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Bi-stable composites have been considered for morphing applications thanks to their ability to hold
two statically stable shapes with no energy consumption. In this paper, the modelling of the dynamic
response of cantilevered wing-shaped bi-stable composites is presented. To this end, an analytical
model approximating the dynamic response about each statically stable shape of wing-shaped bi-
stable composites is derived. Theoretical modal properties are obtained to attain or stabilise a desired
configuration following a previously introduced resonant control strategy. The resonant control technique
is evaluated for a wing-shaped bi-stable composite subject to aerodynamic loads. Wind tunnel
experiments are conducted on a wing-shaped specimen showing the ability of the control strategy to
stabilise or attain a desired stable shape under aerodynamic loads.
© 2013 Elsevier Masson SAS.

1. Introduction

Bi-stable composites are structures capable of adopting two
statically stable configurations [11]. The bi-stability property has
drawn considerable attention from the adaptive structure commu-
nity for its potential applications in morphing structures, as no
energy is required to hold each of the stable configurations [10].
Multi-stability arises due to an induced stress field in the compos-
ite laminates that can result from several mechanisms, including
unsymmetrical lamination [12], tailored lay-up [17], pre-stressed
cylinders [13], fibre pre-stressing [8] and thickness variation [9].
The change between stable states is physically realised as a jump
phenomenon known as snap-through, which is strongly nonlin-
ear in nature [2]. Different actuator systems and techniques have
been previously used to trigger snap-through. Shape memory wires
successfully achieved reversible changes between the stable states
of bi-stable composites, however suffered of integration problems
and reduced control bandwidth [7]. Quasi-static actuation employ-
ing piezoelectric elements led to achieving snap-through only in
one direction, nevertheless reversing the configuration to the orig-
inal state was not possible due to insufficient actuation author-
ity [19,16]. The recently introduced idea of exploiting the rich
dynamics of bi-stable composites to enhance the actuation author-
ity showed encouraging results [3,20]. In this context, Arrieta et
al. [1] presented the implementation and demonstration of purely

* Corresponding author.
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piezoelectric material dynamically induced forward and reverse
snap-through of a bi-stable unsymmetric composite plate with a
clamped edge. This resonant actuation strategy provided for the
first time full configuration control of [0n/90n] cantilevered bi-
stable composites under the sole action of piezoelectric actuators.

The implementation of multi-stable components in adaptable
aerodynamic structures has the potential to reduce actuation re-
quirements as energy is not required to hold a largely deformed
shape. Hence, significant deflections can be achieved spending en-
ergy only to trigger a snap-through from the original stable state
to another. As with any active or semi-active compliant aerody-
namic surface, a bi-stable piezoelectric composite wing is practical
if sufficient aerodynamic load carrying capability in each state and
bi-directional snap-through using relatively low excitation voltages
are achieved. Such structures can be realised by careful selection
of actuator placement, boundary conditions and laminate lay-up,
coupled with the developed resonant control morphing strategy.

An analytical model to obtain the modal frequencies for wing-
shaped bi-stable composites is presented in this paper. The accu-
rate prediction of the modal properties of such structures allows
the application of the previously introduced resonant control tech-
nique which has been shown to enable full configuration control
on bi-stable composites. A wing-shaped bi-stable composite speci-
men actuated with Macro-Fiber Composite (MFC) actuators is used
to demonstrate this concept under the presence of aerodynamic
loads. The use of MFC actuators allows the exploitation of the
higher actuation authority obtained from the d33 coupling coeffi-
cient, by using interdigitated electrodes which guide the electrical
field along the longitudinal direction of the fibres [27]. The d33

1270-9638 © 2013 Elsevier Masson SAS.
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Fig. 1. Bifurcation diagram showing the statically stable configurations of a bi-stable composite. Equilibrium points a and c lying on the red and green branches correspond
to the resulting shapes of State 1 and 2, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
paper.)

coefficient is larger than the conventionally used d31 coupling co-
efficient. To achieve morphing control between the stable shapes,
a model for the dynamics of the wing-shaped bi-stable composites
about the statically stable shapes is developed. To this end, an an-
alytical model approximating the linear dynamics for wing-shaped
bi-stable composites about the predicted stable configuration is de-
rived. This model allows to calculate the modal characteristics of
wing-shaped bi-stable composites, which are crucial for the cor-
rect application of the resonant control technique. Furthermore,
the analytical model allows the selection of the position piezo-
electric actuators for maximum control authority in the required
modes. The parametric nature of the presented model allows for
efficient sensitivity analyses and initial rapid optimisation to be
carried out, while nonlinear finite element methods [23,24] can be
used for final refinements at a later design stage. An experimental
characterisation is conducted using frequency response functions
(FRF) validating the results obtained with the derived model. The
aerodynamic response of a tapered bi-stable wing-shaped speci-
men is tested, showing the capabilities of the resonant actuation
strategy to control the configuration even against a certain level of
adverse pressure gradient. This characteristic allows for using such
bi-stable structures in morphing winglets applications. The paper
concludes with a brief summary of the presented results and dis-
cussion of possible applications.

