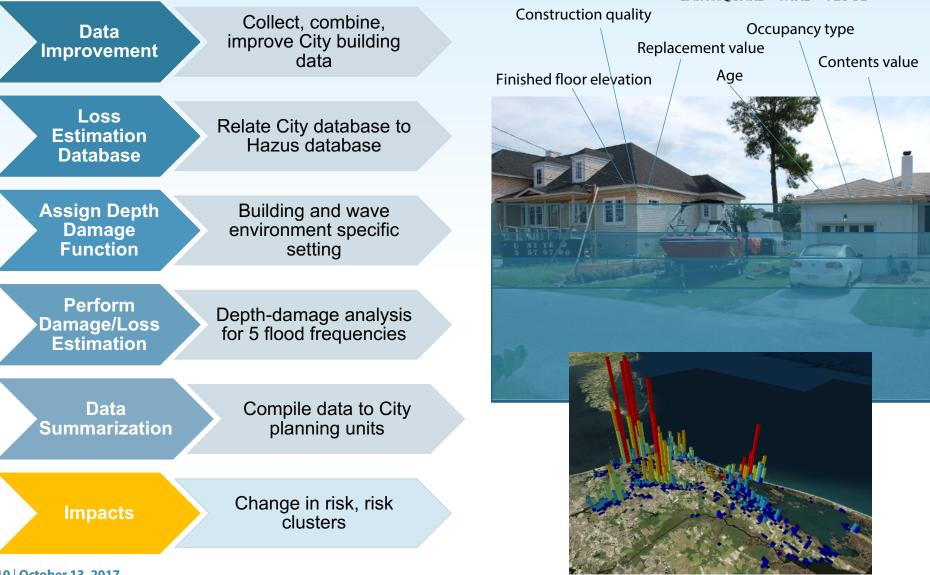

- Daily tidal flooding
- Future permanent inundation
- Defined by NOAA, Mean Higher High Water
- Nuisance
 - Wind-driven surge, extreme tide events
 - Repetitive losses/ loss of function or service
 - Defined by water level analysis
- Storm Surge
 - Nor'easters, tropical storms, hurricanes
 - 10-, 25-, 50-, 100-, 500-yr recurrence intervals
 - Defined by probabilistic analysis



8 October 13, 2017

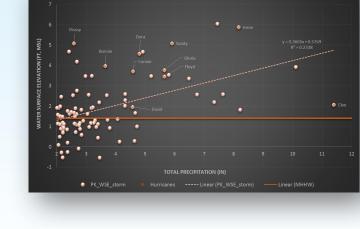
Bewberry

Hazard Assessment Process

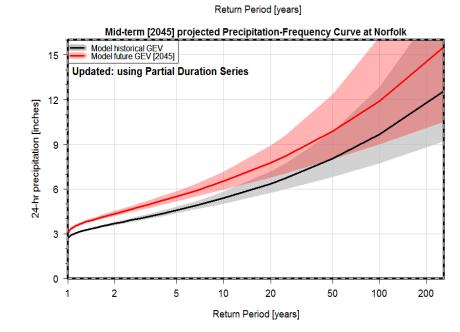


Dewberry[.]

