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Changing CPU Frequency in CoMD Proxy Application

Offloaded to Intel Xeon Phi Co-processors.

Gary Lawson, Masha Sosonkina, and Yuzhong Shen

Old Dominion University, Norfolk, Virginia, U.S.A.
{ glaws003, msosonki, yshen } @odu.edu

Abstract

Obtaining exascale performance is a challenge. Although the technology of today features
hardware with very high levels of concurrency, exascale performance is primarily limited by
energy consumption. This limitation has lead to the use of GPUs and specialized hardware
such as many integrated core (MIC) co-processors and FPGAs for computation acceleration.
The Intel Xeon Phi co-processor, built upon the MIC architecture, features many low frequency,
energy efficient cores. Applications, even those which do not saturate the large vector processing
unit in each core, may benefit from the energy-efficient hardware and software of the Xeon Phi.
This work explores the energy savings of applications which have not been optimized for the
co-processor. Dynamic voltage and frequency scaling (DVFS) is often used to reduce energy
consumption during portions of the execution where performance is least likely to be affected.
This work investigates the impact on energy and performance when DVFS is applied to the
CPU during MIC-offloaded sections (i.e., code segments to be processed on the co-processor).
Experiments, conducted on the molecular dynamics proxy application CoMD, show that as
much as 14% energy may be saved if two Xeon Phi’s are used. When DVFS is applied to the
host CPU frequency, energy savings of as high as 9% are obtained in addition to the 8% saved
from reducing link-cell count.

Keywords: Molecular dynamics, CoMD, Intel Xeon Phi, Energy savings, DVFS

1 Introduction

To reach exascale performance, computing nodes are supplied with accelerators, such as GPUs
and, recently, many-integrated cores (MIC) co-processors that feature very high levels of con-
currency. At the same time, energy consumption has gained much attention since it is a limiting
factor in attaining exascale performance. For example, the U.S. Department of Energy has set
the cap of 20MW power draw for supercomputer operation [12]. Applications that exploit high
degrees of parallelism and take advantage of the different hardware components available exe-
cute with improved efficiency and may result in reduced execution times and energy savings.
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The Intel MIC architecture is at the heart of the Intel Xeon Phi co-processor. The co-
processor is typically composed of 50+ cores at approximately 1GHz. Each core is capable of
concurrently processing four hardware threads [7]. Threads may be mapped to cores through
the affinity environment variable [6]. Each core is also equipped with a 512-bit vector process-
ing unit (VPU) capable of processing up to 8 or 16 operations per second depending on data
precision, double- and single-precision respectively.

To reduce energy consumption by the CPU, a dynamic voltage and frequency scaling (DVFS)
technique is commonly used at the application runtime (see, e.g., [20]). The current generation
of Intel processors provides various P-states for frequency scaling. Frequency may be specified
by manipulating the model-specific registers (MSR). P-states are defined as (fi, . . . fn, where
fi > fj for i < j). For the older generations of the Intel Xeon Phi, DVFS is not software-
accessible. DVFS may be used on the host CPU only to reduce host-side energy consumption
while computation is being performed on Xeon Phi.

Molecular dynamics applications has such a potential on the road towards exascale. They
are used extensively in many scientific domains. Co-design Molecular Dynamics (CoMD) is a
proxy application provided by the Exascale Co-Design Center for Materials in Extreme Envi-
ronments (ExMatEx) [5, 16]. A proxy application retains the essential workload characteristics
of the full production version and is used to explore new programming models and algorithms
for emerging hardware and software capabilities [5]. ExMatEx maintains the original source
code on Github [2] for CoMD and other applications, such as LULESH [1, 10].

This work investigates the impact on performance and energy when CoMD is adapted to
use the Xeon Phi co-processor. The impacts of varying host-side frequency during offload ex-
ecutions and the maximum atom count of link cells are explored with focus on minimizing
the energy-to-solution. Impacts to time-to-solution, performance, and offload timings are also
discussed. The tests are performed on a single-node computing platform that offers two Xeon
Phi’s; hence one- and two- Xeon Phi configurations are explored. In this paper, Xeon Phi and
MIC may be used interchangeably to reference the Intel Xeon Phi co-processor. The implemen-
tation used in this work has been defined in [14].

