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a b s t r a c t 

Decision makers often face complex problems, which can seldom be addressed well without the use of 

structured analytical models. Mathematical models have been developed to streamline and facilitate deci- 

sion making activities, and among these, the Analytic Hierarchy Process (AHP) constitutes one of the most 

utilized multi-criteria decision analysis methods. While AHP has been thoroughly researched and applied, 

the method still shows limitations in terms of addressing user profile disparities. A novel sensitivity anal- 

ysis method based on local partial derivatives is presented here to address these limitations. This new 

methodology informs AHP users of which pairwise comparisons most impact the derived weights and 

the ranking of alternatives. The method can also be applied to decision processes that require the aggre- 

gation of results obtained by several users, as it highlights which individuals most critically impact the 

aggregated group results while also enabling to focus on inputs that drive the final ordering of alterna- 

tives. An aerospace design and engineering example that requires group decision making is presented to 

demonstrate and validate the proposed methodology. 

Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Many methods have been developed and made available to de- 

cision makers to streamline and facilitate complex decision mak- 

ing activities. When decision makers aim to understand the rel- 

ative value of a set of alternatives, based on the ratio of gained 

benefits over the implementation cost, a Cost-Benefit Analysis is 

typically implemented. This method is well suited for decision 

problems that entail the optimization of a utility function but 

has clear limitations when there are qualitative parameters or 

when multiple objectives are introduced, as described by Cascetta, 

Carteni, Pagliara, and Montanino (2015) . Multi-criteria decision 

analysis (MCDA) methods have been developed to support the 

decision making process in these more complex cases. In the 

1960 ′ s, Bernard Roy developed the ELimination Et Choix Traduisant 

la REalite (ELECTRE) method (Elimination and Choice Expressing 

Reality), based on rankings and vetoes ( Figueira, Greco, Roy, & 

Słowi ́nski, 2013 ). Thomas Saaty developed the Analytical Hierar- 

chy Process (AHP) in the following decade, deriving priority vectors 

∗ Corresponding author. 

E-mail addresses: marie.l.ivanco@nasa.gov , marieivanco@yahoo.com (M. Ivanco), 

ghou@odu.edu (G. Hou), jgmichae@odu.edu (J. Michaeli). 

from matrices of pairwise comparisons. The method was first men- 

tioned in 1972 and a full description of the model was provided in 

1980 ( Saaty, 1980 ). In parallel, fuzzy sets were first introduced by 

Bellman and Zadeh in the 1970 ′ s in an effort to translate quali- 

tative linguistic statements in mathematical expressions ( Zoraghi, 

Amiri, Talebi, & Zowghi, 2013 ) and the Technique for Order of Pref- 

erence by Similarity to Ideal Solution (TOPSIS) was developed by 

Hwang and Yoon in 1981 ( Behzadian, Otaghsara, Yazdani, & Ig- 

natius, 2012 ). In more recent developments, Saaty (2005) proposed 

the Analytic Network Process (ANP) . Contrarily to AHP which as- 

sumes interdependence of the criteria, ANP accounts for the de- 

pendence that is inherent to the decision making factors. MCDA 

methods have also been coupled with consensus building tech- 

niques such as the Delphi method ( Le Pira, Inturri, & Ignaccolo, 

2016 ). Among these models, the Analytic Hierarchy Process con- 

stitutes one of the most studied and utilized MCDA methods. AHP 

has been used in a variety of fields, to include, among many oth- 

ers: public transportation planning ( Le Pira, Inturri, Ignaccolo, & 

Pluchino, 2015, 2016 , and Cascetta et al., 2015 ) marketing and 

portfolio management, shipping assets selection, military applica- 

tions, the evaluation of the environmental impact of construction 

projects, marine biology and medical applications ( Forman & Gass, 

2001 ). In recent years, there has been a noticeable increase in the 

http://dx.doi.org/10.1016/j.eswa.2017.08.003 
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Nomenclature 

a kl Pairwise comparison in the k th row and the l th col- 

umn in a pairwise comparison table 

A 

P j 
k 

Normalized row geometric mean of the k th criterion 

in the pairwise comparison table input by user P j 

A 

P j 
k 

Row geometric mean of the k th criterion in the 

comparison table input by user P j 

C P j Pairwise comparison matrix input by user P j 
εij Error associated with element a ij 

G 

( i, j 
i −1 

) 

k 
Normalized group row geometric mean for the k th 

criterion at the i th level under the criteria j i − 1 

G 

( i, j i −1 ) 

k 
Group row geometric mean for the k th criterion at 

the ith level under the criteria j i − 1 

λmax Largest eigenvalue of a pairwise comparison table 

μ Consistency Index of a pairwise comparison table 

n ( i, j i −1 ) Number of criteria in level i under the criteria j i − 1 

in the upper level 

P i User i 

S q Relative weight of design alternative q 

W 

I,J Relative weight of the criteria J in level I 

W q Relative weight of design alternative q 

use of AHP for applications in mechanical and aerospace engineer- 

ing. Lafleur, Sharma, and Apa (2007) developed a framework to 

down-select a vehicle for robotic space exploration. AHP was used 

in conjunction with a Pareto plot to rapidly outline solutions that 

concurrently offer high value and low cost. Cho et al. (2008) used 

AHP in conjunction with TOPSIS and Quality Function Deployment 

(QFD) in a hybrid method to evaluate the preliminary shape of 

a very light jet. Conrow (2011) used AHP to assess the Technol- 

ogy Readiness Level (TRL) scale used by the Department of De- 

fense (DoD) and the National Aeronautics and Space Administra- 

tion (NASA). 

A comprehensive literature survey revealed that multi-user ag- 

gregation methods for AHP are still widely debated and researched. 

Solutions have been proposed to combine individual results or de- 

velop consensus frameworks. The decision making process indeed 

rarely resides in the hands of one decision maker, who is as de- 

fined by Cascetta et al. (2015) , as the person “formally in charge 

of the choice” (p.28). Similarly, complex decision frameworks re- 

ceive inputs from groups of individuals, who all contribute to the 

process. The process is seldom based on the input of a single Sub- 

ject Matter Expert (SME) or a single stakeholder, individuals with 

an interest in the problem but with no decision power ( Cascetta 

et al., 2015 ). Individuals involved in the decision making process 

have varying backgrounds, experience and personal goals. In re- 

cent years, a certain emphasis has been put on individualistic dif- 

ferences among groups of decision makers, Subject Matter Experts 

and stakeholders. It has been highlighted that individuals who col- 

laborate on a common project and provide pairwise comparisons 

of criteria and alternatives do not share absolutely identical pro- 

files. These individuals have different perspectives of the different 

parts of the system. Some have more experience relevant to cer- 

tain aspects of the problem of concern than others; while other 

have more experience with the AHP methodology itself. The tra- 

ditional AHP methodology assigns equal importance to each indi- 

vidual’s priority vectors and ranking, and ignores the disparities in 

profiles. Little information is available to interpret the sensitivity 

of a given pairwise comparison on the obtained results. The mo- 

tivation of this study is to investigate this selected limitation of 

AHP and to present a new methodology. The impact of profile dis- 

parities in the decision making process is addressed by deriving 

an analytical sensitivity analysis based on local partial derivatives. 

The results of this effort provide AHP users with additional infor- 

mation about which individuals most critically impact the aggre- 

gated group results, therefore enabling decision makers to focus on 

inputs that drive the final ordering of alternatives in the ex-post 

studies ( Cascetta et al., 2015; Le Pira, et al., 2015 ). This method 

is cross-cutting as it is applicable to both public and private sec- 

tors decision problems and is relevant to evaluate profile dispari- 

ties among any types of AHP users, whether they are decision mak- 

ers, SMEs or stakeholders. 

This paper first introduces a mathematical representation of the 

traditional AHP method in Section 2 . Variations of the traditional 

AHP method, and their strategies and limitations in addressing 

user profile disparities are discussed in Section 3 . The derivation 

of analytical sensitivities of the weights with respect to user in- 

put in the pairwise comparison matrices is presented in Section 

4 . An example of the selection of a wheel design for the Space 

Exploration Vehicle is then presented in Section 5 to validate the 

derived sensitivity equations and to demonstrate how they provide 

information which can be used to address user profile disparities. 

The conclusion of this research effort is given in Section 6 . 

2. The traditional analytic hierarchy process 

Prior to discussing the developed methodology, an overview of 

the traditional mathematical steps of the Analytic Hierarchy Pro- 

cess is presented hereafter. 

2.1. Problem modeling 

Saaty (1986) describes three principles used sequentially in de- 

cision making: “They are the principles of decomposition , compar- 

ative judgment and synthesis of priorities” (p. 841). The process 

of decomposing the problem at hand or structuring its complex- 

ity constitutes the first step of the Analytical Hierarchy Process 

( Forman and Gass, 2001 ). A hierarchical tree of the problem re- 

quirements is derived from the problem statement in order to vi- 

sualize these various requirements and their logical structure. This 

initial problem formulation has a great impact on the derivation 

of the priority vectors and final ranking of the alternatives. Care- 

ful modeling is critical to the success of the methodology. Saaty 

(1994) comments on this “significant effect on the outcome” (p. 