Loss Estimation Process

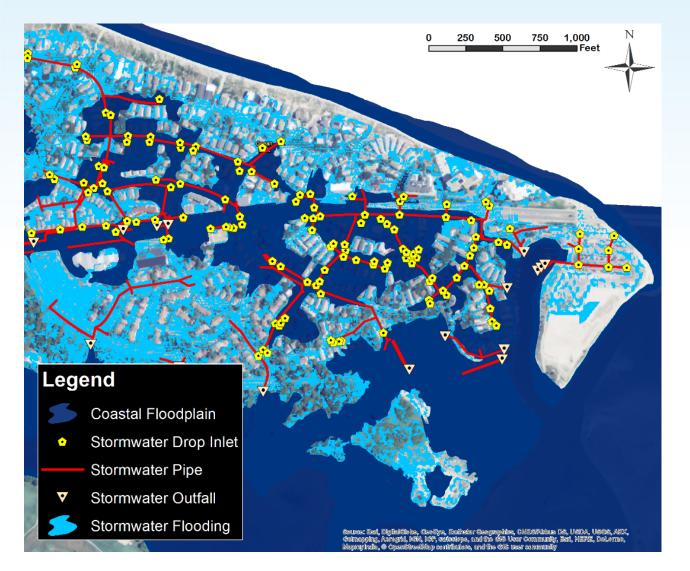


10 | October 13, 2017


"Whole Picture" Analyses

• Rainfall/surge correlation

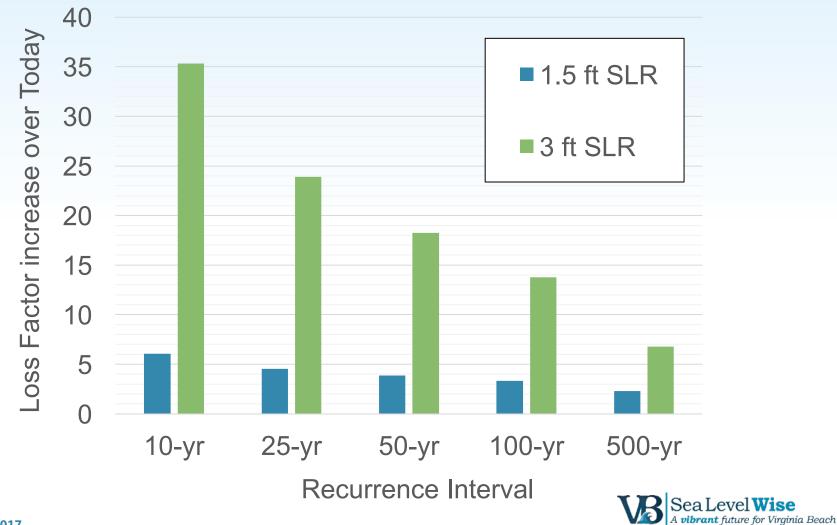
- >50% of rainfall events occur during elevated water levels
- Joint-probability of rainfall/storm surge
 - Rainfall/surge design probabilities
- Regional Precipitation Trends
 - Heavy rainfall increasing
- Future precipitation conditions
 - Up to 20% increase in design rain
- Probable maximum event precipitation
 - Design "check storm"



Sewell's Point 1948-2015

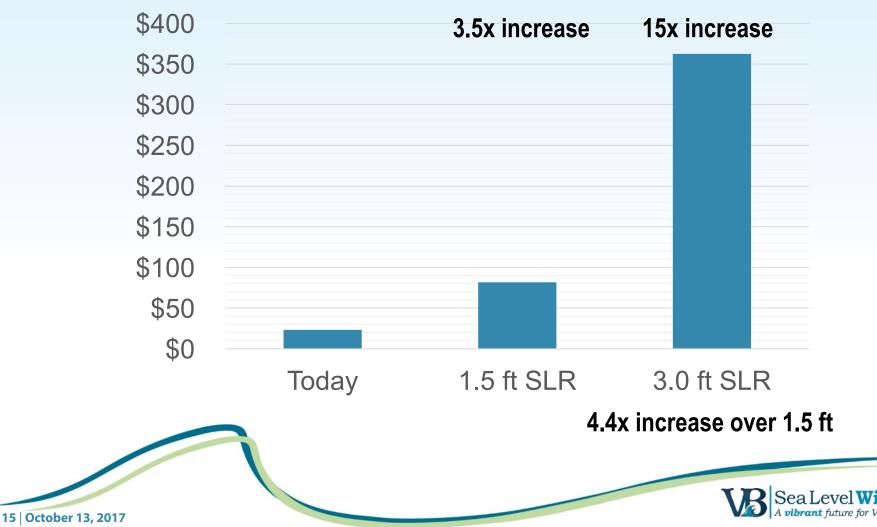
Stormwater incorporation

• Higher coastal water levels diminish stormwater system performance


- Coastal Flooding
- Stormwater Conveyance
- Combined Flooding

Loss Information - Context

- Losses represent today's built environment and flood control infrastructure
- In today's dollar future losses do not include inflation
- Potential reduction of loss by flood risk management strategies NOT represented
- Starting point for identification of needed policy and engineering measures



