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A systematic approach is presented in this paper to derive the analytical deflection function of a stepped beam using singularity
functions. The discontinuities considered in this development are associated with the jumps in the flexural rigidity and the applied
loads. This approach is applied to static and vibration analyses of stepped beams. The same approach is later extended to perform
sensitivity analysis of stepped beams. This is done by directly differentiating the analytical deflection function with respect to any
beam-related design variable. The particular design variable considered here is the location of discontinuity in flexural rigidity.
Example problems are presented in this paper to demonstrate and verify the derivation process.

1. Introduction

The stepped beams can be found in many engineering appli-
cations in shafts, antennae, rotor blades, gun barrels, slender
structures, and so forth. The changes in the cross-sectional
areas and the load distribution generate discontinuities in
deriving the deflection equation of a stepped beam. Many
have introduced singularity or Macaulay functions to handle
these discontinuities. The singularity or Macaulay functions,
made of the Dirac delta function and its derivatives, can be
rigorously defined based upon theories of distributions or
generalized functions [1–3].

The goal of this paper is to develop a unified, singularity
function-based approach to perform static, vibration, and
associated design sensitivity analysis of stepped beam prob-
lems. The approach is developed based upon an observation
that the product of the bending moment and the inverse of
the moment of inertia can be spanned as the algebraic sum
of terms. Each of these terms contains only one singularity
function of zero or higher order. These terms constitute
the right-hand side of the bending moment equation of the
stepped beam, which can be easily integrated to obtain the
analytical expression of deflection. Such analytical function
can be conveniently differentiated to obtain the analytical
expression of sensitivity of beam deflection with respect to
any design variables. Sensitivity analysis aims to find the

derivatives of structural responses, such as deflection and
frequencies, with respect to structural-related parameters.
Sensitivity analysis has broad applications in support of
reanalysis, design optimization, and reliability analysis [4, 5].
For example, the effects of structural degrading, crack propa-
gation, and local damage of a stepped beam can be effectively
estimated through the use of the sensitivity equations derived
in this paper.

Falsone [6] used the singularity functions to find the
analytical expression of the deflection of an Euler-Bernoulli
beam with a uniform cross-section, subjected to disconti-
nuities in the loads, deflections, and slopes. These discon-
tinuities are expressed in terms of the Heaviside function
and the Dirac delta function, as well as their derivatives and
integrals. They appear as the right-hand side terms in the 4th
order differential equation of the deflection. Yavari and his
colleagues [7, 8] provided a mathematical foundation for the
distributional derivatives of the Dirac delta function based
upon the Schwarz’s distribution theory.With this foundation,
they derived the Euler-Bernoulli and the Timoshenko beam
bending equations in terms of generalized functions. The
discontinuities they considered in flexible stiffness, slope,
and deflection are resulted from the change in moment of
inertia and the point supports of internal linear and torsional
springs.

Hindawi Publishing Corporation
Journal of Structures
Volume 2014, Article ID 234085, 13 pages
http://dx.doi.org/10.1155/2014/234085



2 Journal of Structures

Notice that Yavari and his colleagues started their deriva-
tion of the governing differential equation by piecing the
beam deflections of uniform sections together with the use of
Heaviside function.Thebeamdeflection is then differentiated
according to the theories of distributions up to the 4th order.
In the process, the jump conditions in deflection, slope,
moment, and shear force are converted into equivalent load
distributions.The resultant 4th order beam equation can then
be solved with the help of an auxiliary beam equation, which
is established to solve the distribution part of the deflection
equation. The unknown amounts of jumps in deflection and
slope appear as part of the forcing term in the final beam
equation, which can be solved based upon the continuous
conditions at the jump point.

Biondi and Caddemi [9] expressed the moment of inertia
distribution in terms of aDirac delta and aHeaviside function
to count the discontinuities in beam’s flexibility and slope.The
forcing term of the beam equation includes the products of
the deflection, its derivatives, and the Dirac delta function.
The beam equation is then integrated to obtain the shear
force, moment, slope, and deflection. The intensity of the
discontinuity of moment of inertia can be determined based
upon the jump in the slope. The process involves only four
integration constants which are determined by the boundary
conditions. However, the process requires establishing four
auxiliary beam equations. Later, Biondi and Caddemi [10]
extended theirmethod to find the deflections of steppedEuler
beams and planar frames with internal hinges and rotational
springs. A special integration equation was employed to
compute the product of two Dirac’s deltas at the same loca-
tion. Palmeri and Cicirello [11] used distribution Daric delta
functions to model the slope discontinuity caused by a crack
in the uniformbeam. In their study, the distribution functions
are applied to model the reciprocal of the moment of inertia,
rather than the moment of inertia itself. Other singularity
function-like methods have been introduced in the literature
to solve stepped beam problems, such as close-form finite
element method [12] and the discrete singular convolution
[13]. The latter, however, are approximated methods.

Vibration analysis of a stepped beam also attracts much
research interest. The resultant natural frequencies are used
to study the rotatory resonance of a shaft that carries gears as
additionalweights.Naguleswaran [14] used the eigenfunction
of an Euler-Bernoulli beam to represent the mode shape of
each uniform section of the stepped beam studied in hiswork.
The conditions that the eigenfunction and the associated
slope,moment, and shear force are continuous at the junction
of the change in the cross-section are used to connect the
eigenfunction of one uniform beam with the other. The
author later extended themethod to solve vibration problems
of beams with multiple steps and various support conditions
[15].

Mann and his colleagues [16, 17] followed similar strategy
discussed in [14, 15] to solve the vibration of cantilever
stepped beams. The boundary conditions of the cantilever
beam allow the mode shapes of a uniform section of the
beam to be determined one after another from the fixed to
the free end, based upon the continuous conditions at the

intersections. Experimental validation was provided in their
paper to validate the solutions.

The Rayleigh-Ritz method was used by Popplewell and
Chang [18] to find the eigensolution of a stepped beam. The
trial functions included the eigenfunctions of a uniformbeam
and the “force mode” functions. The force mode functions
are the static deflection of a uniform beam subjected to a
unit force or moment applied at the junction of changes in
beam’s sectional properties. They are in fact the influence
coefficients used in the current study. Their results were
compared favorable to the exact solutions.

Lu et al. [19] developed a finite element method called
composite element model (CEM) to perform vibration anal-
ysis of multiple-stepped beams. In addition to the commonly
used shape functions, the authors add the globally defined
analytical expressions resulted from the classical beam theory
as part of the trial functions. The CEM can be viewed as
an extension of the Rayleigh-Ritz method [18]. Use of the
singularity functions for vibration analysis of stepped beams
was not the focus of the research in [19].

Only limited works are found to be related to design
sensitivity analysis and optimization of stepped beams.
Naguleswaran [14] approximated sensitivity coefficients of
eigenvalues by finite differencing. The design variables con-
sidered are the relative ratios between the lengths, masses,
and moments of inertia of uniform sections with different
sectional properties. Lepik [20] introduced a cubic function
to smoothen the jump in the beam’s dimension.This approxi-
mation enabled the classical optimizationmethods to be used
to find the dimensions of a stepped beam that minimizes its
dynamic responses subjected to a constant volume constraint.

