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Abstract: This paper is selective survey on the space `p
A

and its multipliers. It also includes some connections of
multipliers to Birkhoff-James orthogonality.
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1 Introduction

Sequence spaces such as the classical spaces `p play an important role in functional analysis. Indeed, they are often
the first Banach spaces covered in a basic functional analysis course. Moreover, they often serve as starting points, or
possibly ending points, for various conjectures. Historically, via Beurling’s theorem, the unilateral shift S on `2 was
one of the first operators to have a full characterization of its invariant subspaces. They key observation by Beurling
was to equivalently recast `2 from a mere sequence space to a Hilbert space of analytic functions H2, the Hardy
space, where the vast toolbox of function theory comes into play.

This paper is a selective survey of results on the sequence space `p , indexed by the nonnegative integers, with
a special emphasis on the associated Banach space of analytic functions `p

A
. Here we focus on their multipliers.

As it turns out, the multipliers of `2
A

(the Hardy space) are thoroughly understood since they turn our to be just
the bounded analytic functions on the open unit disk. When p 6D 2, the multipliers are well studied but are still
somewhat mysterious, and some basic questions remain open. For example, every inner function is a multiplier of
`2
A

; however, the atomic singular inner function is not a multiplier for `p
A

when p ¤ 2. In fact, it is unknown whether
any singular function serves as a multiplier when p ¤ 2 (though it is known that many do not). Furthermore, since
in the p D 2 case the multipliers are just the bounded analytic functions, their non-tangential boundary behavior is
well understood. When 1 6 p < 2 the multipliers actually enjoy somewhat better boundary behavior than generic
bounded analytic functions. Even more surprising is that the multipliers of `p

A
and those of its dual space `q

A
are the

same set – even though the spaces `p
A

and `q
A

are very different in terms of their boundary behavior.
Recent work is beginning to shed some light on the fact that in some Banach spaces of analytic functions, every

function can be written as a quotient of two multipliers. This is indeed true for the Hardy space, and for the Dirichlet
space, as well as other reproducing kernel Hilbert spaces with a Nevanlinna-Pick kernel. For `p

A
this “quotient of

two multipliers” property turns out to be spectacularly false when p > 2, but remains an open question when p < 2.
We became interested in these sequence spaces through our work in two papers [20] and [5], where we studied

various natural function theory questions through the lens of Birkhoff-James orthogonality. In [5] we explored a
version of the classical inner-outer factorization and its applications to ARMA processes, while in [20] we revisited
some classical estimates of zeros of analytic functions. Work on those papers led us quite naturally to questions

Raymond Cheng: Old Dominion University, E-mail: cheng@odu.edu
Javad Mashreghi: Université Laval, E-mail: javad.mashreghi@mat.ulaval.ca
*Corresponding Author: William T. Ross: University of Richmond, E-mail: wross@richmond.edu

Brought to you by | Old Dominion University
Authenticated

Download Date | 11/30/17 7:54 PM

https://doi.org/10.1515/conop-2017-0007


Multipliers of sequence spaces 77

about multipliers of `p
A

; in fact we continue that discussion in this paper with a multiplier proof of a result in [20],
as well as a refinement, via Birkhoff-James, of coefficient estimates of multipliers.

2 Basic properties of `
p

A

For p 2 Œ1;1/ define `p to be the set of sequences

a D .a0; a1; : : :/

of complex numbers for which

kakp WD

 
1X
kD0

jak j
p

!1=p
<1:

The quantity kakp defines a norm on `p which makes `p a Banach space. Furthermore, from Hölder’s inequality,
we know that .`p/� the normed dual of `p is isometrically isomorphic to `q , where q denotes the usual conjugate
index, i.e.,

1

p
C
1

q
D 1; (1)

via the bi-linear pairing

.a;b/ D
1X
kD0

akbk ; a 2 `p;b 2 `q : (2)

Here, in the case p D 1, we have q D1, and the dual space .`1/� D `1 is endowed with the norm

kbk1 WD supfjbk jg1kD0:

Throughout this paper, we will always adhere to the notation that q is the Hölder conjugate index to p.
For an a 2 `p we set

a.z/ D

1X
kD0

akz
k (3)

to be the power series whose Taylor coefficients are a. Note the use of a (bold faced) to represent a sequence and a
(not bold faced) to represent the corresponding power series.