22) of problem modeling, defining it as the most “creative part”

of the AHP methodology. Franek and Kresta (2014) also comment 

on the correlation between the chosen hierarchical structure and 

the achieved outcome. Typically, problem modeling will generate a 

multi-layer tree, with top-level requirements subsequently broken 

down into lower level sub-requirements. Requirements are com- 

monly referred to as criteria in the literature. The modeling of the 

problem should yield clusters of criteria, with a commonality of 

focus within clusters ( Forman & Gass, 2001 ). The number of crite- 

ria that are under consideration should be sufficient, but limited. A 

total number of criteria smaller than 9 is typically recommended, 

as studies have shown that “a person cannot simultaneously per- 

ceive and estimate more than 7 + / − 2 objects” ( Tsyganok, Kadenko, 

& Andriichuk, 2012 ). In this study, the number of sub-criteria in 

level i, under the criteria j i − 1 of the upper level i − 1 is denoted as 

n ( i, j i −1 ) . This yields a total number of sub-criteria n ( i ,: ) in a given 

level i as 

n 

(i, :) = 

j i −1 = n (i −1 , :) ∑ 

j i −1 =1 

n 

( i, j i −1 ) (1) 

2.2. Pairwise comparison 

Once the problem modelling is completed, users proceed to 

comparing each criterion against every other criterion, in pairs. As 
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these pairwise comparisons are performed, they are sorted in re- 

ciprocal matrix format. For a given criterion, a matrix C P i of size 

m × m stores all pairwise comparisons provided by evaluator P i ( Eq. 

(2 )), where m is set to be n ( i, j i −1 ) . The pairwise comparison in the 

k th row and the l th column is denoted as a kl . It should be noted 

that not all comparisons are independent. One has a kl = 1 for k = l 

and a kl = 1/ a lk for k < l . This is due to the reciprocity axiom, which 

implies that only pairwise comparisons in the upper triangle of the 

matrix above the diagonal are independent ( Forman & Gass, 2001 ). 

Furthermore, the rule of transitivity ( Franek & Kresta, 2014 ) is used 

to check that an acceptable level of consistency is achieved as 

users perform pairwise comparison. The following equality should 

be true for any indices k , � and p: a k � a � p = a kp . 

C P i = 

⎡ 

⎢ ⎣ 

1 a 12 ... a 1 m 

1 / a 21 1 ... a 2 m 

... ... 1 ... 

1 / a 1 m 

1 / a 2 m 

... 1 

⎤ 

⎥ ⎦ 

(2) 

The pairwise comparison values stored in the matrix are then 

aggregated to form a vector of relative weights for each criterion 

considered in the matrix. This aggregation can be performed with 

either the right eigenvector method or the row geometric mean 

method ( Dijkstra, 2011; Davoodi, 2009 ). Both methods yield satis- 

factory results and are appropriate to use. In this study, the row 

geometric mean method is used for both its computational sim- 

plicity and its compatibility with MS Excel. One of the objectives 

of this study was to develop a methodology that could be easily 

deployable with commonly used software. MS Excel is widely used 

for engineering applications, and constitutes an excellent platform 

to implement the application of the analysis and to produce visu- 

alization aids. The ease of implementation of the row geometric 

mean method in MS Excel when compared to the right eigenvec- 

tor method made the method more suitable for the purposes of 

this study and was therefore selected. 

The row geometric mean A 

P j 
r provides the weight of the r th cri- 

terion in the pairwise comparison matrix C P j prepared by the j th 

user as shown in Eq. (3 ). 

A 

P j 
r = 

m 

√ √ √ √ 

( 

m ∏ 

s =1 

a rs 

) 

= 

m 
√ 

a r1 a r2 ... a rm 

(3) 

Considering element dependency in the pairwise comparison 

matrix, the expression for the geometric mean can also be writ- 

ten as Eq. (4 ). 

A 

P j 
r = 

m 

√ 

1 

a 1 r 
... 

1 

a k −1 ,r 

a r,k +1 ... a r,m 

(4) 

The computed weights are then normalized for the j th user and 

the r th criterion. The normalized row geometric mean A 

P j 
r of the 

r th criterion, evaluated by the j th user is shown in Eq. (5 ). 

A 

P j 
r = 

A 

P j 
r 

m ∑ 

q =1 

A 

P j 
q 

(5) 

The value of A 

P j 
r represents the weight of the r th criterion as- 

signed by user P j , among the m number of criteria of the i th level, 

which is a sub-criterion under criterion j i − 1 one level above. Note 

that for conciseness, m is set to be the same as n ( i, j i − 1 ) in the 

derivation. Saaty (1980, p. 180) proposed an index, the Consistency 

Index μ, to measure the level of inconsistency of a given pairwise 

comparison matrix C P j ( Eq. (6 )), 

μ = 

λmax − m 

m − 1 

= 

∑ 

i< j 

[
1 

2 

(
ε i j + 

1 

ε i j 

)
− 1 

]
÷
(

1 

2 

m ( m − 1 ) 

)
(6) 

where λmax is the largest eigenvalue of the pairwise comparison 

matrix C P j and εij is the error for element a ij in the matrix. The 

error is defined as ε i j = a i j × A 

P j 
j 
/A 

P j 
i 

, where A 

P j 
i 

and A 

P j 
j 

are the 

weights associated with rows i and j . A perfectly consistent pair- 

wise comparison matrix has an error of εij = 1 for any element in 

the matrix. Saaty defines the Random Index as the averaged con- 

sistency indices for randomly generated pairwise comparison ta- 

bles. Table 1 lists the values of Random Indices for different sizes 

of pairwise comparison tables. Saaty defines the threshold for suit- 

able consistency in a pairwise comparison matrix as 10% of the 

ratio between the Consistency Index and the Random Index. The 

weights used to compute the Consistency Index as defined in Eq. 

(6 ) can be calculated either by the right eigenvector method or by 

the row geometric mean method. Two sets of Random Indices are 

reported in Table 1 , based upon the method used to calculate the 

weights. 

2.3. Group aggregation 

Two methods are available to perform the row geometric 

mean method at the group level: the Aggregation of Individ- 

ual Judgements (AIJ) and the Aggregation of Individual Priorities 

(AIP) ( Escobar, Aguarón, & Moreno-Jiménez, 2004 ). AIJ obtains a 

group judgment matrix from individual matrices and then derives 

the group priorities. AIP first computes individual priority vectors 

from the individual matrices and then derives the group priorities. 

Escobar et al. (2004) show that both methods yield the same al- 

ternatives priorities. Also, for both AIJ and AIP, the group incon- 

sistency equals or outperforms the worst individual inconsistency. 

AIP is less computationally intensive and was therefore selected as 

the aggregation method in this study. 

For a given number of users P , the aggregated group geometric 

mean G 

( i, j i −1 ) 
r for the r th criterion at the i th level under the crite- 

rion j i − 1 of the upper level i − 1 is given by Eq. (7 ). 

G 

i, j i −1 

r = 

P 

√ √ √ √ 

( 

P ∏ 

� =1 

A 

� 
r 

) 

= 

P 
√ 

A 

1 
r A 

2 
r ...A 

P 
r (7) 

Similarly to the weight calculations for a pairwise comparison 

table, the priority vector given in Eq. (7 ) is then normalized. The 

normalized aggregated group geometric mean G 

( i, j 
i −1 

) 

r for the r th 

criterion at the i th level under the criterion j i − 1 of the upper level 

i − 1 is given by Eq. (8) , 

G 

( i, j i −1 ) 
r = 

G 

( i, j i −1 ) 

r ∑ m 

q =1 G 

( i, j i −1 ) 

q 

(8) 

2.4. Final ranking of design alternatives 

Similarly to the method used to determine the relative weight 

of each criterion, the design alternatives available to the users are 

evaluated and ranked against each base criterion in the lowest 

level of the decision making hierarchy. In this study, a base cri- 

terion is defined as a criterion that is not connected to any sub- 

criterion in the hierarchical table. The dimension of the pairwise 

comparison table used to weight available design alternatives in 

this case is equal to the number of design alternatives. The rank- 

ing of the design alternative q against the selected base criterion r 

of level i under criterion j i − 1 one level above is denoted by S 
( i, j i −1 ) 
q , 

which can be obtained by using Eqs. (3 )–( 8 ). The overall weight of 

each base criterion, denoted by W 

I,J , is obtained by aggregating all 

weights of the criteria in levels that are above the base criterion of 

concern, as stated by Eq. (9 ), 

W 

I,J = G 

( i, j i −1 ) 
r G 

( i −1 , j i −2 ) 
j i −1 

...G 

( 2 , j 1 ) 
j 2 

G 

( 1 , 0 ) 
j 1 

(9) 
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Table 1 

Random indices for consistency check ( Dijkstra, 2011 , p.108). 