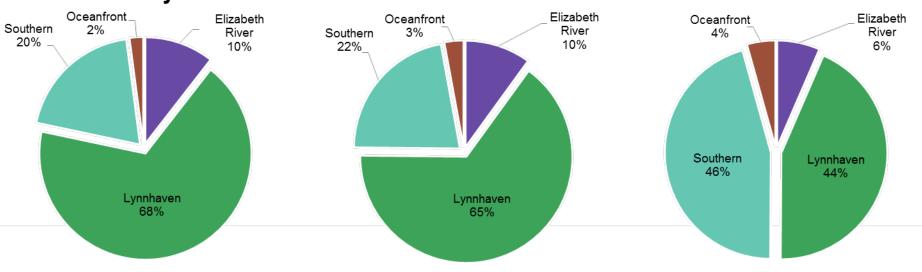
City-Wide Loss Factor Increases Over Today

Projected Changes in Flood Loss

Annualized Losses (Millions)

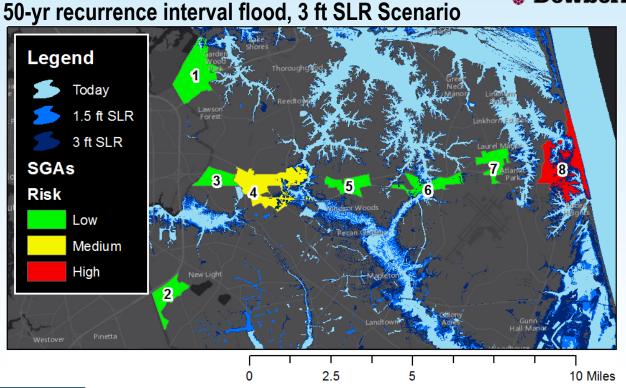
Watershed Loss Changes with SLR

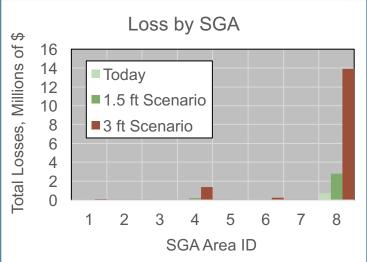
Annualized Losses, Millions								
Watershed	Today	Today 1.5 SLR						
Elizabeth River	2.48	8.18	23.60					
Lynnhaven	15.97	53.27	158.14					
Southern	4.62	17.94	165.31					
Oceanfront	0.49	2.37	15.72					
Total:	23.56	81.76	362.77					

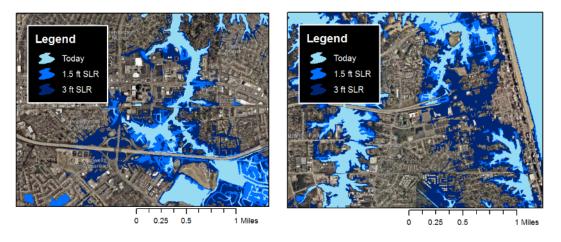

...

. .

.