Consider the case when p 2 .1;1/. By Hölder’s inequality we see that for any z 2 D D fz 2 C W jzj < 1g,

1X
kD0

jak jjz
k
j 6

 
1X
kD0

jak j
p

!1=p  1X
kD0

jzjkq

!1=q
D kakp

�
1

1 � jzjq

�1=q
:

This implies that the above power series used to define the function a in (3) determines an analytic function on D.
Let us define

`
p

A
WD fa W a 2 `pg

and endow each a 2 `p
A

with the norm kakp . With this, `p
A

becomes a Banach space of analytic functions on D.
Furthermore, for each z 2 D and a 2 `p

A
we have

ja.z/j 6 kakp
�

1

1 � jzjq

�1=q
: (4)

Similarly, if p D 1, then

ja.z/j D

1X
kD0

jak jjz
k
j 6 kak1:

Thus if a sequence of functions converges in the norm of `p
A

then it converges uniformly on compact subsets of D.
The following is obvious from the definition of `p

A
, but worth stating here for later use.
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78 R. Cheng et al.

Proposition 2.1. Let p 2 Œ1;1/. If a 2 `p
A

with

a.z/ D

1X
kD0

akz
k ;

then a � KX
kD0

akz
k

p
! 0; K !1:

Corollary 2.2. If p 2 Œ1;1/, then the analytic polynomials are dense in `p
A

.

Of special distinction is the Wiener algebra `1
A

. Let us recall that `1 � `p for all p 2 Œ1;1/. Furthermore, for
a 2 `1

A
, the Taylor series converges uniformly on D D fz 2 C W jzj 6 1g and thus `1

A
is contained in C.D/, the

continuous functions on D. We now address the “algebra” part of the term Wiener algebra.
For two sequences a and b, the convolution a � b is the sequence(

nX
kD0

akbn�k

)
n>0

:

By multiplying Taylor series coefficients, notice how a � b corresponds via (3) to the pointwise product a.z/b.z/ of
the functions a and b. Young’s inequality [26, p. 37]

ka � bkp 6 kakpkbk1; a 2 `p;b 2 `1; (5)

shows that `1 is a convolution algebra (i.e., a;b 2 `1 H) a � b 2 `1). Now by the correspondence between
convolution of sequences and multiplication of power series, we see that that `1

A
is an algebra of functions (i.e.,

a; b 2 `1
A
H) ab 2 `1

A
).

3 Evaluation functionals and duality

The estimate in (4) says that for each w 2 D, the evaluation functional

ƒw W `
p

A
! C

is continuous for each p 2 .1;1/.
We can even compute its norm

kƒwk D supfjf .w/j W f 2 `p
A
; kf kp 6 1g:

Proposition 3.1. Let p 2 Œ1;1/. For each w 2 D,

kƒwk D

�
1

1 � jwjq

�1=q
:

Proof. From (4) we get

kƒwk 6
1

.1 � jwjq/1=q
: (6)

For fixed p 2 .1;1/, consider the test function

f .z/ D
1

1 � jwjq�2wz
D

1X
nD0

.jwjq�2w/nzn

and observe that
ƒwf D f .w/ D

1

1 � jwjq
:
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Multipliers of sequence spaces 79

On the other hand,

kf kpp D

1X
nD0

jjwjq�2wjpn D

1X
nD0

jwj.q�1/pn D

1X
nD0

jwjqn D
1

1 � jwjq
:

Hence

kƒwk >
jƒwf j

kf kp
D

1

.1 � jwjq/1=q
: (7)

Comparing (6) and (7), we deduce that

kƒwk D
1

.1 � jwjq/1=q
: (8)

The p D 1 case is similarly handled.

With our identification of `p
A

with `p , we can appeal to (2) and see that the norm dual of `p
A

can be isometrically
identified with `q

A
via the bi-linear pairing

.a; b/ D

1X
kD0

akbk ; a 2 `
p

A
; b 2 `

q

A
:

from (2). Since this series converges absolutely, we know from either Abel’s Theorem or the Dominated Convergence
Theorem that

.a; b/ D lim
r!1�

1X
kD0

akbkr
2k :

Now an integral calculation, and the simple fact that

2�Z
0

eik�
d�

2�
D ık;0;

shows that we can write the pairing in terms of the “Cauchy pairing”

.a; b/ D lim
r!1�

2�Z
0

a.rei� /b.re�i� /
d�

2�
:

Using the notion of duality, the following is another useful interpretation of the evaluation functional ƒw , which
also yields a more concise proof of Proposition 3.1. For a fixed w 2 D, define

kw.z/ WD

1X
nD0

wnzn: (9)

Clearly kw 2 `
q

A
and, by (2),

ƒwf D .f; kw/: (10)

In other words, kw plays the role of a reproducing kernel.