The remainder of this paper is organized as follows: Section 2 discusses the related work.
Section 3 provides an overview for the Xeon Phi and Section 4 for CoMD. It also defines the
execution time model relating CPU execution time, frequency, and the Xeon Phi execution
time. Section 5 presents the configurations explored, computing platform used, and a discus-
sion of the experiment conducted. The section also presents the execution time model validation
discussion and additional results. Finally, Section 6 concludes this paper.

2 Related Work

Power and/or performance evaluations of the Intel Xeon Phi include [3], [4], [17], [19], [21],
and [22]. In [21], the authors investigate the power and performance of auto-tuned applications,
including a modified version of LULESH (v1.0), to determine the optimal energy on computing
platforms which include the Intel Xeon Phi. However, LULESH was executed for the host CPU,
and not for the Intel Xeon Phi. Modeling of power and performance of architectures including
the Xeon Phi was conducted in [4] where extension of the roofline model was applied. The
work presented in [3] measures power and performance for the Rodina and SHOC benchmarks.
The authors compare executions between the multi-core, Xeon Phi, and GPU architectures and
found that the best architecture was highly dependent on application workload and therefore
limited by the applications tested. A performance evaluation of An instruction-level energy
model for the Intel Xeon Phi was proposed in [22]. A high performance MPI library for clusters
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featuring the Intel Xeon Phi and Infiniband was proposed in [19] which is based on the SCIF
API. An investigation of performance on molecular dynamics applications for the Intel Xeon
Phi has been conducted in [17]. The authors optimized the Lennard-Jones (LJ) force kernel by
improving the method for identifying atom pairs by using nearest neighbor lists. Vectorization
was achieved by using Intel intrinsic functions as well as pragma directives. Research into
improving vectorization by loop-blocking techniques [15], vectorization pragmas, and the general
optimizations also being conducted by the ExMatEx team [5].

3 Overview of MIC Architecture

The Intel Xeon Phi supports three flexible usage models for interfacing the co-processor: it
may run applications exclusively on the device (native), applications may transfer work to the
device for processing via compiler directives (offload), and finally applications may treat the
Xeon Phi as a separate MPI node (symmetric) [7].

Data transfer between the Xeon Phi and host is a significant bottleneck in the offload ex-
ecution model for any iterative application that requires data to be returned to the host for
communication. Improving the transfer rate may be accomplished by using the SCIF (Sym-
metric Communications Interface) which allows for remote memory access mechanisms for effi-
ciently transferring data between node host (CPU) and devices [8]. Some applications provide
a value which may control how many items each data container may hold. This limiting value
effectively controls the memory footprint of the container, an important component during
communications. It may be beneficial to offload memory transfers which implement the SCIF
simple message passing interface for communicating across the PCIe bus to the Xeon Phi de-
vice. Data transfers over the PCIe bus which use a simple message passing interface are most
efficient when the message size is small, about 4KB [8].

To measure the offload memory transfer time for each offload event, the OFFLOAD REPORT

environment variable was set to level 1 to collect offload event messages which including high
precision timings. Two timings are provided per offload event message: CPU time and MIC
time. CPU time represents the time required to complete the offload event measured by the
CPU; it includes the time required by any memory transfers and to complete the offload event
itself (i.e. data initialization, computation, etc.). MIC time represents the time required to
complete the offload event measured by the Xeon Phi; it only measures the time required to
complete the event. MIC time does not measure the time spent performing memory transfers.
Therefore, offload memory transfer time is simply the difference in CPU and MIC time.