2. Modelling of bi-stable composites

In this study, laminates with a tapered planform arranged in
a cantilever configuration are studied. To achieve this, a tailored
lay-up with symmetrical and unsymmetrical stacking sequences is
used [14]. Bi-stability arises due to the unsymmetrically laminated
part, as thermal stresses resulting from a mismatch between the
thermal expansion coefficients of the fibres and the epoxy ma-
trix are induced during cool down after curing. This process is
schematically shown in Fig. 1, where w is the out-of-plane dis-
placement, �T is the difference between the curing and the actual
temperatures, and F is the external load. Initially at the curing
temperature, the flat laminate configuration starts from point Co

o

from which it cools down reaching the bifurcation point Co′
o , i.e.

following path �Co
o Co′

o . At the bifurcation point, the cool down pro-
cess can continue in either of the two stable branches until it
reaches an equilibrium at room temperature, this is through path

�Co′
o Co

a to equilibrium point Co
a , or through path �Co′

o Co
c to equilib-

rium point Co
c . At room temperature, changes between the stable

states are caused by forcing a large deflection on the laminate trig-
gering a snap-through [2]. The modelling of the shapes resulting
from the bifurcation process and the dynamics around these stable
configurations are presented in the following.

2.1. Variational formulation

A variational formulation is followed for the calculation of the
final equilibrium shapes and the associated dynamic response of
the studied wing-shaped bi-stable composites is presented. The La-
grangian, L, for a bi-stable composite is equivalent to that of a
cross-ply unsymmetrically laminated plate given by:

L = T − U +Wext, (1)

where T , U are the kinetic and potential energies, and Wext is the
work done by external energy, respectively.

The kinetic energy of the system is the sum of the kinetic en-
ergy of the composite and the piezoelectric elements, given by:

Ts = 1

2

∫
V s

ρu̇′u̇ dV s, (2)

and

Tpzt = 1

2

Npzt∑
k=1

∫
V (k)

p

ρpztu̇
′u̇ dV (k)

p , (3)

where the displacement field vector is defined as u = [u(x, y, t),
v(x, y, t), w(x, y, t)]′ , ρ and ρpzt are the density of the composite

and the piezoelectric elements, respectively, V s and V (k)
p are the

volume of the composite and the kth piezoelectric element, respec-
tively, Npzt is the total number of piezoelectric elements bonded to
the bi-stable composite, the overdot (˙) symbol implies differenti-
ation with respect to time, and the superscript (′) indicates the
transpose operation.

The total kinetic energy is thus written as:

T = Ts + Tpzt. (4)

The strain energy of the bi-stable plate is obtained by summing
the contributions of the symmetrical and unsymmetrical parts of
the lay-up, yielding:
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Fig. 2. Planform defining the domain of integration for the bi-stable wing.

Us =
0∫

−LSym
x

L y
2∫

−L y
2

1

2

([
εo

κ

]′

Sym

(
A B
B D

)
Sym

)[
εo

κ

]
Sym

dy dx

+
LU

x∫
0

sx+ L y
2∫

−L y
2

1

2

([
εo

κ

]′

U

(
A B
B D

)
U

−
[

NT
MT

]′)[
εo

κ

]
U

dy dx,

(5)

where εo = [εo
xx εo

yy εo
xy]′ is the vector of in-plane strains, κ =

[κxx κyy κxy]′ is the vector of bending strains, and A, B, D repre-
sent the well known extensional, bending–extension coupling, and
bending stiffness matrices, respectively, and NT and MT are the
thermal expansion force and moment vectors, respectively [22].
The subscripts Sym and U indicate symmetric and unsymmetric
lamination, respectively. The planform dimensions defining the in-
tegration domain are given by the span of the unsymmetric region,
Lu

x , the length of the symmetric region, LSym
x , the chord length

at the clamped edge, L y , and the chord length of the tip, tp .
The leading-edge slope defining the wing-shaped (tapered) form
is given by s = tp−L y

LU
x

. A detailed geometrical description of the

planform is presented in Fig. 2. The total strain is given by εi j =
εo

i j + zκi j . Note that the symmetrical part does not exhibit result-
ing thermal stresses. The nonlinear extensional strain and bending
curvatures, εo

i j and κi j , respectively, are given by:

εo
xx = ∂u

∂x
+ 1

2

(
∂ w

∂x

)2

, (6)

εo
yy = ∂v

∂ y
+ 1

2

(
∂ w

∂ y

)2

, (7)

εo
xy = ∂u

∂ y
+ ∂v

∂x
+ ∂ w

∂x

∂ w

∂ y
, (8)

and,

κxx = −∂2 w

∂x2
, (9)

κyy = −∂2 w

∂ y2
, (10)

κxy = −2
∂2 w

∂x∂ y
. (11)

The piezoelectric strain energy and the internal electrical work are
given by:

Upzt = 1

2

Npzt∑
k=1

∫
V (k)

p

S′
pT dV (k)

p + 1

2

Npzt∑
k=1

∫
V (k)

p

E3D3 dV (k)
p , (12)

where Sp is the vector of strains, T is the vector of material stress.
The poling and extension directions of the piezoelectric elements,
3, coincides with the in-plane x-direction, consistent with the MFC
actuators that are employed. A state of plane stress is assumed for
the considered structures, thus the components of the stress and

strain vector for piezoelectric materials are related by the consti-
tutive relations:⎡
⎢⎣

σ11
σ22
σ12
D3

⎤
⎥⎦ =

⎛
⎜⎜⎝

cE
11 cE

12 0 −e33

cE
12 cE

22 0 −e31

0 0 g E
12 0

e33 e31 0 εS
33

⎞
⎟⎟⎠

⎡
⎢⎣

ε11
ε22
ε12
E3

⎤
⎥⎦ , (13)

where σi j is total stress due to a strain in the i-direction acting
on the j-direction, εi j is mechanical strain due to a deflection in
the i-direction acting on the j-direction, D3 is electrical displace-
ment in the 3-direction, E3 is the electric field in the 3-direction,
cE

i j is the elastic modulus due to a strain in the i-direction act-

ing on the j-direction, g E
i j is the shear modulus due to a strain

in the i-direction acting on the j-direction, ei j is the piezoelec-
tric constant relating the poling direction i with the strain in the
j-direction, and εS

33 is the permittivity coefficient relating the elec-
trical displacement in the 3-direction with the poling direction of
the piezoelectric material, respectively. The superscripts E and S
denote that the relevant parameters are measured at constant elec-
tric field and constant strain, respectively. The total strain energy
for the system is thus written as:

U = Us + Upzt. (14)

2.2. Equilibrium configurations

The room temperature shapes of the static equilibrium points
are obtained by minimising the potential energy of the laminate
Us . To approximate the large transverse static deflections due to
the cooling process the following polynomial shape functions are
used:

uo(x, y) =
N∑

i=1

N∑
j=1

aijx
i y j−1, (15)

vo(x, y) =
N∑

i=1

N∑
j=1

bijx
i y j−1, (16)

wo(x, y) =
N∑

i=1

N∑
j=1

ci jx
i+1 y j−1, (17)

where uo(x, y), yo(x, y) and wo(x, y) are the mid-plane displace-
ments defining the static equilibrium shapes, aij xi y j , bij xi y j , and
ci j xi y j are the shape functions on each coordinate direction, and,
N × N gives the total number of shape functions used on each ex-
pansion. It is necessary to impose continuity of the displacement
to account for the interaction of the symmetric and unsymmetric
parts of the laminate. This is achieved by satisfying the following
conditions on the displacements:

uo
Sym(0, y) = uo

U (0, y), (18)

vo
Sym(0, y) = vo

U (0, y), (19)

wo
Sym(0, y) = wo

U (0, y), (20)

∂ wo
Sym(0, y)

∂ y
= ∂ wo

U (0, y)

∂ y
. (21)

Substituting Eqs. (6)–(11) and Eqs. (15)–(17) into Eq. (5) the equi-
librium shapes are found from:

∂U

∂αi
= 0, (22)

where α = [aij,bij, ci j] is the vector of generalised static displace-
ments. The stability of the equilibrium points, Co

k , is obtained by
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Fig. 3. Statically stable configurations of a tapered bi-stable composite wing.

evaluating the definiteness of the associated Hessian matrix, which
is:

∂2Us

∂αiα j
= Hk|Co

k
. (23)

Minima of the potential energy indicate statically stable shapes,
which are given by equilibrium points with positive definite Hes-
sian matrix. Maxima and saddle equilibria are indicated by the
Hessian matrix evaluated at the respective equilibrium points be-
ing negative definite and indefinite, respectively. The resulting
geometry for the statically stable equilibrium configurations are
given by the mid-plane displacements uo(x, y, t), yo(x, y, t) and
wo(x, y, t) of the equilibrium points having a positive definite Hes-
sian matrix, which are schematically shown for points a and c in
Figs. 3(a) and 3(b), respectively. Hereafter, all calculations shown in
this study occur about the stable equilibria reached at room tem-
perature. It is worth mentioning that the final equilibrium shapes
are a function of the composite material properties, lamination
sequence, curing cycle, and the dimensions of the initially flat lam-
inate. Hence, these quantities may be optimised to achieve tailored
dynamic and aerodynamic characteristics for a particular applica-
tion.

