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Key Questions:

» How is the frequency of extreme precipitation events changing over the
contiguous United States?

» What are the regional changes in the frequency?

» How is extreme precipitation event frequency projected to change in the
future?

» How is the frequency changing seasonally?

» What are the meteorological causes of extreme precipitation events and are
there any trends?



Observational Data

» U.S. Cooperative Observer Network, Global Historical
Climate Network-Daily data set from NCDC

Observation station locations

» 726 stations (1901-2012), 766 stations (1901-2014) F— | “w %g
»No known bias in precipitation data o R RR Ry A A
»90% of daily data required for usable station : %

» 300+ days of data required for any given year
»75 days of data required for any given season

Latitude

30°N |-

LY

110°W Longitude  90°W

Janssen et al., 2014



Simulation and Projection Data

» Historical Simulations: Fifth installment of the Coupled Model
Intercomparison Project (CMIP5)
»1901-2005

» 27 models, 94 simulations

» Projections: Representative Concentration Pathways (RCP)
» RCP 4.5 (med-low mitigation) and RCP 8.5 (BAU) scenarios

» 2006-2100
» 21 models, 51 simulations



Extreme Precipitation Index

What is the EPI? A measure of the frequency of extreme precipitation
events for a given duration and return interval

» Duration: Number of days over which precipitation is accumulated

» Return: Average or expected number of years between extreme
precipitation event
» 5-year storm, 20-year storm 100-year storm etc...




EPI calculation

Calculate number of extreme events (N) for return
»N = Time series length (yrs)/average return period (yrs)
» 100 yrs/20yrs = 5 events a5°N

» Largest magnitude (N) events are flagged for each
station

» Year and season of occurrence are recorded

NorthWest

»Stations assigned grid location and state identifiers
»1° by 1° grid
» Averages by region and entire CONUS

25°N ..

120°W 100°W 80°W

Janssen et al., 2014



Extreme Precipitation Index (EPI)

Interpretation:
» EPI is a measure of the frequency of extreme precipitation events

» For 1, 5, and 20 year returns, average EPI values are 1, 0.2 and 0.05 respectively
» If the EPI is as expected, averages would fall around these values
» If values diverge upwards, frequency is increasing; if downwards, frequency is decreasing

Advantages:
» Provides station-specific thresholds

» Restricts events to most extreme levels of precipitation



Extreme Precipitation Index
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Extreme Precipitation Index — 10 year running

dverages
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Update through 2016 — National average frequency

National Average: 2-day, 5-yr recurrence events
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Squires, M.F., K.E. Kunkel, X. Yin, S. Stegall, and D.R. Easterling, 2017: Regional empirical precipitation intensity, duration, and frequency statistics for the
contiguous United States. J. Geophys. Res., to be submitted shortly.



Eastern regions show recent increases

Northeast U.S.: 2-day, 5-yr recurrence events Southeast U.S.: 2-day, 5-yr recurrence events
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Squires, M.F., K.E. Kunkel, X. Yin, S. Stegall, and D.R. Easterling, 2017: Regional empirical precipitation intensity, duration, and frequency
statistics for the contiguous United States. J. Geophys. Res., to be submitted shortly.
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Trends by Duration and Recurrence
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» 2-day duration 5-year return
» EPI calculated annually for 1901-2005

» Decadal averages calculated for 1906-2005

» Anomalies are fractional deviations
from the long term mean (1901-1961)

» Models underestimate observations
but capture trends

Janssen et al., 2014



Historical Simulation based EPI
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Event Frequency Index - CONUS
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‘ ‘ Projections of the Extreme Precipitation Index
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= » 2006-2100

0.4

» Reference thresholds derived from smallest magnitude
extreme event from historical model data

»Ensemble average for each model

0.3

0.2

0.1

0.0

» Otherwise same EPI methodology
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Janssen et al., 2014
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What is the seasonality of the EPI and how is it changing?

» Colored lines are seasonal
contribution to annual EPI

» 10-year running averages of the
seasonal EPI

» 1901-2014

» Winter: DJF, Spring: MAM,
Summer: JIA, Fall: SON
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What is the seasonality of the EPl and how is it changing?