Organization of this paper is described below. Formulas
that span the product of singularity functions are summa-
rized in Section 2. The Euler-Bernoulli theory is used in this
study to describe the deflection of the stepped beam. The
example problems studied here include a simply supported
beam, a continuous beam with a roller support, and a
continuous beamwith a linear spring support.These example
beams are subjected to discontinuities in flexural rigidity and
loads. The discontinuity in flexural rigidity, referred later
in the paper as rigidity discontinuity, is caused by change
in the cross-sectional area. The static analysis and vibration
analysis of these example beams are given in Sections 3
and 4, respectively. The sensitivity analyses of the static
deflection and the eigenvalues with respect to the location of
discontinuity in flexural rigidity are investigated in Section 5.
Only the simply supported stepped beam is considered as
an example in Section 5 for sensitivity analysis. The results
obtained by the proposed approach will be compared with
those obtained by the commercially rated finite element code,
MD NASTRAN. Notations of singularity functions used in
this paper follow those defined in [3].The conclusion remarks
are given in the final section, Section 6.

2. Product of Singularity Function

Singularity functions or singularity brackets are used to
describe the discontinuous functions. The bracket, ⟨𝑥 − 𝑎⟩𝑛,
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used in [3] for an integer 𝑛 will be used here to represent a
singularity function with some level of discontinuity at 𝑎. A
singularity functionwith a positive integer 𝑛, 𝑛 > 0, is defined
as

⟨𝑥 − 𝑎⟩
𝑛

= {
0 if 𝑥 < 𝑎
(𝑥 − 𝑎)

𝑛 if 𝑥 ≥ 𝑎,
(1)

∫
𝑥

−∞

⟨𝑥 − 𝑎⟩
𝑛

𝑑𝑥 =
⟨𝑥 − 𝑎⟩

𝑛+1

𝑛 + 1
. (2)

The singularity function with 𝑛 = 0 is the Heaviside function
defined as

⟨𝑥 − 𝑎⟩
0

=

{{{

{{{

{

0 if 𝑥 < 𝑎
1

2
if 𝑥 = 𝑎

1 if 𝑥 ≥ 𝑎.

(3)

The singularity function with 𝑛 = −1 is the Dirac delta
function which can be viewed as the derivative of a Heaviside
function defined as

⟨𝑥 − 𝑎⟩
−1

= {
0 if 𝑥 ̸= 𝑎

∞ if 𝑥 = 𝑎.
(4)

The singularity function with a negative index with 𝑛 > 1

represents symbolically the higher order derivative of a Dirac
delta function which becomes meaningful only through
distribution. That is,

∫
∞

−∞

⟨𝑥 − 𝑎⟩
−𝑛

𝑑𝑥 = 0 (5)

and, for a function 𝑓(𝑥) with sufficient regularity,

∫
∞

−∞

⟨𝑥 − 𝑎⟩
−𝑛

𝑓 (𝑥) 𝑑𝑥 = (−1)
𝑛−1

(
𝑑
𝑛−1

𝑓

𝑑𝑥𝑛−1
)

𝑥=𝑎
. (6)

Let 𝑞(𝑥) represent the generalized load, 𝑉(𝑥) the shear
force, and𝑀(𝑥) the bending moment that is associated with
the equilibrium conditions of the beam. The above relations
allow the discontinuities to be included in 𝑞(𝑥), 𝑉(𝑥), and
𝑀(𝑥) as follows:

𝑑𝑉

𝑑𝑥
= 𝑞 (𝑥) , (7)

𝑑𝑀

𝑑𝑥
= 𝑉 (𝑥) . (8)

The material and the geometrical properties are involved
in the deflection equation of the Euler-Bernoulli beam as
described by

𝑤


(𝑥) =
𝑀 (𝑥)

𝐸𝐼 (𝑥)
. (9)

Again, distributional derivatives in deflection will allow the
force term on the right-hand side of (9) to include the discon-
tinuities in the moment of inertia and the bending moment.
Equation (9) can be extended to include the discontinuities

in slope and deflection on its right-hand side in the form of a
Dirac delta function and its derivative [6]. Nevertheless, slope
and deflection discontinuities will not be considered in this
study.

It is noted that the moment of inertia or its reciprocal
of a stepped beam can be fully expressed in terms of Heav-
iside step functions (i.e., zero-order singularity functions).
Similarly, the bending moment can also be expressed by
singularity functions to count on the discontinuities in loads.
The term 𝑀(𝑥)/𝐼(𝑥) then involves products of singularity
functions of zero or higher order. Consequently, this study
focuses on integration of a product of singularity functions
of order zero and higher. The key step in the derivation is to
span such a product into an algebraic sum of terms, each of
which contains only one singularity function. This has to be
done with special attention as the definition of the product
of singularity functions can be altered by the relationship
between function parameters. For example, the outcomes of
the following function product depend upon the relationship
between 𝑎 and 𝑏:

𝐺
1
(𝑎, 𝑏) ≜ ⟨𝑥 − 𝑎⟩

0

⟨𝑥 − 𝑏⟩
0

= {
⟨𝑥 − 𝑏⟩

0 if 𝑏 > 𝑎
⟨𝑥 − 𝑎⟩

0 if 𝑎 > 𝑏.
(10)

The general equation for a product between a zero-order
singularity function and a higher order one can be found to
be

𝐺
2
(𝑎, 𝑏) ≜ ⟨𝑥 − 𝑎⟩

0

⟨𝑥 − 𝑏⟩
𝑛

=

{{{{

{{{{

{

⟨𝑥 − 𝑏⟩
𝑛 if 𝑏 > 𝑎

⟨⟨𝑥 − 𝑎⟩ + (𝑎 − 𝑏)⟩
𝑛

=

𝑛

∑
𝑗=0

[𝐶 (𝑛, 𝑗) ⟨𝑥 − 𝑎⟩
𝑛−𝑗

(𝑎 − 𝑏)
𝑗

] if 𝑎 > 𝑏,

(11)

where𝐶(𝑛, 𝑗) is a combination for 𝑛 choosing 𝑗. For example,
one has the following relation for 𝑛 = 3 as

⟨𝑥 − 𝑎⟩
0

⟨𝑥 − 𝑏⟩
3

= ⟨𝑥 − 𝑎⟩
3

+ 3 ⟨𝑥 − 𝑎⟩
2

(𝑎 − 𝑏)

+ 3 ⟨𝑥 − 𝑎⟩
1

(𝑎 − 𝑏)
2

+ ⟨𝑥 − 𝑎⟩
0

(𝑎 − 𝑏)
3

.

(12)

Equation (11) may be extended further to general products
of higher order singularity functions. As an example, for the
case of 𝑛,𝑚 ≥ 0 and 𝑏 > 𝑎, one has

𝐺
3
(𝑎, 𝑏) ≡ ⟨𝑥 − 𝑎⟩

𝑚

⟨𝑥 − 𝑏⟩
𝑛

= (⟨𝑥 − 𝑏⟩ + (𝑏 − 𝑎) ⟨𝑥 − 𝑏⟩
0

)
𝑚

⟨𝑥 − 𝑏⟩
𝑛

=

𝑚

∑
𝑗=0

[𝐶 (𝑚, 𝑗) ⟨𝑥 − 𝑏⟩
𝑛+𝑚−𝑗

(𝑏 − 𝑎)
𝑗

] .