4 Connection to Hardy spaces

For p 2 Œ1;1/ the classical Hardy space Hp is the space of analytic functions f on D for which

kf kHp D

0@ sup
0<r<1

2�Z
0

jf .rei� /jp
d�

2�

1A1=p <1: (11)
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80 R. Cheng et al.

For p D 1, the class H1 is the space of bounded analytic functions on D. Classical theory [7] says that functions
in Hp have radial limits

f .ei� / WD lim
r!1�

f .rei� /

for almost every � 2 Œ0; 2�� and the corresponding (almost everywhere defined) boundary function ei� 7! f .ei� /

belongs to Lp.T; d�/. In fact,

kf kHp D

0@ 2�Z
0

jf .ei� /jp
d�

2�

1A1=p :
When p D 2, the space H2 can also be described as those analytic functions

f .z/ D

1X
kD0

akz
k

on D for which
1X
kD0

jak j
2 <1:

Moreover, by Parseval’s identity, we have

kf k2
H2 D

2�Z
0

jf .ei� /j2
d�

2�
D

1X
kD0

jak j
2 <1:

Consequently, `2
A
D H2 with equal norms, and thus H2 is a Hilbert space.

The Hausdorff-Young inequalities [26, p. 101] show, for p 2 Œ1; 2�, that Hp � `q
A

with

kakq 6 kakHp a 2 Hp:

On the other hand, when p 2 Œ1; 2�, we also have `p
A
� Hq with

kakHq 6 kakp a 2 `
p

A
:

In particular, when p 2 Œ1; 2�, every a 2 `p
A

has radial boundary values almost everywhere. When p 2 .2;1/ the
above containments fail, and, as we will see in the next section, radial limits become a problem as well.

5 Boundary values

From the discussion in the previous discussion, `p
A
� Hq , when p 2 Œ1; 2�. Furthermore, each function in Hq , and

hence `p
A

, has a radial limit almost everywhere on T. When p > 2, the boundary behavior can be more complicated.
To see this, we bring in a theorem of Littlewood.

Proposition 5.1 (Littlewood [7]). Assume that fangn>0 is a sequence of complex numbers such that

1X
nD0

janj
2
D1:

Set

f .z/ D

1X
nD0

"nanz
n;

where "n 2 f�1; 1g. Then there are choices of signs "n such that the corresponding function f fails to have radial
limits almost everywhere on T.
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Multipliers of sequence spaces 81

As a matter of fact, Littlewood introduces a probability measure on the family of all possible signs, i.e., f�1; 1g@0 ,
and then he shows that for almost all such signs the above proposition holds. However, for our discussion below, the
existence of even one such function is enough.

Let N denote the Nevanlinna class of analytic functions on D which can be written as the quotient of two
bounded analytic functions. By well-known theorems of Riesz and Fatou [7], every function in the Nevanlinna class
has a radial limit almost everywhere.

Corollary 5.2. For each p 2 .2;1/ the space `p
A

is not contained in N .

Proof. Pick any sequence fangn>0 2 `p such that

1X
nD0

janj
2
D1:

For example,

an D
1

n
2

pC2

; n > 1;

does the job. Then, by Proposition 5.1, there are choices of signs "n such that the corresponding function f fails to
have radial limits almost everywhere on T. This function certainly belongs to `p

A
but not the Nevanlinna class N .

6 Operators on `
p

A

We define the forward shift operator

S W `p ! `p; Sa D .0; a0; a1; a2; : : :/

and observe that S is an isometry on `p . For a 2 `p , let Œa� be the S -invariant subspace generated by a, that is,

Œa� WD
_
fa; Sa; S2a; : : :g;

where
W

denotes the closed linear span in `p . A vector a 2 `p is said to be cyclic if Œa� D `p .
Also define the backward shift operator

S� W `q ! `q ; S�a D .a1; a2; : : :/

and observe that S� is a contraction on `q . If a 2 `p and b 2 `q , it is straightforward to see that

.Sa;b/ D .a; S�b/: (12)

This is a fundamental connection between S and S�.
One can view the shift S on `p

A
as the operator

a.z/ 7! za.z/

of multiplication by the independent variable z on the corresponding function space `p
A

. From this viewpoint, note
that for a 2 `p

A
, Œa� is the `p

A
-closure of the set of all Pa, where P is an analytic polynomial. We will identify the

shift operator on the sequence space `p with the multiplication (by z) operator on the function space `p
A

, and denote
both by S . A similar convention is applied for S�. For example, considering the definition (9), we see that

S�kw D wkw: (13)

Again, the reader should be take note of the absence of conjugation in the above formula.
The S -invariant subspaces of `p

A
, i.e., those (closed) subspaces M � `p

A
for which SM � M , are sometimes

difficult to describe. When p D 2, we have already seen that `2
A
D H2 and a well-known theorem of Beurling
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82 R. Cheng et al.