2.3. Linear dynamic response modelling

The study of the dynamic behaviour of the wing-shaped piezo-
electric bi-stable composites is focused on the low amplitude re-
sponse around the stable equilibrium configurations. This assumes
a linear approximation of the behaviour using the equilibrium
points found in Section 2.2. Hence, the linear dynamics are ob-
tained as perturbations about the static displacements of the stable
shapes given by uo(x, y, t), yo(x, y, t) and wo(x, y, t) [26]. As a re-
sult, the linear approximation of the vibration problem reduces to
that of a tapered unsymmetrically laminated shell solved for each
stable equilibrium point. In the following derivation, first the as-
sociated low amplitude linear vibration problem about a single
stable state is solved using the Ritz method. This allows us to
obtain natural frequencies and mode shapes for comparison with
experimentally measured quantities and for the optimal position-
ing of actuators. For the dynamic morphing strategy for bi-stable
composite structures used in this study, as shown in Ref. [1],
knowledge of linear modal properties is sufficient to utilise the res-
onant actuation strategy and achieving full configuration control.
The equilibrium shapes of bi-stable composites resembles that of
thin-walled shells having a small transverse displacement to span
ratio, thus the principal curvatures are small. Practically, this im-
plies that Cartesian coordinates x and y may be selected as the
curvilinear coordinates for the middle surface from where the dis-
placements for bi-stable composites are defined. Hence, shallow
shell theory is adopted [25].

For the linear approximation problem following the above de-
scribed perturbation approach, the membrane strains are recast as:

εo
xx = ∂u

∂x
+ wo

Rx(x, y)
, (24)

Fig. 4. Shell element showing curvilinear coordinates (x, y), radii of curvature and
displacements u(x, y, t), y(x, y, t) and w(x, y, t). The radii of curvature are orien-
tated in the principal x-, y-directions; however their magnitudes at each point
(defining the mid-surface) are a function of the coordinates.

εo
yy = ∂v

∂ y
+ wo

R y(x, y)
, (25)

εo
xy = ∂u

∂ y
+ ∂v

∂x
, (26)

where the radii of curvature in the x- and y-directions are Rx(x, y)

and R y(x, y), respectively as shown in Fig. 4. In the case at hand,
the radii of curvature Rx and R y are defined by the large ampli-
tude static displacements of the each equilibrium shapes given by
Eq. (22). The bending curvatures remain unchanged as defined in
Eqs. (9)–(11).

The types of shells studied in this investigation are cantilever
tapered bi-stable composites, i.e. one edge clamped and the re-
maining three being free. In this case, the clamping device imposes
a prescribed curvature at the root of the wing-shaped composite.
The employed tailored lay-up exhibiting symmetrical and unsym-
metrical regions makes possible such clamped configuration. There
exists no known closed-form solutions for this type of linear shell
vibration problem [18]. An approximate solution is hence obtained
following the Ritz method, for which admissible functions satisfy-
ing the geometric boundary conditions for the displacements are
chosen. A set of basis functions offering a good compromise be-
tween accuracy and relatively fast converge whilst satisfying the
above stated boundary conditions are:

u(x, y, t) =
M∑

i=1

M∑
j=1

aijx
i y j−1ui, j(t), (27)

v(x, y, t) =
M∑

i=1

M∑
j=1

bijx
i y j−1 vi, j(t), (28)

w(x, y, t) =
M∑

i=1

M∑
j=1

ci jx
i+1 y j−1 wi, j(t), (29)

where uij(t), vij(t) and wij(t) are time response coefficients to be
determined, aij xi y j , bij xi y j , and ci j xi y j are the shape functions on
each coordinate direction, and, 3 × M × M gives the total number
of degrees of freedom in the dynamic analysis.
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Fig. 5. (a) Planform illustration of the bi-stable wing. (b, c) Bi-stable wing clamped on the base airfoil and mounted in the test section. Two MFC M-8557-P1 type actuators
are bonded to the lower surface of the bi-stable wing.