(13)

Similar expression can be derived for the cases with 𝑎 > 𝑏.
Once it is spanned into terms with single singularity

function, 𝑀(𝑥)/𝐼(𝑥) can be easily integrated to obtain the
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deflection equation of a beam. Particularly, (9) can be inte-
grated twice to obtain an analytical expression of the beam
deflection using (2) along with the expanded algebraic form
of𝑀(𝑥)/𝐼(𝑥). For example, integration of𝐺

3
in (13) yields the

following general form for𝑚, 𝑛 > 0 and 𝑏 > 𝑎:

∫
𝑥

−∞

⟨𝑥 − 𝑎⟩
𝑚

⟨𝑥 − 𝑏⟩
𝑛

𝑑𝑥

=

𝑚

∑
𝑗=0

[
𝐶 (𝑚, 𝑗)

𝑛 + 𝑚 − 𝑗 + 1
⟨𝑥 − 𝑏⟩

𝑛+𝑚−𝑗+1

(𝑏 − 𝑎)
𝑗

] .

(14)

In preparation for sensitivity analysis of the deflection of
a stepped beam, the derivative of singularity functions with
respect to a design variable is required. The design variables
are usually associated with discontinuities presented in the
problem such as the location of a support point or the location
of discontinuity in the moment of inertia. The differentiation
of singularity functions may generate Dirac delta functions.
For example, the derivatives of 𝐺

1
and 𝐺

2
with respect to 𝑎

and 𝑏 can be obtained as

𝑑𝐺
1

𝑑𝑎
= {

0 if 𝑏 > 𝑎
−⟨𝑥 − 𝑎⟩

−1 if 𝑎 > 𝑏,

𝑑𝐺
1

𝑑𝑏
= {

−⟨𝑥 − 𝑏⟩
−1 if 𝑏 > 𝑎

0 if 𝑎 > 𝑏,

𝑑𝐺
2

𝑑𝑎
=

{{{{{{{

{{{{{{{

{

0 if 𝑏 > 𝑎
𝑛

∑
𝑗=1

{𝐶 (𝑛, 𝑗)

× [− (𝑛 − 𝑗) ⟨𝑥 − 𝑎⟩
𝑛−𝑗−1

(𝑎 − 𝑏)
𝑗

+ 𝑗⟨𝑥 − 𝑎⟩
𝑛−𝑗

(𝑎 − 𝑏)
𝑗−1

]} if 𝑎 > 𝑏,

𝑑𝐺
2

𝑑𝑏
=

{{

{{

{

𝑛⟨𝑥 − 𝑏⟩
𝑛−1 if 𝑏 > 𝑎

𝑛

∑
𝑗=1

{𝐶 (𝑛, 𝑗) [−𝑗(𝑎 − 𝑏)
𝑗−1

]} if 𝑎 > 𝑏.

(15)

It should be noted that the product of singularity func-
tions that involves aDirac delta function requires distribution
for a meaningful definition.

3. Static Analysis of Stepped Beams

Three example stepped beams are used as a vehicle to facil-
itate discussion on derivation and verification. The detailed
derivation for the deflection of a simply supported beam
is presented in Section 3.1. With minor modification, the
derivation presented in Section 3.1 can be readily extended
for the deflections of stepped beams with intermediate
supports. The process is briefly discussed in Section 3.2 for
an intermediate roller support and in Section 3.3 for a linear
spring support. The numerical results of the deflections of
these example beams are presented in Section 3.4.

3.1. Simply Supported Stepped Beam. The first example is a
simply supported stepped beam as shown in Figure 1. This

beam is subjected to two point loads, 𝐹
1
and 𝐹

2
, applied at 𝑎

1

and 𝑎
2
, respectively. The loads, 𝐹

1
and 𝐹

2
, are associated with

the dead weights of the gears mounted on the shaft.The beam
also experiences discontinuities in themoment of inertia at 𝑏

1

and 𝑏
2
. Let 𝐼
1
and 𝐼
2
be the associatedmoments of inertia, and

set 𝑎
1
< 𝑏
1
< 𝑎
2
and 𝑎
2
< 𝑏
2
< 𝑙.

The equation for the distribution load, 𝑞(𝑥), is given
below, based upon the free body diagram of the beam:

𝑞 (𝑥) = 𝑅
1
⟨𝑥⟩
−1

− 𝐹
1
⟨𝑥 − 𝑎

1
⟩
−1

− 𝐹
2
⟨𝑥 − 𝑎

2
⟩
−1

+ 𝑅
2
⟨𝑥 − 𝑙⟩

−1

.

(16)

Note that the reactions forces 𝑅
1
and 𝑅

2
at the supports are

included as part of the distribution forces. Using (7), the
integration of 𝑞(𝑥) from −∞ to 𝑥 yields the shear force 𝑉(𝑥)
as

𝑉 (𝑥) = 𝑅
1
⟨𝑥⟩
0

− 𝐹
1
⟨𝑥 − 𝑎

1
⟩
0

− 𝐹
2
⟨𝑥 − 𝑎

2
⟩
0

+ 𝑅
2
⟨𝑥 − 𝑙⟩

0

.

(17)

Similarly, using (8), the bending moment 𝑀(𝑥) is obtained
by integrating 𝑉(𝑥) as

𝑀(𝑥) = 𝑅
1
⟨𝑥⟩
1

− 𝐹
1
⟨𝑥 − 𝑎

1
⟩
1

− 𝐹
2
⟨𝑥 − 𝑎

2
⟩
1

+ 𝑅
2
⟨𝑥 − 𝑙⟩

1

.

(18)

On the other hand, the distribution of the reciprocal of the
moment of inertia can be obtained by

1

𝐼 (𝑥)
=
1

𝐼
1

⟨𝑥⟩
0

− (
1

𝐼
1

−
1

𝐼
2

)

× ⟨𝑥 − 𝑏
1
⟩
0

− (
1

𝐼
2

−
1

𝐼
1

) ⟨𝑥 − 𝑏
2
⟩
0

.

(19)

To maintain an equilibrium of the beam, the shear force
𝑉(𝑥) and the bending moment 𝑀(𝑥) should be zero right
after the right end of the beam; that is, 𝑉(𝑙) = 𝑀(𝑙) = 0.
Thus, one has

0 = 𝑅
1
− 𝐹
1
− 𝐹
2
+ 𝑅
2
,

0 = 𝑅
1
𝑙 − 𝐹
1
(𝑙 − 𝑎
1
) − 𝐹
2
(𝑙 − 𝑎
2
)

(20)

which can be solved for 𝑅
1
and 𝑅

2
as

𝑅
1
=
𝐹
1
(𝑙 − 𝑎
1
) + 𝐹
2
(𝑙 − 𝑎
2
)

𝑙
,

𝑅
2
=
𝐹
1
𝑎
1
+ 𝐹
2
𝑎
2

𝑙
.