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

Geometric method 0.52 0.87 1.08 1.22 1.32 1.39 1.44 1.48 

Eigenvector method 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 

The pair of indices I,J indicates that the overall weight is asso- 

ciated with a base criterion, which is the r th criterion in level i 

under criteria j i − 1 in the hierarchical table. 

The final ranking of the design alternative q , aggregated from 

all users and denoted by S 
I,J 
q can then be expressed as 

S I,J q = W 

I,J S ( 
i, j i −1 ) 

q (10) 

It should be noted that S 
( i, j i −1 ) 
q is the local ranking of design al- 

ternative q , among all design alternatives, measured solely against 

a i th level criterion under the upper level criterion j i − 1 , while S 
I,J 
q is 

the ranking that considers not only the merit of design alternative 

q among all alternatives but also the relative importance of the cri- 

terion I,J among all base criteria in decision making. The final rank- 

ing of design alternative q is then obtained by summing all S 
I,J 
q for 

all base criteria in the hierarchical table. 

W q = 

∑ 

I,J 

S I,J q (11) 

3. Variations of traditional AHP 

Recently, great emphasis has been put on qualifying and inte- 

grating disparities in user profiles. Traditional AHP aggregates user 

priority vectors with the assumption that every individual con- 

tributes equally to the process. This assumption is rarely valid. User 

profiles vary greatly and the traditional AHP methodology lacks the 

ability to take this diversity into account. A discussion of some at- 

tempts to integrate these disparities in the AHP model and their 

limitations follows. First, the categorization of disparities among 

users will be discussed. Strategies that use AHP to differentiate 

users will then be presented, followed by qualitative strategies, and 

then quantitative strategies. Lastly, the group consensus approach 

will be discussed. 

3.1. Categorization of disparities among users 

If the presence of disparities among users is commonly ac- 

cepted, the formulation of the exact nature of the disparities is 

rare. In one study, common variations among users are described 

as “underestimation, optimism and limited capacity for concur- 

rent analysis of multi-factor problems” ( Bulut, Duru, Keçeci, & 

Yoshida, 2012 , p. 1911). A different interpretation is given by Aly 

and Vrana (2008) , who use the term “importance” to qualify users. 

The study breaks down importance in three categories: “Knowl- 

edge: the amount of important knowledge and information each 

expert bears. Experience: the age and historical deepness of the 

expertise contained in each expert. Relevance: the degree of how 

much each expert has knowledge pertaining and relating to the de- 

cision problem” (p. 533). Bennour and Crestani (2007) define pro- 

fessional competence as the “combination of knowledge (theoret- 

ical, contextual and procedural), know-how (practical and imple- 

mented in empirical manners) and behaviors (attitudes and rela- 

tional or cognitive behaviors)” (p. 5745). 

An extensive literature search revealed that there is no com- 

monly accepted definition of disparities in user profiles and abil- 

ities to use the model. The different interpretations found in the 

literature can be combined and organized as follows: 

1. Competence: years of experience, relevance of educational and 

professional training, familiarity with part or the totality of the 

subject of the study. 

2. Ability: familiarity with the formulation of judgments for multi- 

factors problems, familiarity with decision-making strategies, 

ability to formulate consistent comparisons. 

3. Compliance: use of the decision-making model as intended, 

lack of personal interest, absence of use of power or influence, 

and absence of coalition between users. 

The need to integrate the disparities in user profiles into the 

final rankings is demonstrated by Tsyganok et al. (2012) , who de- 

velop two mathematical models to study the dependency of final 

rankings on group size. Following two different distribution laws, 

the authors randomly generate “expert opinions” or rankings. The 

number of users varies between 3 and 200 while the number of 

criteria varies between 3 and 9. The study finds that the minimum 

number of users in a group for which disparities can be ignored 

is 50, the threshold at which the discrepancy between the model 

adjusted for user competency and the unadjusted model is under 

5%. 

Groups involved in decision making typically do not comprise 

such a large number of individuals. This study therefore justifies 

the need to take into account user profiles into the final rankings 

obtained from an AHP study. 

3.2. Current AHP-based strategies and limitations 

The earlier strategies developed to integrate the discrepancies 

in user profiles involve the use of AHP. Authors use the AHP pro- 

cess to obtain weights for users. In a 1994 study by Ramanathan 

and Ganesh (1994) , each user rates the other users with the AHP 

model, formulating pairwise comparisons. The individual weights 

are then aggregated and produce a priority vector for the group. 

Users are also required to include a rating of themselves in the 

comparison matrix. Other studies ( Cook, Kress, & Seiford, 1996; Aly 

& Vrana, 2008 , p.532) introduce the notion of a “supra decision- 

maker.” One decision maker is assumed to have knowledge of all 

of the other users’ profiles and performs pairwise comparisons of 

the other users with the AHP tool. To do so, Cook et al. (1996) use 

the traditional AHP methodology with a 1–9 scale of crisp num- 

bers. Aly and Vrana (2008) introduce a Fuzzy-AHP tool to weight 

the knowledge of experts. Fuzzy numbers and their membership 

functions are used in an effort to take the qualitative aspect of the 

ranking into account. 

Shortfalls of these methods are described hereafter. In the case 

of all of the users supplying rankings for the entire group, there is 

a high risk for conflicting personal interest or coalitions. The ex- 

pertise of users is also a matter of perspective and rating exper- 

tise can be highly subjective. Also, there are cases where users do 

not physically interact. Criteria rankings might be obtained with no 

in-person meetings, rendering users unaware of the profile of the 

other users. In the case of the supra decision-maker, it may be dif- 

ficult for one individual to have a precise knowledge of all of the 

user profiles. The supra decision-maker can easily obtain quanti- 

tative elements from the users, for example the number of years 

worked in a given field or the highest level of education achieved. 

It may however be difficult for the supra decision-maker to deter- 

mine the familiarity of a user with the formulation of multi-factor 
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decisions, or whether or not the user performed rankings with an 

ulterior motive in mind. 

3.3. Current qualitative strategies and limitations 

Several studies attempt to introduce qualitative strategies. 

Fuhua, Hongke, and Guoqiang (2010) allocate a weight vector to 

the users based on the “expert’s experience value” (p. 3788). The 

“expert’s experience value” is determined from “experience and 

familiarity.” This approach implies that the value is either allo- 

cated by a supra decision-maker or that it is self-determined by 

the user. The shortfalls described in the previous section on us- 

ing AHP to determine the weights of users apply here also. Bulut 

et al. (2012) assign a coefficient to users, described as “Lambda 

coefficients [that] correspond to the expertise priority” (p. 1918). 

Bardossy, Duckstein, and Bogardi (1993) investigate combining 

fuzzy-AHP results from users. When others typically focus on de- 

termining which experts have the most knowledge and experience, 

Bardossy et al. approach the issue from a reliability standpoint. Fi- 

nally, Van den Honert (1998) uses “suitable weights for the group 

members” (p.100). The term “suitable” however is not defined. 

Srdjevic, Srdjevic, Blagojevic, and Suvocarev (2013) discuss two 

shortcomings that stem from qualitative strategies. The task of as- 

signing weights can be difficult when there are many users. Also, 

determining weights for users prior to the decision process “may 

lead to a result which the participants do not feel to be their own”

(p. 6671). The qualitative approach leaves room for subjectivity and 

bias on the part of the user who is determining the weights. This 

approach conflicts with the analytical method of AHP, which strives 

to introduce structure and objectivity in the decision-making pro- 

cess. 

3.4. Current quantitative strategies and limitations 

Three recent studies describe quantitative strategies to inte- 

grate user profiles in the final rankings. Jongsawat and Prem- 

chaiswadi (2010) base their methodology on the Euclidian distance 

between the priorities of a user and the group aggregated priori- 

ties. Weights are then allocated to users, which allow the authors 

to determine whether users contribute positively or negatively to 

the decision problem. Users with negative contributions are ex- 

cluded. The process is iterated until only a sub-set of users with 

positive contributions is left. Although this method was not specif- 

ically designed to be applied with AHP, it could easily be trans- 

posed to the AHP model. Duru, Bulut, and Yoshida (2012) base 

the prioritization of users on the consistency they achieved in the 

ranking process. The authors question the traditional approach of 

correlating years of experience with greater importance in terms of 

user priority: “While experience has specific importance, it is not a 

robust indicator of accurate decisions at all” (p. 4955). Rather than 

relying on the experience level of the users, the authors choose 

to use the consistency achieved while producing their rankings, 

stating, “individual consistency is one of the objective indicators 

of the quality of judgment” (p. 4954) and “level of consistency is 

one of the unique indicators of the decision quality and robust- 

ness” (p. 4964). Other studies derive user priorities based on their 

consistency. Dong, Zhang, Hong, and Xu (2010) correlate consis- 

tency with soft consensus. Their iterative algorithm adjusts indi- 

vidual rankings to reach an acceptable collective consistency in- 

dex. A 2011 study combines both Euclidian distance and consis- 

tency strategies to develop a unique method and obtain individual 

weights for the users ( Srdjevic, Blagojevic, & Srdjevic, 2011 ). The 

study aims at minimizing “the risk of negligent, incompetent, or 

irresponsible decision making” (p. 531). 