4 Overview of Co-Design Molecular Dynamics

CoMD is a molecular dynamics application which simulates materials where the inter-atomic
potentials are short range (e.g., uncharged metallic materials) [5]. Performance is dependent
upon two tasks: identification of all atom pairs within the cut-off distance and computing the
force. The force computation accounts for approximately 90% of the execution time, making
it an ideal candidate for execution on the Xeon Phi. Problem size is expressed as the number
of atoms in the material: 4(nx × ny × nz), where nx, ny, and nz represent the number of
atoms along each axis. To expand to multiple tasks, the total problem size, or domain, must be
sub-divided into sub-problems (sub-domains) equal to the number of tasks. Each sub-domain
is then processed by an individual MPI task.

Within each sub-domain, individual atoms are collected into containers called link cells.
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Atoms are grouped by spatial locality within the material domain and provide a basic data
structure used to transmit atom data between domains. To ensure that link cells do not get too
large, a maximum number of atoms may be set per link cell. In this work, the maximum number
of atoms per link cell has been varied to measure the difference in performance and energy.
A metric for measuring execution performance is atom rate, which is a ratio of the average
number of atoms updated per microsecond. This CoMD-specific metric allows to compare
among various hardware and software configurations. Since, an atom update requires the force
calculation, computation of velocity and position as well as communication with all the relevant
sub-domains, the atom rate is indicative of the performance on the host and on the Xeon Phi.

A major advertised appeal of the the Xeon Phi is its ease of programming and compiling
with the same native x86 Intel compilers used to compile on the host [18, 7]. No extensive
modifications of the original MPI/OpenMP version of CoMD has been performed for this work
to explore the possible energy savings potential “out-of-the-box”. In this work, the offload
model is used to target the computational portions of the force kernel in CoMD [14]. The work
offloaded from the EAM force kernel to the Xeon Phi is distributed using OpenMP.

4.1 Execution Time Model

This section presents the execution time model for applications which feature offloaded code ac-
celeration on the Intel Xeon Phi. The model may be used to determine accurately how compute-
or memory-intensive an application is. This information may then be used to determine the
effect MIC acceleration had with respect to the host and the effect of DVFS during MIC of-
floads with respect to MIC executions without DVFS. Execution time T for an application that
offloads computation to the Xeon Phi may be defined as T = thost + tmic , where the execution
time of the host and offloaded code sections are non-overlapping. thost represents the execution
time spent on the host multi-CPU and tmic represents the execution time spent on the Xeon
Phi. DVFS may save power during those CPU cycles that are not computationally intensive,
e.g., when the CPU is stalled waiting for memory, I/O, branch mis-prediction, or reservation
station stalls [20]. The host execution time thost consists of the time on-chip ton, when the CPU
is engaged in computations, and time off-chip toff , for the remainder of CPU cycles. DVFS
affects only the time on-chip, which scales linearly with the change in frequency [20]. This
relationship may be described as

thost = ton
fmax

fi
+ toff , (1)

where fmax is the maximum allowable frequency and fi, i > 0 is any lower available frequency
level. Substituting thost to solve for T yields

T = ton
fmax

fi
+ toff + tmic . (2)

Equation (2) provides the most basic relationship between total execution time, CPU (host)
frequency, and times spent on the host and MIC. It may be used to determine the energy-saving
potential for a hybrid CPU-MIC application, indicated by the ratio of toff to ton.

5 Experiments

The experiments conducted in this work aim to compare the multicore execution of CoMD,
referred to as Host, and the CPU-MIC execution of CoMD, referred to as MIC. Each execution
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is run using one or two MPI tasks, hence: Host 1, Host 2, MIC 1, MIC 2. When DVFS was
applied to the host during MIC offloads, the corresponding tests are referred to as MIC 1 DVFS
andMIC 2 DVFS. For the MIC executions, the number of MPI tasks is equivalent to the number
of MIC devices employed, such that each MPI task is assigned a Xeon Phi for its portion of the
computations. In each iteration of the EAM force kernel, data must be transmitted between
the Xeon Phi and host four times for three offload events. In the initialization phase of CoMD,
one offload to Xeon Phi is required to instantiate and allocate its memory. All static data, such
as interpolation tables, are transmitted to the device at this time. The memory transfer times
have been measured as discussed in Section 4.