(21)
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y

x

F1 = 200 lbf F2 = 300 lbf

a1 = 10 in
b1 = 15 in

b1 = a2 = 25 in
l = 40 in

d2, I2 d1, I1

Figure 1: A simply supported stepped beam.

The analytical expression of (𝑀/𝐸𝐼)(𝑥) can be simplified by
repeatedly using (13) as follows:

𝑀

𝐸𝐼
(𝑥) =
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(22)

The deflection curve is then obtained by integrating the above
expression twice as, according to (9),

𝐸𝑤 (𝑥) = ∬
𝑥

−∞
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(23)

The integration constants, 𝐶
1
and 𝐶

2
, can be determined

based upon the boundary conditions of the given simply
supported beam:

𝑤 (0) = 𝑤 (𝑙) = 0. (24)

Thus, one has 𝐶
2
= 0 and

𝐶
1
= −
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(25)

3.2. Intermediate Roller-Supported Stepped Beam. Thederiva-
tion for the deflection of the simply supported stepped
beam can be easily extended to a stepped beam with an
intermediate support. This is accomplished with the help of
superposition. An example stepped beam with an interme-
diate roller support is shown in Figure 2. Let this immediate
support be placed at 𝑏

3
for 𝑏
1
< 𝑏
3
< 𝑏
2
. The beam becomes

statically indeterminate. The deflection of the continuous
beam can then be obtained by

V (𝑥) = 𝑤 (𝑥) + 𝑅
3
× 𝑢 (𝑥) , (26)

where V(𝑥) is the deflection of the continuous beam, 𝑤(𝑥)
is the deflection of the simply supported beam, 𝑅

3
is the

reaction force at the intermediate support, and 𝑢(𝑥) is the
deflection of the simply supported beam subjected to a unit
force applied at 𝑏

3
. That is,

𝐸𝑢


(𝑥) =
𝑚 (𝑥)

𝐼 (𝑥)
, (27)
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Figure 2: Continuous beam with an intermediate roller support.
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Figure 3: Continuous beam with an intermediate spring support.

where𝑚(𝑥) is the bending moment given by

𝑚(𝑥) = 𝑟
1
⟨𝑥⟩
1

− ⟨𝑥 − 𝑏
3
⟩
1

+ 𝑟
2
⟨𝑥 − 𝑙⟩

1

. (28)

The reciprocal of the moment of inertia, 1/𝐼(𝑥), is given
in (19). Note that 𝑟

1
and 𝑟

2
are the reactions at the end

supports of the simply supported beam subjected to a unit
force. Following the same procedure discussed in Section 3.1,
(27) can be integrated twice to obtain the required deflection,
𝑢(𝑥).

The reaction force 𝑅
3
at the intermediate support can

be calculated based upon the kinematic condition that the
deflection at the immediate support must be zero. Thus, one
has

𝑅
3
= −

𝑤|
𝑥=𝑏3

𝑢|
𝑥=𝑏3

(29)

which helps find V(𝑥), based upon (26).

3.3. Intermediate Spring-Supported Stepped Beam. The inter-
mediate roller support located at 𝑏

3
of the stepped beam

in Section 3.2 is now replaced by a spring support with a
linear spring stiffness 𝑘. Similar to the intermediate roller-
supported beam, (26) can be used to solve a problem of a
stepped beam resting on a linear spring. In this case, the
reaction force 𝑅

3
at the intermediate support is given by

𝑅
3
=

(𝑘𝑤|
𝑥=𝑏3

)

(1 − 𝑘𝑢|
𝑥=𝑏3

)
, (30)

where 𝑢|
𝑥=𝑏3

represents the displacement at 𝑏
3
, where the unit

force is placed. The schematic view of the spring-supported
beam is shown in Figure 3.

3.4. Numerical Results of Static Analysis. Three stepped
beams have been investigated so far: simply supported, an
intermediate roller supported, and a linear spring supported.
In the numerical study, the length of the beam, 𝑙, is set to
be 40 inches, the weights, 𝐹

1
and 𝐹

2
, 200 lbs and 300 lbs,

respectively, and the moments of inertia, 𝐼
1
and 𝐼
2
, 1.772 in4

and 2.505 in4, respectively. The locations of the weights, 𝑏
1

and 𝑏
2
, are set at 10 in. and 25 in., respectively, and the
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Figure 4: The bending moment, the curvature, the slope, and the
deflection of the simply supported beam.
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Figure 5: Deflection of a continuous beam with an intermediate
roller support.

locations for the jumps of flexural rigidity, 𝑎
1
and 𝑎

2
, 15 in.

and 25 in, respectively. Note that the second weight, 𝐹
2
, is

placed right at the jump of the flexural rigidity. The material
of the beam is assignedwithYoung’smodulus and the Poisson
ratio of 30 × 106 psi and 0.33, respectively. The density of the
material is given by 0.262 lbs/in3.The immediate support and
the spring support are placed at the center of the beam; that
is, 𝑏
3
= 20 in.

The results of static analysis obtained by the singularity
functions are first compared with those obtained by the finite
element method (FEM). Specifically, the deflection and the
slope at 30 inches from the left are reported in Table 1, along
with the reactions at the supports. The finite element analysis
is done by MD NASTRAN, in which the beam is discretized
into 16 beam elements, equally spaced. The results in Table 1
show an excellent agreement between the results of FEM and
the method of singularity functions.

The deflection curve of the simply supported stepped
beam obtained by the singularity functions is plotted in
Figure 4, along with the bending moment, the distribution
of 𝑚/𝐼, and the slope. The schematic view of the simply
supported beam is also plotted in the figure to show the
locations, where the external forces are applied and the
moments of inertia are changed. Similarly, the deflections of
the intermediate-supported beam and the spring-supported
beam are shown in Figures 5 and 6, respectively.
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Table 1: Result comparison for static analysis.

Results Simply supported beam Intermediate roller-supported beam Intermediate spring-supported beam
FEM Singularity FEM Singularity FEM Singularity

At 𝑥 = 30 in.
Deflection (in) −4.109𝐸 − 2 −4.109𝐸 − 2 −1.161𝐸 − 3 −1.161𝐸 − 3 −3.872𝐸 − 2 −3.872𝐸 − 2

Slope (rad.) 3.053𝐸 − 3 3.053𝐸 − 3 1.421𝐸 − 5 1.421𝐸 − 5 2.873𝐸 − 3 2.873𝐸 − 3

Reactions (lbf)
𝑅
1

262.5 262.5 47.940 47.940 249.747 249.747
𝑅
3

N.A. 429.120 429.120 25.506 25.506
𝑅
2

237.5 237.5 22.940 22.940 224.747 224.747

−0.06
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−0.03
−0.02
−0.01

0
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Figure 6: Deflection of a continuous beam with an intermediate
spring support.

4. Vibration Analysis of Stepped Beams

Once the beam deflection functions become available, they
can be easily incorporated into a simple procedure to com-
pute the critical speed and its associated mode shapes of
a rotating shaft. The procedure relies on the lumped mass
model of the stepped beam and uses the beam deflection
functions to compute the influence matrix.