A shortfall of these methods is the assumption that users who 

should be granted greater priority will achieve greater consistency. 

This assumption may not be valid, and the literature review did 

not find any justification for that statement. Experience is not a 

necessary condition for consistency: a user who is familiar with 

decision-making methodologies can achieve an acceptable consis- 

tency ratio without an in-depth knowledge of the topic of in- 

terest. Also, AHP can be used iteratively until a desired consis- 

tency ratio is obtained. In that case, any user regardless of expe- 

rience can input pairwise comparisons until a satisfactory consis- 

tency level is achieved. A limitation of the study by Dong et al. 

(2010) stems from the adjustment of individual priorities without 

any input from the users. The consensus can then appear artifi- 

cial as it is not reached based on user feedback. Removing the in- 

put of users who obtain a negative rating in the method developed 

by Jongsawat and Premchaiswadi (2010) may also prevent an ob- 

jective representation of the group diversity. Priority vectors that 

deviate from the average priority vector may not necessarily sym- 

bolize a lack of knowledge or a desire to skew the results; rather 

a user may have a different understanding of the problem at hand 

which may bring additional value to the decision making process. 

Removing outlying opinions may then be detrimental to the out- 

come of the process. Quantitative methods have the benefit of not 

relying on the subjective opinion of a decision maker. However, 

quantitative methods are still under investigation and few valida- 

tion studies seem to have been conducted. 

3.5. The group consensus approach 

The strategies presented so far take user profile diversity into 

consideration by defining weights, priorities or importance for 

each user. Beyond the aggregation of individual priorities, judg- 

ments or preference structures, an alternative approach is to strive 

to reach group consensus ( Moreno-Jiménez, Aguarón, & Escobar, 

2008 ). Bryson (1996) proposes a measure of consensus based on 

the value of the sine between priority vectors. The method identi- 

fies consensus builders as well as users who impact the consensus 

building process negatively. Users can have two types of influence 

on the rest of the group. Informational influence arises when users 

treat information from others as “evidence about reality” (p. 30). 

Normative influence occurs when users have “the desire to con- 

form to the expectation of other group members” (p. 30). Dur- 

ing the consensus building process, users learn from each other 

and adjust their own priorities based on this informative feed- 

back. They can cooperate, compromise, and/or compete. The con- 

sensus approach removes the bias inherent to allocating weights to 

users. This method also emphasizes the importance of the discus- 

sion among experts. This discussion increases the liability of users 

for the opinions they provide. The discussion also provides them 

with the opportunity to increase their knowledge about some as- 

pects of the problem, and review and refine their judgment. 

A major shortcoming of the consensus approach provided by 

Bryson is the time investment that is required. The necessary iter- 

ations lengthen the decision making process and may not always 

be practical. Another limitation resides in the uncertain outcome 

of the consensus approach: reaching consensus is not guaranteed. 

Disparities among users have been identified and many meth- 

ods have attempted to capture these disparities to adjust the out- 

come of an AHP-based decision process accordingly. These meth- 

ods, however, show some limitations, and the comprehensive liter- 

ature review presented here has not revealed a methodology that 

provides a suitable solution to the problem. Recently, researchers 

have placed their focus on consensus building in policy making 

instead of capturing disparity ( Le Pira et al., 2015, 2016; Cascetta 

et al., 2015 ). To this effort, a consensus indicator was proposed 

by Le Pira et al. (2015 ), which measures the similarity or over- 

lap between two preference decision lists. This area of research 

is particularly important for public policy decision making when 
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numerous stakeholders are involved. The entire decision making 

process is iterative, made of three major tasks: policy making by 

decision-makers and planners, stakeholder engagement, and revi- 

sion and reevaluation. The direct communication between stake- 

holders, decision-makers and planners brings about the consensus 

of the final decision. AHP-based methods are proved to be effective 

for alternative evaluation and evaluation aggregation in this broad- 

based decision process. It is believed that the sensitivity analysis 

proposed here can enhance stakeholder engagement as it can iden- 

tify the critical input elements in any AHP-based process and redi- 

rect the focus of the discussion to these critical elements. 

4. Sensitivity analysis method to address user disparities in 

AHP 

A variety of methods have been reviewed in the previous sec- 

tion, which addressed the issue of profile disparities within a 

group of users tasked involved in a common decision making prob- 

lem. These methods, however, show various limitations. Building 

on this observation, this study proposes to address user disparities 

without quantifying them. This novel method is based on sensi- 

tivity analysis, which indicates critical pairwise comparisons. With 

the sensitivity analysis based method, the decision maker gains in- 

sight in which pairwise comparisons are most critical to the deci- 

sion process. The decision maker now has a tool to identify users 

who are most influential to the group outcome. 

While this new approach provides information to decision mak- 

ers on the most critical pairwise comparisons and on which users 

influences most the group results for a given criterion, this ap- 

proach does not relieve decision makers from the concern of iden- 

tifying relevant SMEs for a given decision making problem. Simi- 

larly, this new approach does not provide a validation of the ob- 

tained rankings. The scope of this sensitivity analysis based ap- 

proach is to allow decision makers to identify critical inputs, and 

critical users who drive the aggregated group results. This sensi- 

tivity based method can be applied after users have been vetted 

and calibrated with other methods, such as the method developed 

by Cooke and Goossens (2008) . Prior to using the sensitivity anal- 

ysis presented here, decision makers should also ensure that SMEs 

are “nominated and selected via a traceable and defensible proce- 

dure” and that they “undergo a training and familiarization ses- 

sion” ( Cooke & Kelly, 2010 , p. 4). 

The proposed sensitivity analysis method is based on local par- 

tial derivatives, a method used in engineering disciplines to ana- 

lyze uncertainty, such as in structural analysis or in optimization 

problems. This section presents the analytical derivatives of the in- 

dividual variables that directly affect the outcome of the hierarchy 

decision model. Those variables are the individual weight A 

P j 
r for 

criterion r , the aggregated group weight G 

( i, j i −1 ) 
r , the consistency 

index μ, and the final ranking of a design alternative S 
I,J 
q , with re- 

spect to an entry in the pairwise comparison table provided by a 

user, P j . 

4.1. Analytical derivatives of weightings 

A change in value of a pairwise comparison, a k � , at the i th 

level by user P j will affect the criterion weights A 

P j 
k 

and A 

P j 
� 

since 

a � k = 1/ a k � ; l, k = 1, 2, ..., m . The input of the pairwise comparison 

table a k � , k < � , in Eq. (2 ) is considered hereafter as an indepen- 

dent variable. The general formula for the derivatives of A 

P j 
r with 

respect to a k � is given by directly differentiating Eq. (5 ). The de- 

tailed derivation procedure is given in the Appendix. In the case 

when r is equal to k , one has 

∂A 

P j 
k 

∂ a k� 

= 

a �k 

m 

× A 

P j 
k 

×
[ 

1 −
(

A 

P j 
k 

− A 

P j 
� 

)] 
(12) 

And in the case when r is equal to � , one has 

∂A 

P j 
� 

∂ a k� 

= −a �k 

m 

× A 

P j 
� ×
[ 

1 + 

(
A 

P j 
k 

− A 

P j 
� 

)] 
Finally, in the case when r � = k , � , one has 

∂A 

P j 
r 

∂ a k� 

= −a �k 

m 

× A 

P j 
k 

×
(

A 

P j 
k 

− A 

P j 
� 

)
(13) 

After aggregation of each user’s weights for the r th criterion at 

the i th level, one obtains an aggregated group weight G 

( i, j i −1 ) 
r . The 

dimension of the aggregation table is m × P , where P is the total 

number of users and m = n ( i, j i −1 ) is the number of criteria or al- 

ternatives. A change in value of the pairwise comparison a k � at the 

i th level by user P j will affect the aggregated weight G 

( i, j i −1 ) 
r as fol- 

lows: 

∂G 

( i, j i −1 ) 
r 

∂ a k� 

= 

m ∑ 

s =1 

(
∂G 

( i, j i −1 ) 
r 

∂A 

P j 
s 

× ∂A 

P j 
s 

∂ a k� 

)
(14) 

On the right-hand side of Eq. (14 ), the derivative 
∂A 

P j 
s 

∂ a k� 
has been 

given in Eq. (12 ) for s = k or � and Eq. (13 ) for s � = k , � . The other 

derivative, 
∂G 

( i, j i −1 ) 
r 

∂A 
P j 
s 

, is the effect on the aggregated group weight 

of the r th criterion due to a change of the individual weight, A 

P j 
s , 

evaluated by user P j on the s th criterion. It can be evaluated as 

follows: 