[7] says that the (non-trivial) invariant subspaces M of `2
A
D H2 are given by M D ‚H2, where ‚ is an inner

function. Notice how this says that the quotient spaceM=SM is one dimensional. When p > 2, the situation is much
more complicated. For example, one can show [1] that given any n 2 N [ f1g there is an S -invariant subspace M
of `p

A
such that the quotient space M=SM is n-dimensional.

Given w 2 D, the difference quotient operator Qw is defined on the set of analytic functions on D by

.Qwf /.z/ WD
f .z/ � f .w/

z � w
:

Proposition 6.1. Let w 2 D. Then
f 2 `

p

A
H) Qwf 2 `pA:

Moreover, Qw is a bounded operator on `p
A

.

In particular, Q0 is precisely the backward shift S�. For the proof of the p D 2 case see [11, p. 100]. The general
case is substantially similar.

In other words, one can always “divide out” a zero of a and still remain in `p
A

. For many Banach spaces of
analytic functions contained in the Nevanlinna class, the most prominent example being the Hp classes, one can
divide out any inner factor and still remain in the space. Moreover if ‚ is inner then

‚f 2 Hp H) f 2 Hp:

Even though `p
A

is contained inHq for p 2 .1; 2/, `p
A

does not always have the analogous property. We will discuss
this further in the next section about multipliers.

7 Multipliers

An analytic function ' on D is called a multiplier of `p
A

if

f 2 `
p

A
H) 'f 2 `

p

A
:

The set of multipliers of `p
A

will be denoted by Mp . (One can also consider a multiplier ' from `
p

A
to `p

0

A
, i.e.,

f 2 `
p

A
H) 'f 2 `

p0

A
;

though we will not discuss this in our current paper.)
For ' 2Mp , an application of the closed graph theorem shows that the operator

M' W `
p

A
! `

p

A
; M'f D 'f

is continuous. Thus we define the multiplier norm of ' by

k'kMp
WD supfk'f kp W f 2 `

p

A
; kf kp 6 1g:

In other words, the multiplier norm of ' coincides with the operator norm of M' on `p
A

. It is often customary to
equate the multiplier ' with the multiplication operator M' .

Proposition 7.1. Let p 2 .1;1/. If ' 2Mp then ' is a bounded function and

supfj'.z/j W z 2 Dg 6 k'kMp
:

Proof. Since ' 2Mp then so is 'n for all n 2 N and thus, for each z 2 D, we can use (6) to see that

j'.z/jn D jƒz'
n
j 6

k'nk

.1 � jzjq/1=q
D
kMn

' .1/k

.1 � jzjq/1=q
D

k'knMp

.1 � jzjq/1=q
:

Taking the n-th root and letting n!1 yields the result.

Brought to you by | Old Dominion University
Authenticated

Download Date | 11/30/17 7:54 PM



Multipliers of sequence spaces 83

The above result, and the fact that the constant functions belong to `p
A

, imply that

Mp � H
1
\ `

p

A
; (14)

whenever p 2 .1;1/. When p D 1, Young’s inequality (5) ensures that `1
A

, the Wiener algebra, coincides with the
algebra of multipliers on `1

A
. In other words,

M1 D `
1
A:

When p D 2, we use the fact that `2
A

is the Hardy space H2 and the boundedness of integral means in the definition
of H2 from (11) to show that H1 �M2. Hence

M2 D H
1:

We will see from Corollary 15.7 below that the singular inner function

s.z/ D exp.�
1C z

1 � z
/;

which is certainly bounded on D, is not a member of Mp for any p 6D 1; 2. Thus

Mp ¨ `
p

A
\H1; p 6D 1; 2:

8 Mp as the commutanat

Clearly '.z/ D z is a multiplier of `p
A

. In fact Mz D S and we have already established that S is an isometric
operator. Moreover, sinceM'S D SM' for all ' 2Mp , we see that Mp is a subset of the commutant of S , defined
by

fSg0 D fA 2 B.`p
A
/ W AS D SAg:

In fact, more can be said.