The finite element equation for vibration analysis of a
shaft is usually represented by

𝐾x = 𝜆𝑀x, (31)

where𝐾 and𝑀 are the stiffness and the mass matrices of the
shaft, respectively. After imposing the kinematic boundary
conditions, the stiffness matrix is invertible, and the above
equation can be written as

1

𝜆
x = 𝐾−1𝑀x (32)

which is subjected to a normalization condition such as x𝑇x =
1. Equation (32) can be conveniently solved by eig in Matlab,
once𝐾−1 and𝑀 are constructed.

Let the shaft be divided into 𝑛 elements.Themass of each
element is lumped at the center of the element. Let𝑚

𝑖
denote

the lumped mass of the 𝑖th element.These lumped masses fill
the diagonal terms of the diagonal matrix,𝑀. A dead weight
can be added to the mass matrix by introducing a new mass
point that is placed at the location, where the dead weight is
applied.The inverse stiffness matrix is the influence matrix𝑈
that is the solution of the following matrix equation:

𝐾𝑈 = 𝐼. (33)

Each column of the matrix 𝑈, that is, u
𝑖
, represents a

displacement field generated by a force vector that is equal

to the 𝑖th column of the identifying matrix, 𝐼. The vector
u
𝑖
can be conveniently computed based upon the analytical

expression of the beam deflection in terms of the singularity
functions. Finally, the square, nonsymmetric matrix𝐾−1𝑀 is
computed as

𝐾
−1

𝑀 = 𝑈𝑀 = [u
1
𝑚
1
u
2
𝑚
2
⋅ ⋅ ⋅ u
𝑛−1
𝑚
𝑛−1

u
𝑛
𝑚
𝑛
] . (34)

The 𝑘th pair of the eigenvalue and eigenvector, (𝜆
𝑘
, x
𝑘
), is the

solution of (32) or more specifically

1

𝜆
𝑘

x
𝑘
= 𝑈𝑀x

𝑘
. (35)

The eigenvector x
𝑘
is the displacement vector evaluated at the

points of lumped masses as

x
𝑘
= 𝜆
𝑘
𝐾
−1

𝑀x
𝑘
= 𝜆
𝑘
𝑈𝑀x
𝑘
. (36)

In order to compute u
𝑖
in (34), one has to solve the

deflection equation in the form of (27) for the stepped beam,
subjected to a unit force applied at lumpedmass 𝑖. In this case,
the distribution load, the shear force, the bending moment,
and the moment of inertia are given, respectively, by

𝑞 (𝑥) = 𝑟
1
⟨𝑥⟩
−1

− 𝐹⟨𝑥 − 𝜉⟩
−1

+ 𝑟
2
⟨𝑥 − 𝑙⟩

−1

,

V (𝑥) = 𝑟
1
⟨𝑥⟩
0

− 𝐹⟨𝑥 − 𝜉⟩
0

+ 𝑟
2
⟨𝑥 − 𝑙⟩

0

,

𝑚 (𝑥) = 𝑟
1
⟨𝑥⟩
1

− 𝐹⟨𝑥 − 𝜉⟩
1

+ 𝑟
2
⟨𝑥 − 𝑙⟩

1

,

(37)

where𝐹 denotes the unit force applied at the 𝑖th lumpedmass
point, 𝜉. The reaction forces, 𝑟

1
and 𝑟
2
, are found at the ends

of the beam. Here, 𝑟
1
can be easily obtained by

𝑟
1
=
𝐹 × (𝑙 − 𝜉)

𝑙
. (38)
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Table 2: Result comparison for vibration analysis.

Eigenvalues Simply supported beam Intermediate roller-supported beam Intermediate spring-supported beam
Finite element Singularity Finite element Singularity Finite element Singularity

𝜆
1

7,816.99 7,780.99 97,610.8 97,155.06 8.3009𝐸3 8.2629𝐸3

𝜆
2

97,770.24 97,313.60 402,356.6 400,605.03 9.7771𝐸4 9.7314𝐸4

It should be noted that the equation of themoment inertia
used here is given by (19), which is the same as that derived
for the static analysis. Therefore,𝑚/𝐼 can be represented by
𝑚

𝐼
=
𝑟
1

𝐼
1

⟨𝑥⟩
1

− 𝑏
1
(
𝑟
1

𝐼
1

−
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1

𝐼
2

) ⟨𝑥 − 𝑏
1
⟩
0

− (
𝑟
1

𝐼
1

−
𝑟
1

𝐼
2

) ⟨𝑥 − 𝑏
1
⟩
1

− 𝑏
2
(
𝑟
1

𝐼
2

−
𝑟
1

𝐼
1

) ⟨𝑥 − 𝑏
2
⟩
0

− (
𝑟
1

𝐼
2

−
𝑟
1

𝐼
1

) ⟨𝑥 − 𝑏
2
⟩
1

− 𝐹⟨𝑥 − 𝜉⟩
1

× {
1

𝐼
1

⟨𝑥⟩
0

− (
1

𝐼
1

−
1

𝐼
2

) ⟨𝑥 − 𝑏
1
⟩
0

−(
1

𝐼
2

−
1

𝐼
1

) ⟨𝑥 − 𝑏
2
⟩
0

} .

(39)

Setting 𝜉 to be the location of a specific lumped mass, (39)
can be integrated twice to obtain the required deflection, u

𝑖
,

according to the procedure discussed in Section 3.1. Once
u
𝑖
is established, 𝑈𝑀 can be formed based upon (34). Note

that the matrix 𝑈𝑀 has to be augmented to count for the
deflections produced by the external forces, 𝐹

1
and 𝐹

2
. The

latter can be done, again, following the same procedure as
presented in Section 3.1.

The above procedure can be extended for vibration
analysis of a continuous stepped beam. In this case, the beam
deflections inmatrix𝑈 require modifications to count for the
intermediate supports. Suchmodifications have been detailed
in Sections 3.2 and 3.3.

Numerical exercises are conducted hereafter to verify
the solution procedure presented here. The beam studied
in Section 3.4 will be repeated here for vibration analysis.
The natural frequencies of a stepped beam can be used to
investigate the resonance of a rotatory shaft. Two additional
weights, 𝐹

1
and 𝐹

2
, are added here to the beam to model

the gears mounted on the shaft. The stepped beam is divided
into 16 elements: 6 on the left thin section, 4 in the middle
thick section, and 6 on the right thin section.With additional
forces, 𝐹

1
and 𝐹
2
, the matrix𝑈𝑀 becomes of the size 18×18.

Table 2 shows the comparison of the first two eigenvalues
of three different stepped beams using the finite element
method and the method of singularity functions. The results
show an excellent agreement. The finite element results are
obtained from the commercially ratedMDNASTRAN, based
upon the 16 beam element model.

Equation (36) can be extended to obtain the analytical
expression of the eigenfunction, 𝑤

𝑘
(𝑥), associated with the

eigenvector x
𝑘
at any point 𝑥 as

𝑤
𝑘
(𝑥) = 𝜆

𝑘
𝑈𝑀x
𝑘
. (40)
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Figure 7:The first two vibration modes for simply supported beam.