∂G 

( i, j i −1 ) 
r 

∂A 

P j 
s 

= 

G 

( i, j i −1 ) 
r ×

(
m ∑ 

q =1 ,q � = r 
G 

( i, j i −1 ) 
q 

)
P × A 

P j 
r 

for r = s, (15) 

and 

∂G 

( i, j i −1 ) 
r 

∂A 

P j 
s 

= 

−G 

( i, j i −1 ) 
r × G 

( i, j i −1 ) 
s 

P × A 

P j 
s 

for r � = s, (16) 

4.2. Analytical derivatives of inconsistency index 

The partial derivative of the inconsistency index μ of Eq. (6 ) 

with respect to a given pairwise comparison a k � by user P j is cal- 

culated as follows: 

∂μ

∂ a k� 

= 

1 

( m ( m − 1 ) ) 

∑ 

i< j 

((
1 − 1 

ε 2 
i j 

)
∂ ε i j 

∂ a k� 

)
(17) 

where the derivative of the error term εij , ε i j = a i j × A 

P j 
j 
/A 

P j 
i 

, is 

given by Eq. (18 ), for j > i 

∂ ε i j 

∂ a k� 

= 

∂ a i j 

∂ a k� 

×
A 

P j 
j 

A 

P j 
i 

+ 

a i j (
A 

P j 
i 

)2 
×
( 

∂A 

P j 
j 

∂ a k� 

× A 

P j 
i 

− ∂A 

P j 
i 

∂ a k� 

× A 

P j 
j 

) 

(18) 

It should be noted that the term 

∂ a i j 

∂ a k� 
in Eq. (18) is null most of 

time, except for the following two cases: 

∂ a i j 

∂ a k� 

= 

{
1 f or i = k, j = � 

−a 2 
i j 

f or i = �, j = k 
(19) 

The individual weight derivatives 
∂A 

P j 
j 

∂ a k� 
and 

∂A 
P j 
i 

∂ a k� 
can be com- 

puted by Eqs. (12 ) and ( 13 ). The derivative of the Consistency In- 

dex can also be computed for the right eigenvector method. In this 

case, the derivatives of concern are directly derived by differenti- 

ating Eq. (6 ) as: 

∂μ

∂ a k� 

= 

(
∂ λmax 

∂ a k� 

)
− m 

m − 1 

(20) 



M. Ivanco et al. / Expert Systems With Applications 90 (2017) 111–126 117 

where the derivative of the maximal eigenvalue can be computed 

as suggested by Saaty (2005, p. 30 ), 

∂ λmax 

∂ a k� 

= 

(
v k × w � − a 2 

�k 
× v � × w k 

)
∑ m 

i =1 ( v i × w i ) 
(21) 

where v i and w i are the ortho-normalized left and right- 

eigenvectors of the pairwise comparison matrix C P j . It is evident 

that the derivative of the Consistency Index is much easier to com- 

pute with Eq. (17 ) than with Eq. (21 ), which is based on the eigen- 

value method. 

4.3. Analytical derivatives of final ranking of design alternatives 

Set G 

( i, j i −1 ) 
r to be the aggregated weight based on the pairwise 

comparison tables submitted by all users for the r th criterion in 

the i th level and a k � is the input value of one pairwise comparison 

submitted by one user. The effect of a change in the value of a k � 
on the overall total weight can then be obtained by differentiating 

the total weight equation, Eq. (9 ), as 

∂ W 

I,J 

∂ a k� 

= 

∂G 

( i, j i −1 ) 
r 

∂ a k� 

G 

( i −1 , j i −2 ) 
j I−1 

...G 

( 2 , j 1 ) 
j 2 

G 

( 1 , 0 ) 
j 1 

(22) 

where the derivative 
∂G 

( i, j i −1 ) 

r 
∂ a k� 

can be computed by Eqs. (14 )–( 16 ). 

Consequently, the effect of a change in a k � of a criteria comparison 

table on the final ranking of design alternative q , can be obtained 

by differentiating Eq. (10 ) as: 

∂S I,J q 

∂ a k� 

= 

∂ W 

I,J 

∂ a k� 

S ( 
i, j i −1 ) 

q (23) 

Numerical validation of the analytical derivation of the sensitiv- 

ity analysis presented here can be found in Ivanco (2015) . 

This methodology can be easily implemented using commonly 

used software such as MS Excel. An application is shown in the 

following section, which showcases numerical examples and visu- 

alization of the results through graphic displays. 

5. An aerospace application: down-selection of a wheel design 

for the space exploration vehicle 

The novel sensitivity analysis-based method presented here is 

now applied to an aerospace engineering decision making problem. 

The Space Exploration Vehicle (SEV) is a modular vehicle that pro- 

vides roving capability to astronauts, and enables lunar and Mar- 

tian exploration. A picture of the SEV is shown in Fig. 1 . 

The unique mission of the SEV generates many design chal- 

lenges. Whereas it may sound trivial at first in comparison to more 

sophisticated elements of the rover, the design and selection of the 

wheels is a key design point for the vehicle. The specificities of the 

terrain and the space environment make these wheels especially 

challenging to design. The National Aeronautics and Space Ad- 

ministration (NASA) and the National Institute of Aerospace (NIA) 

initiated the RASC-AL Lunar Wheel student competition in 2013 

to foster innovation and propose new potential designs for the 

SEV wheels. An Old Dominion University (ODU) team participated 

and won first place in the design competition. Students had five 

months to design, manufacture and test a wheel concept. The man- 

ufactured wheel would be mounted on a Gator RSX to compete 

against other wheel designs in a roll-off competition. Budget was 

limited to $10,0 0 0 to cover all aspects of the competition, to in- 

clude a week-long travel to Johnson Space Center for four students. 

At the time, none of the students were familiar with MCDA 

methods. The design challenge however involved multiple criteria 

that had to be taken into consideration to satisfy the competition 

requirements. The team also formulated several design alternatives 

Fig. 1. The Space Exploration Vehicle. 

Source: www.nasa.gov 

and a consensus had to be reached to down-select the alternative 

that would be fabricated and used during the roll-off. This down- 

selection of an engineering design is well-suited to be analyzed 

with AHP and to showcase the capabilities of the new sensitivity 

analysis based method. In this light, several users were requested 

to perform pairwise comparisons to rank the proposed alternatives. 

Users were chosen based on their disparity in profiles, with a to- 

tal number of six users, P = 6. User 1 and User 2 are students who 

were on the team and have first-hand knowledge of the competi- 

tion requirements and the design process. User 3 and User 4 are 

aerospace engineers who are familiar with the design of compo- 

nents for space applications while not being as familiar with the 

competition requirements and the team’s decision process. User 5 

and User 6 have no engineering background and no prior knowl- 

edge of engineering design and manufacturing for space applica- 

tions. 

5.1. AHP application problem modeling 

Fig. 2 shows the hierarchical tree used to model the wheel se- 

lection problem. The top level objective is to select the best wheel 

design among four alternatives, evaluated against four first-level 

and ten second-level criteria. Table 2 provides definitions for the 

various criteria. 

In recent years, new concepts for tires and wheels have 

emerged in the automotive and bicycle industry, growing the pool 

of available alternatives. In the design phase of the project, the 

team developed several concepts and had to reach a consensus to 

down-select one design. The alternatives that were considered are 

an All-aluminum wheel, an All-steel wheel, an Aluminum wheel 

with rubber tread and an All-composite wheel ( Fig. 3 ). 

Since the team ruled the All-Composite alternative out prior to 

producing a finalized 3D model, Fig. 3 shows the Michelin Tweel, 

which is an existing design that shares similarities with the team 

concept. Each user was required to provide pairwise comparisons 

to rank the criteria at all levels. There is one group of four cri- 

teria in Level 1, for which users provided pairwise comparisons 

in a n (1,0) × n (1,0) = 4 × 4 matrix. In Level 2, there are three crite- 

ria under the Level 1 Terrain Performance criterion, with n (2,1) = 3 

(Regolith, Boulders and Rocks, Craters and Slopes). There are four 

criteria under the Level 1 Compatibility with Space Applications 

criterion, with n (2,2) = 4 (Ability to withstand radiation, Loss Mass, 

Low Maintenance, Low Volume). There are no Level 2 criteria 

http://www.nasa.gov
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Fig. 2. Problem modeling for the selection of a lunar wheel design. 

Table 2 

Definitions of criteria for the selection of a wheel design for the Space Exploration Vehicle. 

Terrain Performance 

Regolith Wheel should not sink nor clog. 

Boulders and Rocks Wheel should climb over boulders and rocks without incurring significant damage. 

Craters and Slopes Vehicle should be able to ascent and descent up to 15 ° slopes without sliding. SEV should be 

able to navigate crater rims. 

Compatibility with Space Application 

Ability to withstand radiations Wheel should be able to withstand space radiations, with no or little degradation of the 

material properties and little impact on the fatigue cycle. 

Low Mass Mass should be minimized. 

Low Maintenance Required maintenance should be minimized. Human and/or robotic in-situ repairs or 

replacements should be possible. 

Low Volume Footprint should be minimized. 

Cost 

Cost Encompasses fabrication, testing and shipping costs. 

Manufacturability 

Material Availability Material should be available within the timeframe of the competition ramp up. 