In the current formulation, the piezoelectric elements are as-
sumed to be perfectly bonded to the surface of the bi-stable com-
posite and the electric field is taken as the independent variable in
the electrical domain. Based on the assumption that the d33 elec-
tromechanical coupling coefficient of the MFC P1 type actuator can
be represented by an effective d31 electromechanical coupling co-
efficient, one electrical degree of freedom per element is sufficient
for modelling the electrical response [5]. The effective electric field
of the kth piezoelectric element is thus written as:

E3k (x, y, t) = 1

�el
vk(t), (30)

where vk(t) is the generalised voltage time coordinate of the
kth piezoelectric element, and �el is the spacing between elec-
trodes [6].

The linear equations of motion for the tapered piezoelectric bi-
stable composites are obtained using Lagrange’s equations for the
mechanical and electrical displacements, yielding:

d

dt

(
∂L
q̇a

)
− ∂L

qa
= Faext, (31)

d

dt

(
∂L
v̇b

)
− ∂L
vb

= Q bext, (32)

where the generalised coordinates qa and vb are the time re-
sponse coefficients for the mechanical and the electrical displace-
ments. Back substituting Eqs. (27)–(30) until Eq. (1) is reached into
Eqs. (31) and (32), yields the electromechanical equations of mo-
tion for piezoelectric bi-stable composite wings as:

Mq̈ + Kq − �v = fext, (33)

�′q + Cpv = ϕext, (34)

where q is the mechanical displacement vector given by q =
[uij(t), vij(t), wij(t)]′ , v is the electrical displacement vector given
by v = [vk(t)]′ , fext is the mechanical external forcing vector, and
ϕext is the external electrical forcing vector. M, K, � and Cp , are
the mass, stiffness, electromechanical coupling and capacitive ma-
trices of the piezoelectric bi-stable composite, respectively.

In this study, the piezoelectric elements are used as actuators
driven by a voltage source independent of the dynamics of the sys-
tem, whereas the external mechanical forcing is given by the aero-
dynamic pressure on the wing-like bi-stable composite. Hence, the
electrical equation given by Eq. (34) can be dropped and the volt-
age term in Eq. (33) becomes the control input to the system. The
modal characteristics are obtained from studying the homogeneous

vibration problem, i.e. assuming zero voltage in the electrodes of
the piezoelectric elements, no aerodynamic force and a harmonic
response q = νeiωt , given by:(
K − ω2M

)
ν = 0, (35)

where ν is the vector of amplitudes, ω are the eigenvalues of the
problem, and i is the imaginary number. Eq. (35) is solved to ob-
tain eigenvalues, which are equivalent to modal frequencies for the
problem at hand. The eigenvalues obtained with Eq. (35) are com-
pared to experimentally measured modal frequencies. Furthermore,
eigenvalues serve as upper bounds for the modal frequencies in the
design of wing-shaped bi-stable composites. The electromechani-
cal equations of motion for the linear problem given in Eq. (33)
can be manipulated to obtain low amplitude frequency response
functions (FRF) by applying the Fourier transform of the mechani-
cal displacement and electrical vectors, F [q] = A(i�) and F [v] =
V(i�), respectively. The piezoelectric forcing to displacement FRF,
H(i�), for no external input Fext = 0 (latex syntax) is obtained as:

A(i�)

V(i�)
= H(i�) = (

K − ω2M
)−1

�. (36)

The obtained linear electromechanical equations of motion are
useful in two important aspects. First, given the geometry of the
bi-stable composite structure the modal properties, namely natu-
ral frequencies and mode shapes, for the electromechanical system
can be obtained with Eqs. (33) and (34). Second, the electrome-
chanical coupling matrix can be studied as a function of the posi-
tion of the piezoelectric elements allowing for maximisation of the
actuation authority for specific modes. This is however beyond the
scope of the current work.

3. Structural dynamic response

In this section the structural dynamic response of a bi-stable
wing-like composite is conducted, i.e. under no aerodynamic in-
fluence, fext = 0. The obtained results are used to validate the
presented theoretical model.

3.1. Experimental set-up

The test specimen for the structural and aerodynamic inves-
tigations is a bi-stable composite with a tapered wing planform
laid-up having two distinct stacking sequences, as shown in detail
in Fig. 5(a). The symmetrically laminated smaller portion is de-
signed to allow the composite to be clamped. A carbon fibre-epoxy
prepreg, type E022-T700 manufactured by SGL [21], is used for
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Table 1
Geometric properties of the wetted area of the bi-stable piezocomposite wing in
two different stable equilibria.