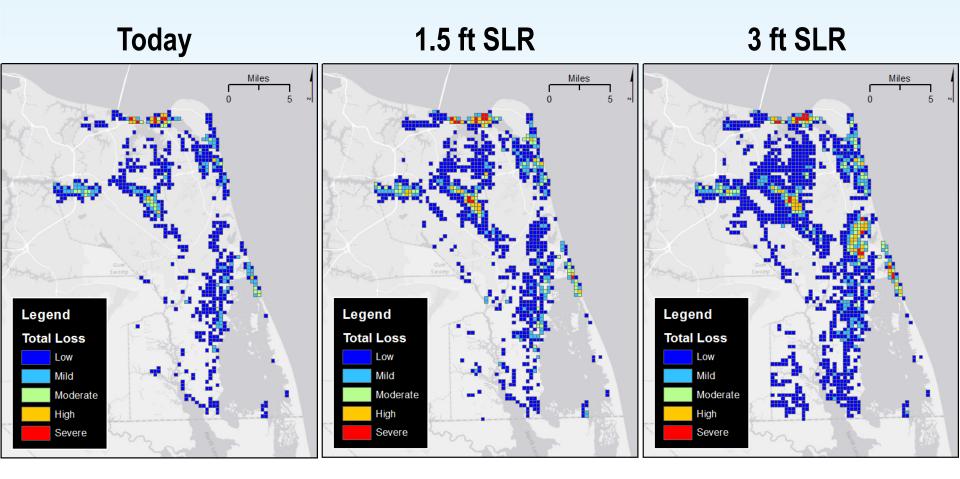

3 ft SLR


Today



1.5 ft SLR

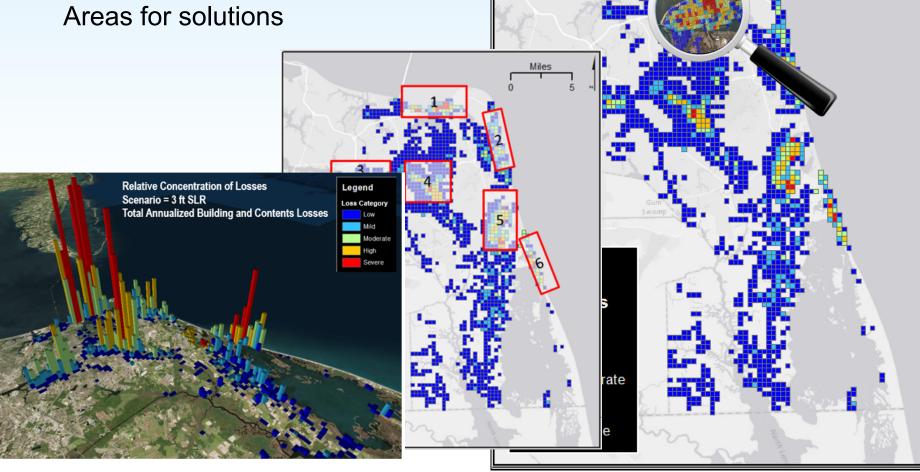
Strategic Growth Areas



17 | October 13, 2017

Annualized Loss Concentration

• Intensification and Growth



Miles

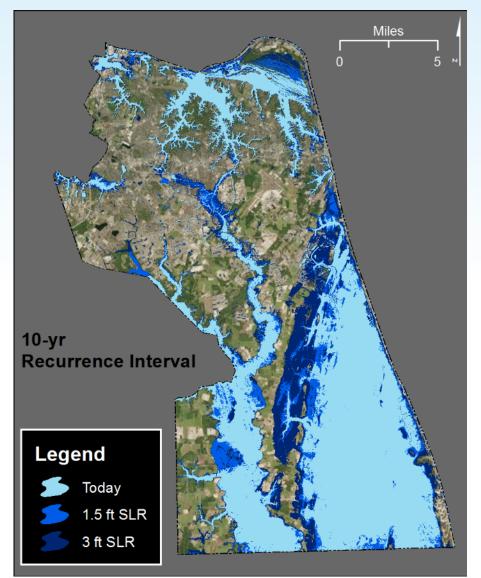
Concentration of Risk

- Aggregated from building level risk
- Efficiently ID High Risk Areas for solutions

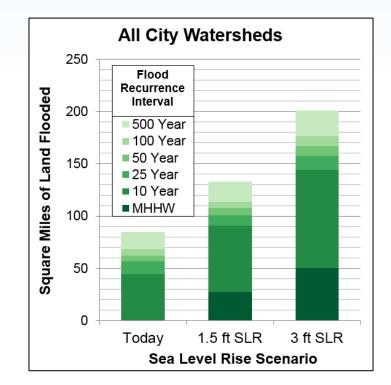
Citywide Context

Most of the City has limited coastal flood exposure, in clustered areas

- Today: <1% of buildings
- In 30 years: 2% of buildings
- In 60 years: 7% of buildings

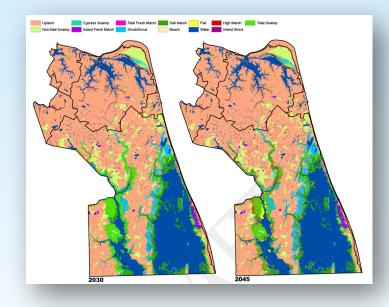

Bottom line:

Proactive solutions *can* help the City avoid future losses



Projected Changes in Coastal Flooding

- Areas subject to flooding will increase:
 - In 30-40 years: 1.5 times
 - In 60-70 years: 2 times