Complexity of the manufacturing process Encompasses simplicity of the design, machinability of the chosen material, and complexity of 

welding, fastening or extrusion techniques. 

Compliance with NASA standards Wheel design must have the ability to comply with NASA fabrication standards for space 

applications. 

under Level 1 criterion Cost, n (2,3) = 0. There are three Level 2 

criteria under Level 1 criterion Manufacturability, with n (2,4) = 3 

(Material Availability, Complexity of the Manufacturing Process, 

Compliance with NASA Standards). Each evaluator subsequently 

performed pairwise comparisons in three comparison tables for 

Level 2 criteria, with respective dimensions n (2,1) × n (2,1) = 3 × 3, 

n (2,2) × n (2,2) = 4 × 4 and n (2,4) × n (2,4) = 3 × 3. Each user then had to 

evaluate the design alternatives against each Level 2 criteria, where 

n (2,: ) = 11. This yielded eleven 4 × 4 tables, as there were four de- 

sign alternatives considered. 

5.2. Results 

The weights associated with the pairwise comparisons submit- 

ted by all users to rank Level 1 and Level 2 criteria are calculated 

with Eq. (5 ). The aggregated results among all users are then cal- 

culated based upon Eq. (8 ) ( Table 3 ). The group ranked Terrain Per- 

formance as the most significant criterion, followed by Cost, Space 

Application and lastly Manufacturability. 

Table 4 shows the weights associated with the pairwise com- 

parisons provided by each user for the four design alternatives, for 
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Fig. 3. Proposed design alternatives (Michelin Tweel shown here. By TweelTech (Own work) [CC BY-SA 3.0 ( http://creativecommons.org/licenses/by-sa/3.0) ], via Wikimedia 

Commons). 

Table 3 

Criteria weights summary. 

User 1 User 2 User 3 User 4 User 5 User 6 Group 

Terrain Performance 0.151 0.402 0.100 0.627 0.445 0.439 0.379 

Regolith 0.540 0.750 0.699 0.688 0.537 0.500 0.651 

Boulders and Rocks 0.163 0.171 0.064 0.064 0.364 0.250 0.157 

Craters and Slopes 0.297 0.078 0.237 0.248 0.099 0.250 0.191 

Space Application 0.067 0.232 0.050 0.191 0.315 0.439 0.208 

Radiation Resistance 0.108 0.325 0.263 0.045 0.432 0.706 0.297 

Low Mass 0.430 0.193 0.089 0.245 0.314 0.106 0.262 

Low Maintenance 0.077 0.359 0.610 0.636 0.116 0.155 0.319 

Low Volume 0.385 0.123 0.038 0.074 0.138 0.033 0.122 

Cost 0.391 0.232 0.565 0.150 0.141 0.088 0.269 

Manufacturability 0.391 0.134 0.284 0.043 0.099 0.035 0.144 

Material Availability 0.586 0.460 0.582 0.062 0.493 0.084 0.356 

Fabrication Process 0.353 0.221 0.348 0.285 0.311 0.147 0.348 

Compliance with NASA standards 0.061 0.319 0.069 0.653 0.196 0.769 0.296 

each Level 2 criterion under consideration. These weights are cal- 

culated with Eq. (5 ). 

The weights are aggregated for the group using Eq. (8 ) and are 

denoted by S 
( i, j i −1 ) 
q . As an example, the weight S 

( i, j i −1 ) 
q of the All- 

Steel wheel design alternative is 0.284 indicated in Table 5 for the 

Level 2 criterion Regolith under the Level 1 criterion Terrain Per- 

formance. 

Fig. 4 provides a visual representation of the relative im- 

portance of the alternatives for each criterion. There are eleven 

columns in the figure, to reflect the eleven Level 2 criteria. Each 

alternative is represented by its own color, so that each column is 

composed of four colors representing the four alternatives. The bar 

height corresponds to the aggregated group weight listed in the 

last column of Table 4 multiplied by the Level 1 aggregated group 

weight listed in bold in Table 3 . The Regolith and the Cost criteria 

are given the most significant importance in the down-selection of 

the leading design for the SEV wheel design. 

Table 5 provides a summary of the aggregated group results for 

all criteria and alternatives. Final rankings of the alternatives for 

the group are shown in Table 6 . As stated by Eqs. (10 ) and ( 11 ), 

the final ranking of each design alternative is the inner product 

between the overall weights of the Level 2 criteria and the weight 

of the design alternative of concern. Specifically, the final rankings 

given in Table 6 are the result of the inner product between col- 

umn 2 and one of columns from 3 to 6 in Table 5 . 

The group selected the All-Aluminum wheel design as its lead- 

ing alternative. This selection was due to the high score given to 

the All-Aluminum design for cost, which has a high priority weight 

among the criteria. This design also ranked high for its perfor- 

mance on regolith, another criterion with a significant weight. The 

All-Steel alternative was ranked second. The All-Composite and the 

Aluminum wheel with rubber tread were allocated much lower 

scores in the final rankings than the first two alternatives. The 

leading alternative obtained with the AHP method coincides with 

the alternative selected by the student team, who elected to man- 

ufacture and compete with the All-Aluminum design. 

5.3. Sensitivity analysis 

The sensitivity analysis method is now applied to demonstrate 

its use in determining which pairwise comparisons have the great- 

est impact on the aggregated group results. First, the method is 

applied to the group weights obtained for the four Level 1 criteria. 

As indicated in Table 3 , the group weighting coefficients are: 

G 

( 1 , 0 ) 
. = 

(
0 . 379 0 . 208 0 . 269 0 . 144 

)T 
The contributions from User 2 and User 6 are, re- 

spectively A 

2 
. = ( 0 . 402 0 . 232 0 . 232 0 . 134 ) T and A 

6 
. = 

( 0 . 439 0 . 439 0 . 088 0 . 035 ) T . To evaluate the influence of a 

user’s weight on the aggregated group weight, the derivatives of 

G 

( 1 , 0 ) 
. with respect to A 

2 and A 

6 are calculated based upon Eqs. 

(15 ) and ( 16 ), as follows: 

[
∂G 

( 1 , 0 ) 
s 

∂A 

2 
r 

]
= 

⎡ 

⎢ ⎣ 

0 . 0976 −0 . 0567 −0 . 0732 −0 . 0677 

−0 . 0327 0 . 1185 −0 . 0403 −0 . 0372 

−0 . 0423 −0 . 0403 0 . 1413 −0 . 0481 

−0 . 0226 −0 . 0215 −0 . 0278 0 . 1531 

⎤ 

⎥ ⎦ 

[
∂G 

( 1 , 0 ) 
s 

∂A 

6 
r 

]
= 

⎡ 

⎢ ⎣ 

0 . 0893 −0 . 0300 −0 . 1931 −0 . 2594 

−0 . 0300 0 . 0626 −0 . 1061 −0 . 1426 

−0 . 0387 −0 . 0213 0 . 3725 −0 . 1842 

−0 . 0207 −0 . 0114 −0 . 0733 0 . 5861 

⎤ 

⎥ ⎦ 

http://creativecommons.org/licenses/by-sa/3.0)
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Table 4 

Alternative weights summary. 