State Designation Span location [mm] Chord [mm] Camber [%c]

1 Root 68 190 1.8
Laser-line 143 171 2.1
Mid-span 175 163 2.2
Tip 290 139 2.9

2 Root 68 190 1.6
Laser-line 143 171 0.3
Mid-span 175 163 0.0
Tip 290 139 0.7

each layer. The Macro-Fiber Composite (MFC) actuators are used
to excite the bi-stable plate. Two MFC M8557-P1 type actuators are
bonded near the base of the bi-stable plate on the lower “pressure”
surface of the wing. As shown in Fig. 5, the fibres on the lower
surfaces are oriented at 0◦ which corresponds to the span axis. In
order to maximise the out-of-plane bending induced by the MFC
actuator, the piezoceramic fibres of the MFC must be close to the
effective neutral plane of the unsymmetric cross-ply laminate and
the plate must be compliant in bending and stiff in in-plane ex-
tension. The analysis of thin MFC actuated structures is presented
in [5] and the results from that analysis is used to aid the design
in the current research. In the case studied here, the out-of-plane
deflection induced on the bi-stable plate by the unidirectional in-
plane actuation of the MFC actuator is maximised by bonding the
MFC actuator directly on the lower layer with zero degree (span-
wise) fibre orientation.

The geometric features of the wetted bi-stable wing are pre-
sented in Table 1.

3.2. Frequency response and modal properties

Dynamic tests to evaluate the modal response of the studied
bi-stable wing were conducted and compared to analytical results.
An LTC-300-200-SA laser displacement sensor and a Siglab 20-22
frequency analyser was used to measure the single-point displace-
ment of the complete wing structure mounted in the wind tunnel.
A chirp signal was used to obtain FRF measurements, where the
excitation was a sine tone with continuously varying frequency in
a selected range. The control signal to the MFC actuators was am-
plified using a TREK 2220 high voltage amplifier. The experiments
were conducted at a single excitation voltage level of 200 Vac
which is assumed to be in the linear actuation regime. Particu-
lar attention is placed in the range where the first bending modes
of each stable configuration are located. In this paper, State 1 is
defined as the stiff state and it has a major curvature mainly along

the chord axis. The effect of curvature in State 1 is analogous to
the effect of camber. State 2 is defined as the compliant state and
it has a major curvature mainly along the span axis. The effect
of curvature in State 2 is analogous to the effect of dihedral. Ex-
perimental and simulated FRFs for stable State 1 are compared
showing good agreement in Fig. 6(a). Only the viscous damping
coefficient is tuned using the experimentally measured value. The
resonance frequency of the first bending mode in State 1, ws1

1 , is
experimentally observed at 30.1 Hz closely matched by the theo-
retical result of 31.0 Hz. Similar results for State 2 can be seen in
Fig. 6(b), showing good agreement between the experimental first
bending mode of State 2, ws2

1 , found at 13.1 Hz compared to the
theoretical result of 14.1 Hz. For both State 1 and State 2, the stiffer
approximation of the analytical method is observed and expected.

The resonant strategy is tested without the presence of aero-
dynamic loads, showing the ability of the chosen actuators to
dynamically trigger snap-through from either stable state. Multi-
event snap-through in bi-stable composites is previously been re-
ported and modelled in literature for slowly applied loads [15].
In the context of configuration control under aerodynamic loads
multi-event snap-through is not observed. These results are omit-
ted for brevity; the interested reader is referred to Ref. [1] for
details.

4. Aerodynamic response

The passive aerodynamic characteristics of the test specimen
are evaluated first. A detailed study of the aerodynamic response
of the tested bi-stable wing-shaped composites is presented in [4].
To this end, the bi-stable wing is attached to the balance system
in the wind tunnel through an airfoil base, as shown in Fig. 5.
This has a NACA 0012 profile and transfers the aerodynamic loads
to the moment arm of the wind tunnel load balance system. This
consists of two sections. The upper section, adjacent to the root of
the complete wing, is a solid steel NACA 0012 airfoil with 254 mm
chord. The lower section, adjacent to the root of the bi-stable plate,
is a multi-part clamping mechanism also having a NACA 0012 pro-
file in two planes.