Proposition 8.1 (Nikolskii [21]). For p 2 Œ1;1/ we have fSg0 DMp .

Proof. Clearly we have Mp � fSg
0. Conversely suppose A 2 fSg0. Then for any analytic polynomial P we have

A.P.S1// D P.S/A.1/;

equivalently, A.P / D PA.1/. By the density of the polynomials in `p
A

(Proposition 2.1) we can, for a given f 2 `p
A

,
find a sequence of polynomials fPngn>1 such that Pn ! f in the norm of `p

A
. Since point evaluations on D are

continuous in the norm of `p
A

(Proposition 3.1), we get Pn ! f pointwise on D. Since APn ! Af both in norm
as well as pointwise on D, it follows that Af D A.1/f . Thus ' D A.1/ 2Mp and A DM' .

To bring in more operator theory techniques, we now give an equivalent characterization of Mp explored in [21].
Given a sequence of complex numbers fangn>0, define the infinite (Toeplitz) matrix A by

A WD

0BBBBBB@
a0 0 0 0 � � �

a1 a0 0 0 � � �

a2 a1 a0 0 � � �

a3 a2 a1 a0 � � �
:::
:::
:::
:::
: : :

1CCCCCCA : (15)

Proposition 8.2 (Nikolskii [21]). Suppose

'.z/ D

1X
nD0

anz
n

is an analytic function on D. Then ' 2Mp if and only if the infinite matrix A from (15) defines a bounded operator
on `p . In this case,

k'kMp
D kAk`p!`p :
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84 R. Cheng et al.

Proof. Let

f .z/ D

1X
nD0

bnz
n
2 `

p

A

and write b WD fbngn>0 2 `p . Then

.'f /.z/ D

1X
nD0

cnz
n; cn D

nX
kD0

akbn�k :

Therefore ' 2Mp if and only if

1X
nD0

jcnj
p
D

1X
nD0

ˇ̌̌̌
ˇ nX
kD0

akbn�k

ˇ̌̌̌
ˇ
p

<1:

On the other hand, setting c WD fcngn>0, we see that b and c are related via the matrix identity

Ab D c: (16)

Thus ' is a multiplier for `p
A

if and only if

b 2 `p ” Ab 2 `p:

By the closed graph theorem, the latter is equivalent to A 2 B.`p/.
For the equality of norms, note that by (16),

k'kMp
D supfk'f kp W f 2 `

p

A
; kf kp 6 1g

D supfkAbkp W kbkp 6 1g

D kAk`p!`p :

From (2) recall the bi-linear pairing .a;b/ between `p and `q . Proposition 8.2 implies the useful inequality

j.Ax; y/j 6 k'kMp
kxkpkykq ; x 2 `p; y 2 `q : (17)

This next result relates the multipliers on the dual spaces and is often an important reduction to our multiplier
discussion.

Proposition 8.3 (Nikolskii [21]). For p 2 .1;1/ we have Mp DMq with equal multiplier norms.

Proof. Extend the definition of `p D `p.N0/ to

`p.Z/ WD

8<:b D fbngn2Z W kbkp D

 X
n2Z
jbnj

p

!1=p
<1

9=; :
Extend the definition of the shift S on `p to `p.Z/ as

Sfbngn2Z D fbn�1gn2Z

and the backward shift B on `p.Z/ as
Bfbngn2Z D fbnC1gn2Z:

For p 2 .1;1/ the projection P W `p.Z/! `p.N0/ defined by

P fbngn2Z D fbngn2N0

is continuous (in fact contractive). If ' 2Mp with

'.z/ D

1X
nD0

anz
n
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Multipliers of sequence spaces 85

and A W `p.N0/ ! `p.N0/ from (15) is the matrix operator formed from the sequence fangn2N0 , one can use the
facts that the operators S and B are isometric on `p.Z/ and apply the Banach-Steinhaus Theorem to see that the
sequence of operators

BNAPSN ; N 2 N0;

are uniformly bounded in operator norm. Applying this sequence of operators to the basis vectors en D fıj;ngj2Z
one can verify (equating the sequence fangn2N0 with the sequence fangn2Z, where an D 0 for n < 0) that for any
fbngn2Z 2 `

p.Z/,

lim
N!1

.BNAPSN /fbngn2Z D

(X
k2Z

bkan�k

)
n2Z

and this operator, which we call L, is continuous on `p.Z/. Informally, L is multiplication by ' when equating a
sequence in `p.Z/ with its corresponding Fourier series. By the dual pairing