User 1 User 2 User 3 User 4 User 5 User 6 Group 

Regolith Steel 0.167 0.415 0.167 0.122 0.276 0.569 0.284 

Aluminum 0.167 0.315 0.167 0.510 0.390 0.298 0.327 

Composite 0.333 0.229 0.333 0.267 0.195 0.065 0.242 

Al. w. rubber tread 0.333 0.041 0.333 0.101 0.138 0.068 0.147 

Boulders and Rocks Steel 0.268 0.635 0.268 0.533 0.426 0.394 0.425 

Aluminum 0.092 0.099 0.092 0.206 0.301 0.356 0.173 

Composite 0.499 0.195 0.499 0.105 0.213 0.131 0.243 

Al. w. rubber tread 0.140 0.070 0.140 0.156 0.060 0.890 0.160 

Craters and Slopes Steel 0.168 0.219 0.168 0.144 0.426 0.119 0.224 

Aluminum 0.156 0.327 0.156 0.499 0.301 0.146 0.281 

Composite 0.186 0.368 0.186 0.297 0.213 0.192 0.275 

Al. w. rubber tread 0.490 0.087 0.490 0.060 0.060 0.543 0.220 

Radiation Resistance Steel 0.441 0.393 0.533 0.671 0.501 0.448 0.513 

Aluminum 0.441 0.442 0.351 0.128 0.354 0.412 0.345 

Composite 0.040 0.126 0.039 0.073 0.036 0.049 0.057 

Al. w. rubber tread 0.078 0.039 0.077 0.128 0.109 0.091 0.085 

Low Mass Steel 0.0037 0.216 0.130 0.033 0.038 0.073 0.054 

Aluminum 0.197 0.478 0.237 0.227 0.418 0.491 0.372 

Composite 0.553 0.201 0.580 0.588 0.318 0.123 0.395 

Al. w. rubber tread 0.212 0.105 0.053 0.152 0.227 0.313 0.179 

Low Maintenance Steel 0.368 0.284 0.533 0.509 0.391 0.366 0.421 

Aluminum 0.368 0.4 4 4 0.317 0.175 0.391 0.393 0.352 

Composite 0.070 0.212 0.049 0.062 0.067 0.145 0.092 

Al. w. rubber tread 0.193 0.061 0.101 0.255 0.151 0.095 0.135 

Low Volume Steel 0.250 0.227 0.255 0.167 0.238 0.250 0.244 

Aluminum 0.250 0.423 0.098 0.262 0.313 0.250 0.261 

Composite 0.250 0.227 0.590 0.453 0.313 0.250 0.347 

Al. w. rubber tread 0.250 0.122 0.057 0.118 0.137 0.250 0.148 

Cost Steel 0.400 0.620 0.535 0.129 0.188 0.245 0.353 

Aluminum 0.456 0.216 0.321 0.295 0.654 0.245 0.392 

Composite 0.044 0.058 0.045 0.417 0.040 0.186 0.098 

Al. w. rubber tread 0.100 0.105 0.099 0.158 0.118 0.323 0.157 

Material Availability Steel 0.446 0.302 0.446 0.619 0.447 0.373 0.452 

Aluminum 0.446 0.347 0.446 0.205 0.316 0.424 0.371 

Composite 0.043 0.281 0.043 0.059 0.056 0.100 0.079 

Al. w. rubber tread 0.064 0.070 0.064 0.117 0.181 0.102 0.097 

Fabrication Process Steel 0.497 0.521 0.497 0.684 0.501 0.376 0.522 

Aluminum 0.368 0.284 0.368 0.193 0.354 0.427 0.333 

Composite 0.038 0.132 0.038 0.076 0.036 0.060 0.058 

Al. w. rubber tread 0.097 0.063 0.097 0.042 0.109 0.137 0.088 

Compliance w/ Standards Steel 0.400 0.308 0.400 0.175 0.420 0.417 0.358 

Aluminum 0.423 0.341 0.423 0.361 0.420 0.417 0.419 

Composite 0.071 0.274 0.071 0.326 0.044 0.083 0.115 

Al. w. rubber tread 0.106 0.078 0.106 0.137 0.116 0.083 0.108 

Table 5 

Summary of group weights. 

Steel Aluminum Composite Aluminum w/rubber 

Terrain Performance (0.379) Regolith (0.247) 0.284 0.327 0.242 0.147 

Boulders and Rocks (0.060) 0.425 0.173 0.243 0.160 

Craters and Slopes (0.072) 0.224 0.281 0.275 0.220 

Space Application (0.208) Resistance to Radiation (0.062) 0.513 0.345 0.057 0.085 

Low Mass (0.054) 0.054 0.372 0.395 0.179 

Maintenance (0.066) 0.421 0.352 0.092 0.135 

Low Volume (0.025) 0.244 0.261 0.347 0.148 

Cost (0.269) Cost 0.353 0.392 0.098 0.157 

Manufacturability (0.144) Material Availability (0.051) 0.418 0.399 0.095 0.088 

Complexity of Fabrication (0.050) 0.314 0.539 0.060 0.087 

Compliance w/NASA standards (0.043) 0.403 0.382 0.109 0.106 

The magnitudes of the terms reveal that G 

( 1 , 0 ) 
. is more sensi- 

tive to the weights in A 

6 
. than in A 

2 
. as the former has the largest 

component. The sensitivity of the group weights with respect to a 

change in one pairwise comparison supplied by one user is now 

calculated with Eq. (14 ) and the row geometric means are calcu- 

lated for the matrix. For a given weighting vector, { A 

P j 
r } of a com- 

parison table prepared by user P j , for the r th criteria, where r runs 

from 1 to n ( i, j i −1 ) the sensitivity of { A 

P j 
r } to a given pair comparison 

entry, a kl is given by a vector 

∂ 
{ 

A 

P j 
r 

} 
∂ a k� 

(23) 
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Fig. 4. Aggregated group results for the down-selection of a wheel design for the SEV. 

Table 6 

Aggregated group results. 

Steel Aluminum Composite Aluminum w/rubber 

0.330 0.352 0.173 0.145 

Note that the size of the pairwise comparison table is n ( i, j i −1 ) ×
n ( i, j i −1 ) . Now, sum the absolute value of the vector components to- 

gether to obtain a single scalar quantity representative of the mag- 

nitude of the sensitivity, called the sensitivity index, as 

S 
P j 
k� 

= 

n ( i, j i −1 ) ∑ 

r=1 

∣∣∣∣∂A 

P j 
r 

∂ a k� 

∣∣∣∣ (24) 

The n ( i, j i −1 ) × n ( i, j i −1 ) matrix, [ S 
P j 
k� 

] is called sensitivity matrix. A 

surface plot of the sensitivity matrix is provided to the decision 

maker. Peaks on the plots provide a visualization of the pairwise 

comparisons that have the most critical impact on the aggregated 

group results. 

Fig. 5 shows the sensitivity matrix plots for each user for the 

Level 1 criteria of the SEV case study. The x and y axes repre- 

sent the rows and columns of the initial pairwise comparison ma- 

trix, and integers 1 to 4 along the axes represent the four crite- 

ria under consideration, namely Terrain Performance, Compatibil- 

ity with Space Application, Cost and Manufacturing. The numerical 

values along the z -axis indicate the sensitivity index for each pair- 

wise comparison, or the sum of the absolute values of the vector 

components obtained with Eq. (14 ) for 
∂G 

( i, j i −1 ) 
r 
∂ a k� 

. It can be observed 

that User 6, with a maximum sensitivity index above 0.22, pro- 

vided the pairwise comparison that has the greatest magnitude for 

sensitivity. This specific pairwise comparison influences the aggre- 

gated group results the most. Greater details on the application of 

the sensitivity analysis method can be found in Ivanco (2015) . 

Table 7 provides the pairwise comparison matrix provided by 

User 6 for the four Level 1 criteria. The sensitivity plots shows that 

the most critical pairwise comparison is on the fourth row, in the 

Table 7 

Pairwise comparison matrix for User 6 for the top-level criteria. 

Terrain 

Performance 

Space 

Application 

Cost Manufacturability 

Terrain Performance 1 1 7 9 

Space Application 1 1 7 9 

Cost 1/7 1/7 1 5 

Manufacturability 1/9 1/9 1/5 1 

first column, which is for the comparison of Manufacturability and 

Terrain Performance and has an input value of 1/9. 

Table 8 displays the original group weights obtained for the 

Level 1 criteria and what the group weights would be for these 

same criteria if User 6 was excluded from the results. It can be 

observed that the criteria weights would differ by a percent dif- 

ference ranging between 10.82% and 24.55%. The sensitivity plots 

shown in Fig. 5 show that User 2 has the least influence on the 

group results. Indeed, the most critical pairwise comparison pro- 

vided by User 2 has a sensitivity index of 0.07, the smallest mag- 

nitude for all maxima shown in the six plots of Fig. 5 . The effect 

of User 2 on the group results is also investigated and shown in 

Table 8 . It can be observed that the percent difference between the 

group weights for all users and the group weights adjusted with 

the exclusion of User 2 ranges between 1.34% and 2.89%. The de- 

cision maker can now gain insight into which user has the most 

influence on the group results from inspection of the sensitivity 

plots, as confirmed by the percent difference computed and dis- 

played in Table 8 . 

Given the background of User 6, who has no experience or 

training in the engineering field, the impact of User 6 on the aggre- 

gated group results may be of concern. Such a result should trig- 

ger a close inspection of User 6 inputs for this specific matrix and 

possibly a group discussion, in an effort to determine if the group 

decision is in accordance with the opinion of User 6. 

Similarly, the sensitivity analysis method can be applied to the 

inconsistency index, to understand how a pairwise comparison im- 

pacts the inconsistency index obtained by a user. For example, us- 

ing Eq. (17 ), the sensitivity of the inconsistency index with respect 
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Fig. 5. Sensitivity plots by user for Level 1 criteria. 

Table 8 

Aggregated group weights for Level 1 criteria after removal of least and most sensitive users. 

Original group 

weight 

Group weight, 

User 6 excluded 

Percent difference Group weight, 

User 2 excluded 

Percent difference 

Terrain Performance 0.379 0.342 10.82% 0.374 1.34% 

Space Application 0.208 0.167 24.55% 0.204 1.96% 

Cost 0.269 0.313 14.06% 0.277 2.89% 

Manufacturability 0.144 0.177 18.64% 0.146 1.37% 
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Fig. 6. Sensitivity plots by user for the Level 2 criteria under the Space Application criterion. 

to the comparison of radiation resistance and low volume for the 

space application criterion for User 2 has a magnitude of 0.0241. 

Such sensitivities can be calculated for all entries in the pairwise 

comparison matrix of concern. 