However, 𝑈𝑀, in (40), no longer represents a matrix but a
vector made of a collection of beam deflections at any point
𝑥. These static deflection functions are generated by a set
of unit forces applied at each of the lumped mass points,
which are already available. Particularly, (40) can be rewritten
as

𝑤
𝑘
(𝑥) = 𝜆

𝑘
𝑈𝑀x
𝑘

= 𝜆
𝑘
[ 𝑢
1
(𝑥)𝑚
1
𝑢
2
(𝑥)𝑚
2
⋅ ⋅ ⋅

𝑢
𝑛−1
(𝑥)𝑚
𝑛−1

𝑢
𝑛
(𝑥)𝑚
𝑛
] x
𝑘

= 𝜆
𝑘

𝑛

∑
𝑗=1

{𝑢
𝑗
(𝑥)𝑚
𝑗
𝑥
𝑘𝑗
} ,

(41)

where 𝑢
𝑗
(𝑥) is the deflection equation of the stepped beam

subjected to a unit force applied at the lumped mass point
𝑗, whereas 𝑥

𝑘𝑗
is the 𝑗th component of the 𝑘th eigenvector,

x
𝑘
.
The first two eigenfunctions resulted from (41) for 𝑘 =

1 and 2 are shown in Figure 7. The plots are generated by
evaluating the eigenfunctions of (41) at 4,000 equally spaced
data points. The symbols “+” in the figure mark the locations
of lumped masses and force application points.

5. Design Sensitivity Analysis

The sensitivity analysis aims to find an efficient means to
compute the derivative of structural responses with respect
to design variables. The sensitivity analysis has found many
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applications in gradient based design optimization, trade-off
design, reliability analysis, and so forth.The design sensitivity
analyses of static deflection and eigenvalues of a stepped
beam are investigated in this section.The static deflection and
eigenvalues of concern are expressed in terms of singularity
functions. The sensitivity analysis is performed by using the
direct differentiation method. The design variables consid-
ered in this study are the locations of rigidity discontinuity
and point force.

Since the analytical function of the beam deflection is
readily available, it can be directly differentiated with respect
to a design variable. Particularly, (23) can be differentiated
to obtain the analytical expression of design derivative
as

𝐸𝑤
,𝑏
(𝑥) = (∬

𝑥

−∞

(
𝑀

𝐼
)𝑑𝑥𝑑𝑥)

,𝑏

+ 𝐶
1,𝑏
𝑥 + 𝐶

2,𝑏
, (42)

where the subscript, “, 𝑏”, denotes the design derivative with
respect to 𝑏. It should be mentioned that the differentiation
in (42) takes place after integration operation, so as to take
advantage of higher function regularity. Furthermore, it is
assumed that the location 𝑥 in (42) is not a function of the
design variable.

In the case that the design variable of concern is geo-
metrically related, the concept of material derivative has to
be employed to find the design derivative of the deflection
[21, 22]. In this special case, the expression of the deflection
of a stepped beam has to be written as𝑤(𝑥(𝑏), 𝑏).The implicit
relation, (𝑏), implies that the position 𝑥 of any point in
the beam will be changed due to changes in 𝑏. The total
derivative of 𝑤(𝑥(𝑏), 𝑏) with respect to 𝑏, denoted by 𝑤

,𝑏
,

can then be evaluated based upon the current state of mesh
as

𝑤
,𝑏
≅
𝑑𝑤

𝑑𝑏
= 𝑤
,𝑏
+ 𝑤


×
𝑑𝑥

𝑑𝑏
. (43)

The term 𝑤
,𝑏
is the partial derivative of 𝑤 with respect to 𝑏

while 𝑥 is held constant. This is the term calculated by (42).
On the other hand, the term 𝑤

 is the partial derivative of 𝑤
with respect to 𝑥while 𝑏 is held constant. It is in fact the slope
of the beam. The exact expression between 𝑥 and 𝑏 is usually
defined by the user-specified remeshing process [22], based
upon which the derivate, 𝑑𝑥/𝑑𝑏, can be calculated. Examples
are presented hereafter to demonstrate the applications of
(42)-(43) for design sensitivity analysis.

5.1. Static Sensitivity Analysis. Only the simply supported
stepped beam is investigated here. The design variable is set
to be 𝑏

2
, where the stepped beam is subjected to rigidity

discontinuity and the point load, 𝐹
2
. The value of 𝑏

2
is 25

inches.

The derivatives of the deflection curve 𝐸𝑤(𝑥) and the
constant𝐶

1
with respect to 𝑏

2
are carried out based upon (23)

and (42). They are given by

𝐸𝑤
,𝑏2
=
𝑅
1,𝑏2

6𝐼
1

⟨𝑥⟩
3

−
1

2
(
𝑅
1,𝑏2

𝐼
1

−
𝑅
1,𝑏2

𝐼
2

) 𝑏
1
⟨𝑥 − 𝑏

1
⟩
2

−
1

6
(
𝑅
1,𝑏2

𝐼
1

−
𝑅
1,𝑏2

𝐼
2

) ⟨𝑥 − 𝑏
1
⟩
3

−
1

2
(𝑅
1,𝑏2
𝑏
2
+ 𝑅
1
− 𝐹
1
) (

1

𝐼
2

−
1

𝐼
1

) ⟨𝑥 − 𝑏
2
⟩
2

+ [𝑅
1
𝑏
2
− 𝐹
1
(𝑏
2
− 𝑎
1
)] (

1

𝐼
2

−
1

𝐼
1

) ⟨𝑥 − 𝑏
2
⟩
1

−
1

6
(
𝑅
1,𝑏2

𝐼
2

−
𝑅
1,𝑏2

𝐼
1

) ⟨𝑥 − 𝑏
2
⟩
3

+
1

2
[(
𝑅
1

𝐼
2

−
𝑅
1

𝐼
1

) − (
𝐹
1

𝐼
2

−
𝐹
1

𝐼
1

) +
𝐹
2

𝐼
1

]

× ⟨𝑥 − 𝑏
2
⟩
2

+ 𝐶
1,𝑏2
𝑥,

(44)

where

𝐶
1,𝑏2

= −
1

𝐿
{
𝑅
1,𝑏2

6𝐼
1

𝐿
3

−
1

2
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𝑅
1,𝑏2

𝐼
1
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𝑅
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𝐼
2

) 𝑏
1
(𝐿 − 𝑏

1
)
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−
1
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𝑅
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𝐼
1
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𝑅
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𝐼
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) (𝐿 − 𝑏
1
)
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−
1

2
(𝑅
1,𝑏2
𝑏
2
+ 𝑅
1
− 𝐹
1
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1

𝐼
2

−
1

𝐼
1

) (𝐿 − 𝑏
2
)
2

+ [𝑅
1
𝑏
2
− 𝐹
1
(𝑏
2
− 𝑎
1
)] (

1

𝐼
2

−
1

𝐼
1

) (𝐿 − 𝑏
2
)
1

−
1

6
(
𝑅
1,𝑏2

𝐼
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𝑅
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𝐼
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) (𝐿 − 𝑏
2
)
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+
1

2
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𝑅
1

𝐼
2

−
𝑅
1

𝐼
1

) − (
𝐹
1

𝐼
2

−
𝐹
1

𝐼
1

) +
𝐹
2

𝐼
1

]

× (𝐿 − 𝑏
2
)
2

} ,

𝑅
1,𝑏2

=
𝑑𝑅
1

𝑑𝑏
2

= −
𝐹
2

𝐿
.