Fig. 5 shows the bi-stable piezoelectric composite wing clamped
to the base airfoil. The aerodynamic response is studied by varying
the free-stream velocity and the angle of attack (AOA) to simu-
late the working environment for such a structure. More precisely,
the pressure distribution is mainly varied via the AOA and the net
pressure acting on the wing is mainly varied by the free-stream
velocity. The first goal is to demonstrate the fact that the structure
can sustain a certain level of adverse pressure gradient without
snapping to another state. This property shows the passive load
carrying capability of the bi-stable wing. The critical values of

Fig. 6. Comparison between experimental and simulated single-point out-of-plane displacement to harmonic voltage excitation FRF, H(i�), of the bi-stable piezocomposite
wing clamped to the base airfoil and mounted on the wind tunnel load balance. Vpeak = 200 Vac. (a) State 1, (b) State 2.
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Fig. 7. Experimental (3D) aerodynamic response for active bi-stable wing to rota-
tion angle, β , and free-stream velocity. Coloured arrows indicate the direction of
snap-through for each AOA sweep. (a) Passive, (b) active with excitation at 13.0 Hz,
800 Vac. (Colour online.)

snap-inducing velocity and AOA are key values in determining the
passive load carrying capability. It should be noted that the pitch
angle, β , determined by the rotary table in the set-up, is selected
as the independent variable since the calculation of the geomet-
ric AOA of the 3D structure in the wind tunnel is impractical with
the available sensors. First, the critical free-stream velocity and an-
gle of attack that induce snap-through from State 1 to State 2 are
examined. These values are obtained through a set of AOA sweeps
conducted in the range of 10 to 20 m/s nominal velocity values,
where the velocity range is swept in 2.5 m/s steps. The AOA sweep
is conducted, in both directions, in the range of −20◦ to +20◦
varying the AOA in 0.5◦ steps. Snap-through may occur if the net
pressure, primarily controlled by the free-stream velocity, is high
enough in the AOA range that is examined; therefore a critical
free-stream velocity also exists for a preselected range of AOA. Be-
low the critical free-stream velocity, a state can be passively held
for the entire AOA range that is of interest. Snap-through is in-
duced by the dynamic pressure if the critical velocity is exceeded.
Fig. 7(a) presents the aerodynamic response of the bi-stable plate
at two different free-stream velocities where the AOA is first swept
up from −20◦ to +20◦ and swept back down to −20◦ . The wing
is set at State 1 which is the favourable state at −20◦ AOA. As
noted above, five velocity values are examined; however only two
important velocity values are presented. Fig. 7(a) also presents the
theoretical finite-wing lift curve for reference. A snap-through is
not observed for the complete AOA range, in both directions, at
15.5 m/s and all other velocities below this critical value. Due to
the lack of aerodynamic hysteresis, the AOA up and down sweeps
are averaged and presented as a single curve for the 15.5 m/s ve-
locity test. In contrast, at 17.8 m/s, snap-through is observed in
both direction as expected – indicating that the critical velocity

value is in the range of 15.5 to 17.8 m/s. The path abcdefa is in-
dicated in the figures to aid the discussion. An adverse pressure
gradient sustained by the specimen develops from the angle at
which the lift coefficient changes sign until the load carrying ca-
pability of the specimen is lost when a snap-through is triggered.
This can be observed by following the AOA sweeps in Fig. 7(a).

The second type of aerodynamic measurements on the bi-
stable wing, following a similar experimental procedure as de-
scribed above, is conducted to understand the actively induced
snap-through that is caused by the MFC actuators. The goal here is
to demonstrate that the structure can be made, effectively, monos-
table against a certain level of adverse pressure gradient. This
property shows the controllability of a desired state achieved with
the embedded MFC actuators under the presence of aerodynamic
forces. The critical values of voltage excitation amplitude and fre-
quency are key in determining the controllability property. First,
a sinusoidal excitation with 800 Vac amplitude at 13.0 Hz is ap-
plied which corresponds to the resonance frequency of State 2
following the used resonant control strategy. This excitation causes
the wing to be effectively monostable for State 1. Fig. 7(b) presents
the aerodynamic response of the bi-stable plate at three different
free-stream velocities where the AOA is first swept up from −20◦
to +20◦ and swept back down to −20◦ for the active case. The
path abcdefa is indicated in the figures to aid the discussion. As in
Fig. 7(a), the wing is set at State 1 which is the favourable state at
−20◦ AOA. A snap-through is not observed for the complete AOA
range, in both directions, at 13.2 m/s and all other velocities below
this critical velocity value. Due to the lack of aerodynamic hystere-
sis, the AOA up and down sweeps are averaged and presented as a
single curve for the 13.2 m/s velocity test. In contrast, at 15.5 and
17.8 m/s, snap-through is observed in both directions as expected
indicating that the critical velocity value is in the range of 13.2 to
15.5 m/s. (Note: If a gust causes the wing to go from State 1 to
State 2, snap-through from State 2 to State 1 is always guaranteed
for velocities below the critical velocity independent of the AOA.)
In contrast to the passive structure, a dynamically induced snap-
through from State 2 to State1 is observed near zero degree of the
mount angle where the pressure gradient is near neutral for the
lower 15.5 m/s velocity (see the path ef in Fig. 7(b)). The snap-
through occurs at −0.5◦ and 0.0◦ for the velocities of 17.8 and
15.5 m/s respectively indicating that the dynamic excitation can
achieve snap-through from State 2 to State 1 by tailoring the com-
posite and optimising the distribution of actuation even against a
certain level of adverse gradient.