Experiments were performed on the “Borges” computing platform at Old Dominion Univer-
sity. The Borges system contains two Intel Xeon E5-2650 8-core processors with HyperThread-
ing technology, each core runs at 2GHz (2.8GHz Turbo), has 20MB of L3 cache, and 64GB total
of RAM. The Intel Xeon E5-2650 processor supports 10 P-states and the frequencies range from
1.2 GHz to 2.001 GHz. A 100MHz stepping is used for all the states except the last one, where
only a 1MHz stepping is used. “Borges” contains two Intel Xeon Phi co-processors 5110P, each
connecting to the host via a PCIe and having 30MB of the L2 cache, 32KB of the L1 data
and instruction caches, 8GB DRAM (GDDR5), and 60 cores running at 1.05GHz. Each core
contains a wide 512-bit single instruction multiple data (SIMD) vector processing unit, which
implements the fused multiply-add operation; 8 double-precision or 16 single-precision data
elements may be operated upon in a single execution phase.

Power measurements are collected externally via two Wattsup meters which power and
monitor the Borges computing platform1. Data are sampled at a rate of 1Hz, which does not
affect the measurements considerably since the problem size used provides sufficiently longer
execution times. Although several tools exist for measuring power on the Xeon Phi itself [11, 9],
they often incur a substantial overhead from measuring the device power. Wattsup offers a
coarse-grained sampling solution, which, however, does not impact power measurements. The
power is measured for 15 seconds before and after execution of CoMD in all the experiments.
Additionally, 45 seconds of idle time is allocated in-between executions to allow the idle power
draw to reach steady state. The results have been averaged over five executions of each test.

In this work, two parameters are varied: link-cell count and host CPU frequency. Conversely,
the parameters that are not varied during the experiment are problem size, thread affinity,
and thread count. Problem size has been set to 70 (1,372,000 atoms) because this workload
provides a sufficiently long execution time (more than 30 seconds) to collect power samples.
Thread affinity has been set to compact and granularity is set to thread because this affinity
combination has been shown to provide the most efficient execution [13, 14]. Thread count has
been set to 236 threads (out of possible 240), which are mapped to 59 cores. One core is left
free from CoMD because it is occupied by the MIC operating system.

5.1 Execution-Time Model Validation

Compute- or memory-intensity of an application may measured by the ratio toff -to-ton
from Eq. (1). A ratio which is very close to 0 represents a computationally intensive appli-
cation; similar, a value greater than 1 represents a memory intensive application. Here CoMD
is executed on “Borges” for each configuration at different operating frequencies such that linear
regression may be used to solve Eq. (1) for ton and toff . In all of the “one-MPI” configurations
(Table 1), toff is about the same while it is much smaller for those with two MPI tasks because,

1Wattsup meter (https://www.wattsupmeters.com) records the total power for the computing system to
which it is connected. Two meters are used here because the system has two power outlets.
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Configuration ton toff toff/ton R2

Host 1 97.139 3.769 0.039 0.992
Host 2 94.965 1.019 0.011 0.973
MIC 1 6.990 2.630 0.376 0.995
MIC 2 4.820 1.293 0.268 0.965
MIC 1 DVFS 7.051 2.635 0.374 0.996
MIC 2 DVFS 4.460 1.680 0.377 0.985

Table 1: Execution times on host (as defined in Eq. (1)) in seconds and the associated goodness-
of-fit metric R2 for all explored configurations. The problem size is 1,372,000 atoms, affinity is
compact, thread count is 236, and link cell count is 16.

in the latter, certain data sets are treated in a two-way parallel fashion. For the MIC execu-
tions, ton is much smaller than Host because the CPU (host) counts the Xeon Phi computations
as its own time off-chip. It is for this reason that the DVFS applied during Xeon Phi offloads
may benefit energy without affecting the performance.

Notice that CoMD remains rather compute-intensive (toff -to-ton ratio is less than one) even
when the force kernel is computed on the accelerator (rows MIC in Table 1). In particular, for
all the MIC configurations, this ratio is approximately 0.3, which indicates that the computa-
tions remaining on the host, such as position and velocity updates, are also compute-bound.
Offloading the update sections does not benefit the MIC implementation because additional
atom data would need to be transmitted to the Xeon Phi each iteration. The extra memory
transfer per iteration is comparable to the computation time to perform the update. Therefore,
the velocity and position updates are computed by the host.