(45)

As a demonstrative example, the analytical sensitivity
derivatives of the deflections and the slopes at points 𝑃 and𝑄
are calculated based upon (44). The locations of these points
are marked in Figure 8(a) at 𝑥

𝑝
= 20 and 𝑥

𝑞
= 30 inches. Two

different sets of results, 𝑤
,𝑏2

and 𝑤
,𝑏
, are reported in Table 3,

which are comparedwith those calculated by the central finite
differencing. The location of the rigidity discontinuity 𝑏

2
is

considered as the design variable and Δ𝑏
2
is set to be 0.25

inch. The analytical value of 𝑤
,𝑏2

is calculated by (44), while
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Table 3: Static sensitivity analysis with respect to location of rigidity discontinuity.

Sensitivity analysis Results
Positive

perturbation
(𝑏
2
= 25.25)

Negative
perturbation
(𝑏
2
= 24.75)

Central
difference

Singularity
function

Without remeshing
at 𝑥
𝑝
= 20
 𝑤

,𝑏2
−5.3571𝐸 − 2 −5.4899𝐸 − 2 2.6561𝐸 − 3 2.6563𝐸 − 3

𝑤


,𝑏2
−5.1222𝐸 − 5 −7.0228𝐸 − 5 3.8012𝐸 − 5 3.8021𝐸 − 5

at 𝑥
𝑞
= 30
 𝑤

,𝑏2
−4.0688𝐸 − 2 −4.1488𝐸 − 2 1.5989𝐸 − 3 1.5990𝐸 − 3

𝑤


,𝑏2
3.0050𝐸 − 3 3.1016𝐸 − 3 −1.9322𝐸 − 4 −1.9323𝐸 − 4

With remeshing
at 𝑥
𝑝
= 20
 𝑤

,𝑏2
−5.3553𝐸 − 2 −5.4865𝐸 − 2 2.6231𝐸 − 3 2.6259𝐸 − 3

𝑤


,𝑏2
−2.4383𝐸 − 5 −9.7459𝐸 − 5 1.4615𝐸 − 4 1.4625𝐸 − 4

at 𝑥
𝑞
= 30
 𝑤

,𝑏2
−4.0164𝐸 − 2 −4.1980𝐸 − 2 3.6325𝐸 − 3 3.6359𝐸 − 3

𝑤


,𝑏2
3.0573𝐸 − 3 3.0483𝐸 − 3 1.7916𝐸 − 5 1.7988𝐸 − 5

P(xp) Q(xq)

b2

(a)

P(xp) Q(xq)

b2 + Δb2

(b)

b2 + Δb2

P(xp + Δxp) Q(xq + Δxq)

(c)

Figure 8: Locations of points 𝑃 and𝑄 in the beams before and after
perturbation in 𝑏

2
.

its numerical value is by the following central differencing
equation:

𝑤
,𝑏2
(𝑥, 𝑏
2
) =

𝜕𝑤 (𝑥, 𝑏
2
)

𝜕𝑏
2

≈
𝑤 (𝑥, 𝑏

2
+ Δ𝑏
2
) − 𝑤 (𝑥, 𝑏

2
− Δ𝑏
2
)

2Δ𝑏
2

.

(46)

Note that (46) is valid only when the perturbation Δ𝑏
2

is imposed without involving any remeshing process. As
shown in Figure 8(b), the positions of points 𝑃 and 𝑄

remain unchanged before and after Δ𝑏
2
being imposed. The

upper part of the table shows that the analytical and the
finite differencing results are in an excellent agreement. The
derivative of the deflection, 𝑤

,𝑏2
(𝑥, 𝑏
2
), for the entire beam

is plotted in Figure 9, which is, once again, matched very
well with that obtained by central differencing. Note that the
discontinuity in slope occurs at 𝑥 = 25 inches in Figure 9,
where 𝑏

2
is located.

Next, if a remeshing process is introduced in the per-
turbed beam to copewith the change in 𝑏

2
, the total derivative

of 𝑤
,𝑏
(𝑥) given by (43) has to be employed for sensitivity

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3
×10−3

Figure 9: Static sensitivity of simply supported beamdeflectionwith
respect to 𝑏

2
(without remeshing).

analysis. In this case, the corresponding finite differencing
equation becomes

𝑤
,𝑏2
(𝑥, 𝑏
2
)

=
𝑑𝑤 (𝑥 (𝑏

2
) , 𝑏
2
)

𝑑𝑏
2

≈
𝑤 (𝑥 (𝑏

2
+ Δ𝑏
2
) , 𝑏
2
+ Δ𝑏
2
) − 𝑤 (𝑥 (𝑏

2
− Δ𝑏
2
) , 𝑏
2
− Δ𝑏
2
)

2Δ𝑏
2

.

(47)

As an example, let positions of𝑃 and𝑄 be changed to𝑥
𝑝
+Δ𝑥
𝑝

and 𝑥
𝑞
+ Δ𝑥
𝑞
, respectively, in the perturbed beam, as shown

in Figure 8(c).The changes Δ𝑥
𝑝
and Δ𝑥

𝑞
can be conveniently

determined based upon the user specified remeshing process.
In this example, they are specified as

Δ𝑥
𝑝
=
𝑥
𝑝
− 𝑏
1

𝑏
2
− 𝑏
1

Δ𝑏
2
, (48)

Δ𝑥
𝑞
=
𝑙 − 𝑥
𝑞

𝑙 − 𝑏
2

Δ𝑏
2
. (49)
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Table 4: Eigenvalue sensitivity analysis with respect to location of rigidity discontinuity, 𝑏
2
.

Eigenvalues Positive perturbation (𝑏
2
= 25.25 in.) Negative perturbation (𝑏

2
= 24.75 in.) Central difference Singularity function

𝜆
1

7.9174𝐸3 7.6664𝐸3 5.0189𝐸2 5.0174𝐸2

𝜆
2

9.5865𝐸4 9.9055𝐸4 −6.3783𝐸3 −6.3754𝐸3

0 5 10 15 20 25 30 35 40
0
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4
×10−3

Figure 10: Total static sensitivity of simply supported beam deflec-
tion with respect to 𝑏

2
(with remeshing).

Such a remeshing process produces the following mesh
derivative which is required to evaluate 𝑤

,𝑏2
(𝑥) by (43) as

𝑑𝑥

𝑑𝑏
2

=

{{{{{

{{{{{

{

0 0 ≤ 𝑥 ≤ 𝑏
1

𝑥 − 𝑏
1

𝑏
2
− 𝑏
1

𝑏
1
≤ 𝑥 ≤ 𝑏

2

𝑙 − 𝑥

𝑙 − 𝑏
2

𝑏
2
≤ 𝑥 ≤ 𝑙.