Flood Impacts

Marsh Evolution Analysis

- Back Bay and North Landing River areas have the largest projected losses.
- Largest losses projected for Back Bay and North Landing River
- Lynnhaven salt marsh expected to be resilient

22 October 13, 2017

• Initial discussion of implications and results to inform strategies

Phase 2: Adaptation Strategies

• Objective:

Develop, assess and prioritize a range of strategies through feasibility and cost-performance metrics to minimize short- and long-term flood risk

- What planning, policy, and engineering strategies are needed to address the risk portfolio?
 - What policy has to be created or changed?
 - How can land use be managed?
 - Where do structural solutions make sense?
 - What's the return on investment?
 - What strategies work best?
 - When should implementation occur?

- The city council finds the purpose of these provisions is to prevent the hazards, the disruption of commerce and governmental services, the flood protection and relief, and the impairment of the tax base by:
- Regulating uses, activities, and development that, alone or in co development, will cause unacceptable increases in flood height
- Restricting or prohibiting certain uses, activities, and develop Restricting all uses, activities, and developments that do occur
- flooding and flood damage:
- Protecting individuals from buying land and structures that are
 Acknowledging that the tide data over the last one hundred (10)
- Acknowledging that the tide data over the last one hundre of flooding caused by both sea level rise and subsidence. (Ord. No. 3309. 11-26-13)

(Ord. No. 3309, 11-26-1

Policy Document

CITY OF VIRGINIA BEACH OMPREHENSIVE PLAN

🖲 Dewberry[.]

Example Policy/Regulatory Strategies

Incorporate resilience measures into design and siting standards

Increase freeboard and/or require in future floodplain

Downzone flood prone areas through regulation or voluntary agreement

Restrict rebuilding of severe repetitive loss structures

Require site plan review and SLR checklists for development (large or small)

Develop special services districts to finance local flood control measures

Provide property tax discounts or rebates for flood resilience or open space conservation

Extend and improving public education and outreach about flood risks and climate change

Participate in Community Rating System

Evaluation and Prioritization

- Qualitative:
 - Feasibility Scoring

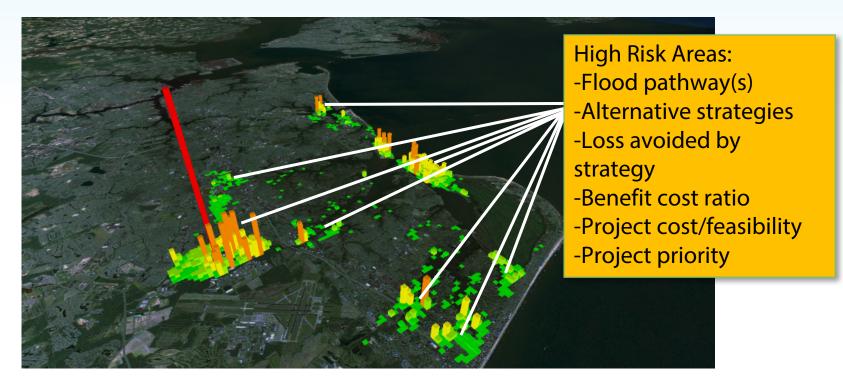
	Feasibility										
Technical	Admini	strative	Political		Legal		Fiscal		Environmental		
Complexity Access to Needed Tools	Staffing	Maintenance	Political Support	Public Support	Consistent with State and Federal Laws	Potential Legal Challenges	Cost	Funding Availability	Limited Environmental Consequences	Consistent with State Environmental Goals	

- Quantitative:
 - Cost Benefit Analysis
 - Return on investment are strategies cost-effective?

Flood Risk Management Strategies

Lynnhaven Evaluation

- Division of strategies into:
 - Structural projects with quantifiable economic benefits
 - Quantifiable admin. and policy measures
 - Non-quantifiable admin. and policy measures
- Expanded, revised, and initial scoring in framework
- Evaluating economic loss information to prepare benefit cost analysis