The sensitivity analysis method can be applied at any level of 

the hierarchy tree that models the decision problem. For example, 

one can now evaluate the impact of a user’s pairwise comparisons 

to the four Level 2 criteria under the Level 1 criterion “Compatibil- 

ity with Space Application”. Using the same method as previously, 

the sensitivity indices are calculated and plotted as surface plots in 

Fig. 6 . It can be noticed that User 4, who is an aerospace engineer 

who was not involved with the team, provided the pairwise com- 

parison that has the most impact on the aggregated group results. 

The pairwise comparison provided in Row 1, Column 3 by User 4 

indeed obtained the maximum sensitivity index in the group for 

the Space Application criterion. It can also be noticed that User 5 

and User 6, who have no engineering experience, have more influ- 

ence on the group results than User 1 and User 2 who were very 

familiar with the decision problem. These plots inform the deci- 



124 M. Ivanco et al. / Expert Systems With Applications 90 (2017) 111–126 

Fig. 7. Sensitivity plots by user for the overall ranking of the All-Aluminum wheel for the Space Application Criterion. 

sion maker that User 4, and to a lesser extend User 5 and User 6, 

influence the group results the most. 

The sensitivity of the overall total weight of a criterion can be 

calculated using Eq. (22 ) and the sensitivity of the final ranking 

of an alternative can be calculated using Eq. (23 ). For example, in 

the case of the Level 2 criteria under the Level 1 Space Applica- 

tion criterion, one obtains the sensitivity plots shown in Fig. 7 for 

the All-Aluminum wheel. It can be noticed that User 4 and User 

5 drive the final ranking of the All-Aluminum design alternative 

when evaluated against the Space Application criterion. The deci- 

sion maker can now focus on the inputs provided by these users, 

highlight critical pairwise comparisons as discussion points for the 

group and confirm that these inputs are in line with the intent of 

the users. 

6. Conclusion 

Since its development, AHP has been thoroughly studied, imple- 

mented and improved upon. Several shortfalls to AHP have been 

discovered and corrected over the years, with the development of 
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improved AHP algorithms. A limitation however still remains: tra- 

ditional AHP algorithms do not take the disparities of individual 

profiles into account. Traditional AHP grants the same importance 

to all individuals regardless of their experience and familiarity with 

the AHP method. Several qualitative and quantitative methods have 

been proposed to address the issue of disparities within a user 

group, but several shortcomings can be identified. In an effort to 

develop the current state of the art with regard to addressing these 

disparities, a new methodology was developed and presented in 

this paper. Rather than trying to quantify the disparities in pro- 

files, this new approach uses an analytical sensitivity analysis to 

identify which AHP users have the most impact on the aggregated 

group results. This sensitivity analysis based method informs the 

decision maker of which pairwise comparisons are most critical to 

the final rankings so as to enable the decision maker by focusing 

the group effort on the most significant data points. 

This new approach does not relieve decision makers from the 

concern of identifying relevant SMEs for a given decision making 

problem. Neither does this approach validates the obtained rank- 

ings. The scope of this sensitivity analysis based approach is to al- 

low decision makers to identify critical inputs that drive the aggre- 

gated group results. The sensitivity based method can be applied 

after SMEs have been vetted and calibrated with other methods, 

such as the method developed by Cooke and Goossens (2008) . 

In order to assist decision makers with the implementation of 

AHP, an AHP tool was developed in MS Excel. Two visualization 

capabilities were also developed. A bar chart displays the relative 

importance of the criteria, and provides information on the alter- 

natives scores for each criterion. A surface plot of the sensitivity 

indices allows the decision maker to gain insight in which indi- 

viduals, and specifically which pairwise comparison input, impacts 

the group results the most. The example of the down-selection of 

a wheel design for the Space Exploration Vehicle was presented 

to illustrate how the sensitivity analysis visualization plots can be 

used by the decision maker to determine which individuals drive 

the group results. After the most influential user was identified, 

original group weights and group weights after the exclusion of 

the most influential user were compared. The sensitivity analy- 

sis method presented here allows to focus time and resources for 

post-AHP evaluation on the elements of the process that are most 

critical. This new development to the state of the art allows de- 

cision makers to gain more insight into the participation of each 

user to the aggregated group results and provides a methodology 

to address the limitation of AHP in terms of disparities in user pro- 

files. However, this research used an academic test case with large 

profile disparities to demonstrate how the method could be used. 

Future work should investigate the applicability of the method to 

real world problems in which decision makers, SMEs and stake- 

holders may display a narrower or wider range of disparities. In 

addition, future work may also consider coupling this sensitiv- 

ity analysis method with models that investigate the influence of 

users in the system, such as Social Network Analysis ( Garcia Mel όn, 

Estruch Guitart, Aragones Beltrán, & Monterde Roca, 2013 ). 
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Appendix 

The sensitivity equation, Eq. (12 ) is derived in this appendix. 

Due to the reciprocity axiom, an evaluator is required only to pre- 

pare the input of elements in the upper triangle of the pairwise 

comparison matrix C P j . Since the goal of sensitivity analysis is to 

investigate the effect of variation in the user input on the weight- 

ing coefficients, only a k � with � > k is considered as independent 

variable in this derivation. This is done by directly differentiating 

the weighting coefficient A 

P j 
r of criteria r in Eq. (5 ) with respect 

to a specified a k � in the upper triangle of the pairwise compari- 

son matrix, C P j , provided by evaluator, P j . It results in the following 

equation 

∂A 

P j 
r 

∂ a k� 

= 

∂ A 
P j 
r 

∂ a k� 
×
(∑ m 

q =1 A 

P j 
q 

)
− A 

P j 
r ×

∂ 

(∑ m 
q =1 A 

P j 
q 

)
∂ a k� (∑ m 

q =1 A 

P j 
q 

)2 
(A.1) 

Note that A 

P j 
r = e ln A 

P j 
r and ln A 

P j 
r = ln 

[ ( m ∏ 

s =1 

a rs 

)(1 /m ) ] 
= 

∑ m 
s =1 ln ( a rs ) 

m 

. It leads to 

∂ A 

P j 
r 

∂ a k� 

= 

∂ 

∂ a k� 

(
e ln A 

P j 
r 

)
= e ln A 

P j 
r ×

∂ 
(

ln A 

P j 
r 

)
∂ a k� 

= 

A 

P j 
r 

m 

×
( 

m ∑ 

s =1 

∂ ( ln a rs ) 

∂ a k� 

) 

Three cases are considered separately here for the relations be- 

tween the pair of indices, ( r, s ) and ( k , � ) in the last term in the 

above equation; r � = k , � , r = k and r = � . 

Case 1: r � = k , � 

In this case, 
∂ A 

P j 
r 

∂ a k� 
= 0 , as 

∑ m 

s =1 
∂( ln a rs ) 

∂ a k� 
= 0 . Thus, the variation in 

a k � will affect only A 

P j 
k 

and A 

P j 
� 

. 

Case 2: r = k 

One has 
∑ m 

s =1 
∂( ln a ks ) 

∂ a k� 
= 

∂( ln a k� ) 

∂ a k� 
= 

1 
a k� 

= a �k , which results in 

∂ A 
P j 
k 

∂ a k� 
= 

a �k ×A 
P j 
k 

m 

Case 3: r = � 

Since 
∑ m 

s =1 
∂( ln a ks ) 

∂ a k� 
= 

∂( ln a �k ) 

∂ a k� 
= − ∂( ln a k� ) 

∂ a k� 
= − 1 

a k� 
= −a �k , one 

then has 
∂ A 

P j 
� 

∂ a k� 
= 

−a �k ×A 
P j 
� 

m 

. 

The above three cases lead to the following equation 

∂ 
(∑ m 

q =1 A 

P j 
q 

)
∂ a k� 

= 

∂ A 

P j 
k 

∂ a k� 

+ 

∂ A 

P j 
� 

∂ a k� 

= 

a �k 

m 

×
(

A 

P j 
k − A 

P j 
� 

)
(A.2) 

Finally, one can conclude by combining Eqs. (A.1) and ( A.2 ) to 

obtain Eq. (12 ) that 

∂A 

P j 
k 

∂ a k� 

= 

a �k 

m 

× A 

P j 
k (

m ∑ 

q =1 

A 

P j 
q 

) ×

⎡ 

⎢ ⎢ ⎣ 

1 −

(
A 

P j 
k − A 

P j 
� 

)
(

m ∑ 

q =1 

A 

P j 
q 

)
⎤ 

⎥ ⎥ ⎦ 

= 

a �k 

m 

× A 

P j 
k 

×
[ 

1 −
(

A 

P j 
k 

− A 

P j 
� 

)] 
Similarly, one has for r = � 

∂A 

P j 
� 

∂ a k� 

= −a �k 

m 

× A 

P j 
� ×
[ 

1 + 

(
A 

P j 
k 

− A 

P j 
� 

)] 
and for r � = k , � 

∂A 

P j 
r 

∂ a k� 

= −a �k 

m 

× A 

P j 
k 

×
(

A 

P j 
k 

− A 

P j 
� 

)
(A.3) 
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