The MIC 2 tests with and without DVFS have rather high variation in the toff -to-ton ratios,
which is 0.1 higher forMIC 2 DVFS whereas these ratios are almost the same in theMIC 1 tests.
This observation may be explained by the fact that, in the MIC 2 DVFS case, DVFS is applied
to the entire node by only one (first) MPI task. However, no synchronization is algorithmicly
necessary between the MPI tasks. Hence, it is possible for the DVFS to be applied while one of
the MPI tasks is still executing a host CPU portion, outside of the offloading segment. It has
been verified experimentally that the host execution time thost in the MIC 2 DVFS case was
greater than that in the MIC 2 case for several frequency levels, while tmic remained constant
independently of host DVFS.

5.2 Experimental Results

The impact on performance from varying link-cell count is investigated. Link-cell size has
been set to either the default value of 64 atoms or to 16 atoms, which is the smallest size
available for the problem size selected and, thus, may lead to more prominent differences in
the performance. The highest CPU frequency fmax has been applied and remains constant
throughout each execution, except in the MIC DVFS configurations. For MIC DVFS, CPU
frequency is set to its lowest value of 1.2 GHz during offloads to the MIC(s), and restored to
its highest value at the end of the offload section.

Link-cell. The results presented in Fig. 1 compare the performance of the two link-cell counts
(LC of 16 and 64) in each execution configuration. In particular, Fig. 1(left) presents the
total execution time while Fig. 1(right) shows the offload memory transfer time for the hybrid
configurations with four main offload events: Initialization and Loop 1, 2, 3 as noted in
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Figure 1: Total execution time (left) and total memory transfer time per offload event (right)
for two link-cell counts, 16 and 64.

Figure 2: Average power (left) and atom rate (right) for different frequency levels with and
without DVFS for link-cell count of 16. (The curves MIC DVFS and MIC partially overlap for
one and two MICs, respectively.)

Section 5. The smaller LC of 16 reduces execution time for each configuration except Host 2,
as seen in Fig. 1(left). Host 2 does not benefit from the reduced link cell count because the link
cell was able to fit into cache in the two MPI task version. MIC 2 benefits from the reduced
link cell count because its cache is much smaller than the hosts. In general, the cache utilization
increases as a result of the reduced memory footprint of the link-cell container for LC of 16.
For the MIC configurations, this observation may be particularly noticeable: Figure 1(right)
shows that the memory transfer time decreases significantly with the reduced maximum atom
count per link cell. Specifically, the total transfer time decreases 2.75 times (from eleven to four
seconds) for MIC 1 and two times (from six to three seconds) for MIC 2.

Frequency Scaling. Figures 2 and 3 provide the average power, atom rate, execution time,
and energy plots for the experiments when frequency on the host is scaled from the lowest
frequency to the highest frequency. The link-cell count is fixed as 16 in the plots.

Figure 2(left) presents the average power during the execution of CoMD derived from
Wattsup measurements for each test configuration. For the MIC 2 configurations, the curves
show the actual power measurements. For the MIC 1 and Host configurations, the curves
represent the measured power values adjusted to exclude the power draw of unused Xeon Phi
devices, which could not be removed from the compute node in the experiments, as follows. The
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Figure 3: Total execution time (left) and energy consumed (right) for different frequencies with
and without DVFS for link-cell count of 16. (The MIC curves partially overlap MIC DVFS for
their respective tests.)

execution of CoMD on a single MIC causes both devices, if present, to enter an active power
state. From the Xeon Phi datasheet, the active power state draws about 115W [7], therefore
this number was subtracted from the actual power measurements and the resulting value shown
on the MIC 1 curves in Fig. 2(left). For the Host executions, both Xeon Phi’s are in an idle
state, which draws about 45W [7], therefore this number was subtracted from the actual power
measurements and the resulting value shown in the Host curves in Fig. 2(left). Note that, power
draw has not been measured on the Xeon Phi devices directly because existing software tools,
such as micsmc, incur excessive overheads as was shown in authors’ earlier work [13].