Flood Impact Management Strategy (FIMS)	(Check all that apply)						Total Feasibility Numerical Ranking	Total Feasibility Rating
	Measure Type (VB Plan ID)	Short Description of Proposed Measure, Project or Action	City- Wide	Specific Details for Lynnhaven Critical Loss Focus Area(s)	Project Est. Cost			
Lynnhaven Neighborhood Projects	Acquisition (SPE-2)	Voluntary acquisition of the most flood-prone residential buildings in various subdivisions	TBD	Major Critical Loss Focus Areas (L1, L2, L8)	\$275,000/ structure			High
	Mitigation Reconstruction	Mitigation-reconstruction (demo- rebuild) of flood-prone residential buildings in poor structural condition	TBD	Major Critical Loss Focus Areas (L1, L2, L8)	\$150,000/ structure	150.0	7	High
	Elevation	Structural elevation of flood-prone residential buildings in good structural condition	TBD	Major Critical Loss Focus Areas (L1, L2, L8)	\$176,000/ structure	138.5	16	Med-Hig
	Dry Floodproofing	Dry Floodproofing of flood-prone non-residential concrete/ masonry buildings subject to shallow, short-duration flooding	TBD		\$75,000/ structure	128.0	20	Med-Hig
	Floodwalls	Short floodwalls where permitted to protect existing plood-prone buildings from short-duration flooding	TBD		\$100,000/ structure	124.5	22	Mediur
	Wet Floodproofing	Wet floodproofing where permitted to protect existing flood- prone buildings to reduce flood damage and service losses	TBD		\$50,000/ structure	143.5	15	Med-Hig
	Coordinate SWM with Parks (PLA-8)	Develop process to ID & coordinate green SWM needs/activities w/ Parks and Recreation projects, facilities and open space acquistion plans.	Yes	Applied across entire Lynnhaven Watershed	\$TBD	151.0	6	High
Lynnhaven Watershed Administration & Policy	Add Freeboard	Change freeboard requirement to 3 feet for all new new	Yes	Applied across entire Lynnhaven	\$TRD	181.0	1	High

26 October 13, 2017

Adaptation Plan Development

- City-wide policy recommendations
- Watershed specific measures to address high risk areas
- Sequenced to complexity, short and long-term risks

Dewberry[.]

Phase 3: Implementation

Objective: Integrate the bestperforming adaptation strategies in actionable plans that mechanisms to ensure implementation.

How do we move forward with the preferred solutions?

- What are the costs and design features?
- How to we sequence the short- and long-term measures?
- How do we fund?
- What is our action plan for each watershed?
- How do we get public buy-in, sponsors, and/or regional support?

Public Outreach

Goal:

Educate about the study and empower target audiences with accurate and timely information, and what they can do to reduce flood impacts

Why is Community Outreach Important?

- Most residents are unaware of the City's resiliency efforts
- There is high awareness of Norfolk's resiliency program and improvements.
- The City is assessing the 4
 Watersheds for improve
 resiliency

- City Council committed approximately \$300 million over 15 years for stormwater improvements
- The City has made some infrastructure improvements already over the past few years
- Keeping residents informed and engaged is paramount!

30 October 13, 2017

🖲 Dewberry

Why Is Public Engagement Important?

- Citizens must be informed with accurate and timely data
- Multiple communication options must be provided to engage the public
- Regular communication and updates keep the issue top of mind that the City cares about its residents and employers
- Citizens can share information with others when equipped with the right communication tools
- Citizen input and buy-in to future improvements and construction projects

31 October 13, 2017

Project Contacts

Brian Batten, PhD, CFM

Dewberry, SLR Study Consultant

804-823-6981

bbatten@dewberry.com

Michelle Covi, Ph.D

Assistant Professor of Practice

Old Dominion University / Virginia Sea Grant Climate Adaptation and Resilience Program

757-683-6598

mcovi@odu.edu

David J. Sample, Ph.D., P.E., D. WRE

Assoc. Professor & Extension Specialist AREC / VPI and State University dsample@vt.edu

Michael Morgan, P.E.

CDM Smith, Stormwater Master Planning 757-318-9826

MorganMC@cdmsmith.com

Delceno C. Miles

President/CEO The Miles Agency- Niche Marketing & Public Relations 757-499-9627

www.themilesagency.com

City of Virginia Beach - Department of Public Works

Greg Johnson, P.E., Project Manager gjohnson@vbgov.com Shanda Davenport, P.E. sdavenpo@vbgov.com C.J. Bodnar, P.E. cbodnar@vbgov.com