Similar results are obtained for the aerodynamic characteristics
and morphing control under the presence of flow induced pres-
sure for State 2. Fig. 8(a) presents the aerodynamic response of
the passive structure for free-stream and AOA sweeps first start-
ing down from +20◦ to −20◦ and swept back up to +20◦ . The
wing is set at State 2 which is the favourable state at +20◦ AOA
due to pressure gradient. The response for the AOA high–low–high
sweep is very similar to the previously presented AOA low–high–
low sweep. A snap-through is not observed for the complete AOA
range, in both directions, at 15.5 m/s and all other velocities below
this critical value. Due to the lack of aerodynamic hysteresis, the
AOA up and down sweeps are averaged and presented as a sin-
gle curve for the 15.5 m/s velocity test. In contrast, at 17.8 m/s,
snap-through is observed in both direction as expected, indicating
that the critical velocity value is in the range of 15.5 to 17.8 m/s.
For this case, the range of AOA for which an adverse pressure gra-
dient develops is found as explained above. Fig. 8(b) presents the
free-stream and AOA sweeps of the dynamically excited bi-stable
plate at three different free-stream velocities where the AOA is
first swept down from +20◦ to −20◦ and swept back up to +20◦ .
A sinusoidal excitation with 1000 Vac amplitude at 30.0 Hz and
300 Vdc offset is applied – the excitation frequency is near the
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Fig. 8. Experimental (3D) aerodynamic response for active bi-stable wing to rota-
tion angle, β , and free-stream velocity. Coloured arrows indicate the direction of
snap-through for each AOA sweep. (a) Passive, (b) active with excitation at 30.0 Hz,
1000 Vac. (Colour online.)

resonance frequency of State 1. The response for the AOA high–
low–high sweep is different than the previously presented AOA
low–high–low sweep. A snap-through is not observed for the com-
plete AOA range, in both directions, at 13.2 and 15.5 m/s and all
other velocities below the value of 13.2 m/s. Due to the lack of
aerodynamic hysteresis, the AOA up and down sweeps are av-
eraged for the 13.2 and 15.5 m/s velocity tests. In contrast, at
17.8 m/s, snap-through is observed in both directions indicating
that the critical velocity value is in the range of 15.5 to 17.8 m/s.
In the case where State 2 is the desired state, the dynamic ex-
citation is clearly capable of achieving State 2 in the presence of
adverse pressure gradient (see the path ef in Fig. 8(b)) before it is
triggered aerodynamically (see path ef in Fig. 8(a)).

5. Conclusions

The modelling for the dynamics and the aerodynamic response
of a wing-like bi-stable composite laminate are presented. An an-
alytical model using the Ritz method is developed yielding impor-
tant modal properties for bi-stable wing-shaped composites. This
analytical model allows the design of geometrical features in or-
der to obtain desired modal characteristics for each stable state.
These are crucial to conduct a resonant actuation strategy allow-
ing to control the configuration of the bi-stable wing. Furthermore,
the theoretical modal frequencies provided by the model can be
used to optimise the positioning of the MFC actuators to achieve
improved actuation authority by maximising the generalised elec-
tromechanical coupling coefficients for the modes to be controlled.
This is the subject of future work. The aerodynamic characteristics
of a wing specimen are studied in order to test the resonant actu-
ation strategy against a dynamic pressure. It is demonstrated that

full configuration control using only MFC actuators is achieved,
even against an adverse dynamic pressure. The shown passive load
carrying capabilities and the presented control strategy to stabilise
each state of the wing-shaped bi-stable specimen allows for the
possible application of such structures as morphing winglets. The
load carrying capability of the presented wing-shaped bi-stable
composite concept can be substantially increased by using thicker
laminates. Moreover, the control strategy exploiting the inertial
advantage from resonance allows for limiting the increase in actu-
ation requirements. Further gains in performance can be achieved
by designing the positioning of the MFC actuators taking into ac-
count the passive aerodynamic behaviour of the bi-stable wing
structure. The presented results show the possibility to implement
wing-shaped bi-stable composite in shape adaptable aerodynamic
structures, such as winglets.
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