Fractional Contribution to Annual EPI - Observations Fractional Contribution to Annual EPI - Model Median

Numbers are
average
fractional
contribution
to annual

Winter Spring Winter Spring

2-day 5-year
1901-2005

0.0 0.05 0.1 0.15 0.2 025 0.3 0.35 0.4 045 0.5 0.55 0.60 0.65 0.70 0.0 005 0.1 0.15 0.2 025 03 035 04 045 0.5 0.55 0.60 0.65 0.70

Historical CMIP5 simulations shift events from summer to spring for most regions

Janssen et al., 2016



How is the seasonality of the EPI projected to change?

Fractional Contribution to Annual EPI - RCP 8.5 > A future |ncrease |n W|nter Seasonal
contribution projected for most regions

» The summer to spring shift is projected to
increase for most regions through 2100

» Recall: Compared to observations,
historical simulations put more events in
spring and less in summer

» This amplified shift could be a product of the
models and not due to the underlying physics

0.0 005 0.1 0.15 0.2 025 0.3 035 0.4 045 0.5 0.55 0.60 0.65 0.70

2006-2100, 2-day duration 5-year return

Janssen et al., 2016



Meteorological causes of recent and projected increases?

U D
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Fronts Extratropical

Cyclone

>18,000 precip events were

categorized for the period of 1908-

2009

. —

Tropical Mesoscale North
Cyclone Convective = American
System Monsoon

Air Mass
Convection

Contribution by type:
»7 different types of event
»0.3% caused by upslope flow

Data:

» 1-in-5 year recurrence
interval

» 1° by 1° grid

Kunkel, K.E., D.R. Easterling, D.A.R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular
variations in observed extreme precipitation events for the conterminous United States. J. Hydromet., 13, 1131-1141.



Regional contribution by type
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Kunkel, K.E., D.R. Easterling, D.A.R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular
variations in observed extreme precipitation events for the conterminous United States. J. Hydromet., 13, 1131-1141.



Trends by Type

0.25 0.05
0.20 0.04
2 Z
5 ﬂ 5
30.15 ﬁ § 0.03
3 1 2
qé 0.10 v S 0.02
3 3
£ £
JRRIAY A/\AA : ;\RAMI\AM
0.05 I A ’u 2 A " 0.01 | | J ‘ .
AR LG NV AR 1A Al TN Al !
R \ VR ALY \A I
0.00 oo PALFEANON T AT ORA A' l\' L1 nm \
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
Year Year
——ETC ——Frontal Tropical ——Monsoon Air Mass MCC ——Upslope

Kunkel, K.E., D.R. Easterling, D.A.R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2012: Meteorological causes of the secular
variations in observed extreme precipitation events for the conterminous United States. J. Hydromet., 13, 1131-1141.



Meteorological Causes

»Increase in extreme precipitation events linked to increase in
number of events associated primarily with fronts and tropical
cyclones.

» No long term change in number of landfalling tropical cyclones
» TC’s are producing more extreme precipitation events

» To be investigated:

» Are more fronts occurring or are frontal characteristics becoming more
favorable to extreme precipitation?

» Attribution to increases in atmospheric water vapor concentrations?



Summary

» Increasing trends in observational EPI for all return periods over CONUS
» Most drastic increase in Northeast

» Models underestimate observations but capture trends for CONUS
» True for Eastern regions as well

» Increases in future EPI across all regions for RCP 8.5 (2006-2100)
» RCP 4.5 is much more variable

» For Eastern regions most extreme events occur in Summer and Fall
» Historical simulations shift events from Summer to Spring for most regions

> A future increase in seasonal contribution of the EPI during winter is projected for most
regions

»The summer to spring shift in the EPI is projected to increase for most regions through 2100

»Upward trends in extreme precipitation events mainly due to increases in storms associated
with fronts and tropical cyclones



~uture work — Severe hail outbreaks over
‘he CONUS

April 28t 2002

Use 12 years of radar based severe hail
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Current work funded by the Cooperative Institute for Climate and Satellites
Data provided by NCEI, CICS and NSSL



Questions?

Contact:
ejansse2@Illinois.edu

or
emilyjanssen12@gmail.com
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