(50)

The total static sensitivity of the beam deflections and the
slopes at points 𝑃 and 𝑄 can then be calculated by (43).
The lower part of Table 3 shows that the total derivatives
calculated analytically matched very well with those by finite
differencing. The total derivative of the deflection for the
entire beam, 𝑤

,𝑏2
(𝑥), is plotted in Figure 10, which again is

the same as that obtained by finite differencing.

5.2. Eigenvalue Sensitivity Analysis. The eigenvalue sensitiv-
ity analysis of the simply supported beam example is inves-
tigated here. The location of the rigidity discontinuity, 𝑏

2
, is

considered as the design variable. The derivation is based
upon the nonsymmetric eigenvalue equation, (35). Differen-
tiating the 𝑘th pair of eigenvalue and eigenvector that satisfy
(35) with respect to the design variable, 𝑏

2
, leads to

1

𝜆
𝑘

𝑑x
𝑘

𝑑𝑏
2

−
x
𝑘

𝜆2
𝑘

𝑑𝜆
𝑘

𝑑𝑏
2

=
𝑑 (𝑈𝑀)

𝑑𝑏
2

x
𝑘
+ 𝑈𝑀

𝑑x
𝑘

𝑑𝑏
2

. (51)

Premultiplying the left eigenvector of (35), y𝑇
𝑘
, to (51) yields

the desired eigenvalue sensitivity as

𝑑𝜆
𝑘

𝑑𝑏
2

= −
𝜆
2

𝑘

y𝑇
𝑘
x
𝑘

y𝑇
𝑘

𝑑 (𝑈𝑀)

𝑑𝑏
2

x
𝑘
. (52)

Note that the left eigenvector, y𝑇
𝑘
, is the solution of the

following eigenvalue problem:

1

𝜆
𝑘

y
𝑘
=(𝑈𝑀)

𝑇y
𝑘
. (53)

Calculation of the derivative formula, 𝑑(𝑈𝑀)/𝑑𝑏
2
=

(𝑑𝑈/𝑑𝑏
2
)𝑀 + 𝑈(𝑑𝑀/𝑑𝑏

2
), in (52) requires special attention,

particularly if both the locations and the values of the lumped
masses are functions of 𝑏

2
. Since each column of 𝑈 is

evaluated at the lumped mass points, their derivatives with
respect to 𝑏

2
in this case have to be computed by (43) as a

total derivative.
The numerical results of the eigenvalue sensitivities of

the first and the second eigenvalues of the example simply
supported beam are summarized in Table 4. The results of
analytical derivatives are compared with those obtained by
finite differencing in this table. Table 4 demonstrates that the
results are in an excellent agreement.

Numerical results reported in Table 4 are done with the
example beam divided into 16 segments. Six segments are
equally spaced in each of the left and the right thin sections
of the beam, while four equally spaced segments are made in
the middle thick section. With 𝑏

2
being set at 25 inches, the

length of every segment in the example beam is 2.5 inches.
The central differencing method in Table 4 imposes ±0.25
as the perturbation of 𝑏

2
. Once 𝑏

2
is changed, however, the

length of each segment is changed, which in turn changes the
values and the locations of the lumped masses. Specifically,
the remeshing equation of (48) can be employed here tomove
the location, 𝑥

𝑖
, of the 𝑖th lumped mass in the middle thick

section. As such, the location 𝑥
𝑖
is defined by

𝑥
𝑖
= 𝑏
1
+
(2𝑖 − 1) (𝑏

2
− 𝑏
1
)

2𝑛
1

. (54)

Accordingly, the value of the 𝑖th lumpedmass will be changed
as

𝑚
𝑖
= 𝜌𝐴

(𝑏
2
− 𝑏
1
)

𝑛
1

. (55)

The notation 𝑛
1
in both equations is the number of segments

in the middle thick section and 1 ≤ 𝑖 ≤ 𝑛
1
. In this example,

𝑛
1
= 4. The above equations give

𝑑𝑥
𝑖

𝑑𝑏
2

=
(2𝑖 − 1)

2𝑛
1

(56)

which will be used in (43) to compute 𝑤
,𝑏2

at 𝑥
𝑖
. Similarly,

the remeshing process of (49) can be employed here to
relocate the lumped mass points in the right thin section.
The assembly of 𝑤

,𝑏2
at all lumped mass points then forms
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Figure 11: Total derivatives of the beam deflections for a unit load
applied at 𝑥 = 24.75 and 𝑥 = 25.25 inches.

the corresponding column in 𝑑U/𝑑𝑏
2
. Furthermore, themass

derivative is obtained as follows:

𝑑𝑚
𝑖

𝑑𝑏
2

=
𝜌𝐴

2𝑛
1

(57)

which can be used to compute 𝑑𝑀/𝑑𝑏
2
.

To further verify (43) for sensitivity analysis, the example
beam is discretized into 80 segments in which 𝑛

1
is set to be

20. The total derivatives 𝑤
,𝑏2

are plotted in Figure 11 for the
beam deflections subjected to a unit load applied at 𝑥 = 24.75
and 𝑥 = 25.25 inches, respectively. They are matched very
well with those obtained by finite differencing (47).

Note that 𝑥(𝑏
2
) in this example is specified by the process

of remeshing the stepped beam according to (48) and (49).
Figure 11 reveals that the sensitivity of the beam deflection
subjected to a point load applied on the left of the rigidity
discontinuity is significantly different from that applied at an
adjacent point on the right.

6. Concluding Remarks

The stepped beams studied here are subjected to disconti-
nuities in flexural rigidity and applied loads. The derivation
of the deflection function of a statically determinate stepped
beam is achieved in a two-step process. In the first step, the
applied load is formulated and integrated twice to obtain the
distribution of bending moment.Themoment distribution is
then multiplied by the reciprocal of the rigidity distribution
to form the right-hand side of a second order differential
equation of beam deflection. Many right-hand side terms are
made of products of two singularity functions, each of which
can be spanned into termswith only one singularity function.
As a result, the second order differential equation can be
easily integrated twice to obtain the desirable deflection
function. The same approach can be extended to find the
deflection function of a statically indeterminate stepped
beam.This paper demonstrates and verifies such an approach
by using examples of an intermediate roller-supported and an
intermediate spring-supported beam.

The above solution process is further extended to vibra-
tion analysis of stepped beams. This is accomplished based
upon the lumped mass approach. The eigenfunction of a
stepped beam is, in fact, a linear combination of deflection
functions of the beam of concern. Each of such deflection
functions results from the beam subjected to a unit force
applied at a lumped mass point.

It should be noted that the analytical expressions of the
beamdeflection presented in this paper are all in terms of sin-
gularity functions with order higher than zero. Consequently,
they can be conveniently differentiated with respect to any
beam-related design variable. In this study, design derivatives
of a static deflection and the eigenvalue of a stepped beam
with respect to the location of the rigidity discontinuity are
derived. Such design derivatives have to be considered in the
context of shape design sensitivity.Their numerical values are
verified with those of finite differencing.
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