Figure 2(right) presents the atom ratemetric of the performance, defined as number of atoms
processed per microsecond. For lower frequencies, the atom rate is smaller because execution
on the host longer. The atom rate is also indicative of the MIC performance. Hence, the rate is
the largest for MIC 2 cases, which also exhibit the best execution time as shown in Fig. 3(left).
For the MIC 2 tests, the atom rate decreases faster than that for the MIC 1 ones because
the executions of the MIC 2 configuration are much shorter (cf. Fig. 2(right) and Fig. 3(left)).
Hence, host operates at a lower frequency longer, which negatively affects the performance.

In Fig. 3(left), the total execution time is plotted against the available frequency levels. The
Host executions are significantly impacted by frequency, as expected, due to the computation-
ally intensive requirements of the CoMD application. The MIC executions are not impacted
by DVFS as significantly as the Host because the host frequency affects only the host-side
computations and not the ones offloaded to MIC.

Figure 3(right) presents the total energy consumed for the various configurations under
different operating frequencies. The MIC 1 and Host values have been adjusted to remove the
unused Xeon Phi power draw from the measurements as explained for Fig. 2(left). The MIC
2 tests consumed the least energy (with and without DVFS) for almost all the frequencies,
except for fmax, when Host 2, adjusted for unused MICs, shows the best result. MIC 1 does
not compare to MIC 2 or to the Host executions, especially at the higher frequencies. Hence,
further optimizations are required to make the MIC 1 implementation energy efficient.

Energy savings for the MIC 2 executions were measured when varying link-cell count and
when applying DVFS. When link-cell count was reduced from 64 to 16, MIC 2 saved 8.3% and
MIC 2 DVFS saved 14.3% energy. The savings are the result of reduced host–MIC memory
transfer in the cased of 16 link-cell count and of reduced cache misses due to the decreased
memory footprint. When DVFS is applied and link-cell count is 16, MIC 2 DVFS saved 9% in
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energy compared with the MIC 2 execution without DVFS while still consuming more energy
than the Host 2 execution at the highest frequency, when the MIC 2 executions were not
fast enough to compensate for the additional power consumption of the MICs (cf. Fig. 3(left)
and Fig. 2(right)).

6 Conclusion

In this work, the molecular dynamics application CoMD was used experimentally to determine
the validity of a simple execution time model for applications executed using the Intel Xeon
Phi co-processor in offload mode. The experiments show that execution time on the Xeon
Phi may be decomposed into two partitions: time to execute on the host and Xeon Phi. The
developed model showed that, even under MIC execution, CoMD remains mostly compute
intensive on the host. The MIC 2 executions resulted in the lowest energy consumed among
all the configurations for the frequencies below the maximum one, at which Host 2 consumed
the lowest energy. The MIC 1 executions consumed the most energy of all configurations
tested. More effort is required in the MIC 1 implementation to achieve better performance.
Furthermore, it was determined that, when a single MIC is specified for execution in a multi-
MIC node, the other MICs are elevated to an active state, consuming extra power.

When the link-cell count was reduced from 64 to 16, energy savings as high as 14% and 8%
were observed for the MIC 2 DVFS and MIC 2 configurations, respectively. When DVFS was
applied, 9% of energy was saved, in addition to the 8% saved from reducing link-cell count for
the MIC 2 configuration. Applying DVFS during offload sections did not affect significantly
the performance: The execution time only did increase by 1%.

Future work includes fine-tuning of the execution time model to differentiate single- and
multiple-MIC offloading, developing the power model, and combining the two to predict energy
consumption for memory- and compute-intensive applications executed on different hardware
configurations. Power measurement techniques on MIC are to be investigated further to provide
the instantaneous power consumption on the MIC without incurring much overhead. Analysis
of the time model will be performed with the definition of the energy model.
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