.c;d/ D
1X
k2Z

ckdk ; c 2 `p.Z/;d 2 `q.Z/;

one can show that the adjoint L� of L, which is continuous on `q.Z/, turns out to be

L�fbngn2Z D

(X
k2Z

bkean�k)
n2Z

;

where
feangn2Z D f: : : ; a3; a2; a1; a0; 0; 0; 0; : : :g:

Informally, one can think of L� is multiplication by '.e�i� / on the Fourier series formed by sequences from `q.Z/.
Restricting L� to `q.�N0/ one can see, by reindexing, that ' is a multiplier on `q

A
. Thus we have shown that

Mp �Mq . Since this argument was symmetric in p and q, we conclude that Mp DMq .
The proof also shows that

kM'k`pA!`
p
A
D kM'k`qA!`

q
A
:

Corollary 8.4. If

' D

1X
kD0

akz
k
2Mp

then
(i) ' 2 `p

A
\ `

q

A
,

(ii) maxfk'kp; k'kqg 6 k'kMp
,

(iii) ja0j C ja1j C ja2j C � � � C janj 6 k'kMp
.nC 1/

1
q .

Proof. Statement .i/ follows from Proposition 8.3. Statement .i i/ follows from

k'kp D k' � 1kp D kMp1kp 6 k'kMp
k1kp D k'kMp

and Proposition 8.3.
To prove .i i i/, apply

x D .1; 0; 0; : : : /; y D .�0; : : : ; �n; 0; 0; : : : /; �j D e
�i argaj

to (17) to deduce

ja0j C ja1j C ja2j C � � � C janj D j�0a0 C � � � C �nanj

D j.Ax; y/j

6 k'kMp
.nC 1/

1
q :

We remark that when examining Mp , we can use Proposition 8.3 to justify focusing our efforts to the study of Mp

for p 2 .1; 2�.
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86 R. Cheng et al.

9 Connection to Fourier multipliers

For p 2 Œ1; 2� let Ap.T/ denote the space of all functions f in the Lebesgue space L2.T/ whose Fourier coefficients

bf .n/ WD 2�Z
0

f .ei� /e�in�
d�

2�
; n 2 Z;

form a sequence in `p.Z/. More explicitly,

Ap.T/ WD

(
f 2 L2.T/ W

1X
nD�1

jbf .n/jp <1) : (18)

Parallel to the definition of the norm in `p
A

, we define a norm

kf kAp.T/ WD

 
1X

nD�1

jbf .n/jp! 1
p

on Ap.T/. Use that fact `p � `2 for p 2 Œ1; 2� along with Parseval’s Theorem to see that Ap.T/ is a Banach space
when p 2 Œ1; 2�.

The corresponding multiplier space, the so called `p-Fourier multipliers, is defined to be the family of all ' 2
L1.T/ (essentially bounded Lebesgue measurable functions on T) such that 'f 2 Ap.T/ whenever f 2 Ap.T/,
i.e.,

Mp.T/ WD f' 2 L1.T/ W f 2 Ap.T/ W 'f 2 Ap.T/g:

We naturally define the corresponding multiplier norm by

k'kMp.T/ WD supfk'f kAp.T/ W kf kAp.T/ 6 1g:

In Proposition 7.1, we saw that Mp � H1. Therefore each ' 2 Mp can be considered either as an analytic
function on D or, via radial boundary values, as a measurable function on T with a vanishing negative spectrum (i.e.,
its Fourier coefficients with negative indices are zero). To distinguish between the two interpretations, we denote the
latter function, via radial boundary values, by '�. It turns out that Mp naturally sits inside Mp.T/.

Proposition 9.1. Let p 2 Œ1; 2� and ' 2 H1. Then

' 2Mp ” '� 2Mp.T/:

Moreover, k'kMp
D k'�kMp.T/.

Proof. Let '� 2Mp.T/. Since `p
A
� `2

A
D H2 � L2.T/, we can consider `p

A
as a subclass of Ap.T/. In particular,

for each f 2 `p
A

we have '�f � 2 Ap.T/ and

k'�f �kAp.T/ 6 k'�kMp.T/kf
�
kAp.T/:

Moreover, the negative parts of the spectrum of '� and f � are identically zero, and thus so is that of '�f �.
Therefore, '�f � 2 Ap.T/ implies that 'f 2 `p

A
and the above inequality can be rewritten as

k'f kp 6 k'�kMp.T/kf kp:

In other words, ' 2Mp and k'kMp
6 k'�kMp.T/.

Now assume that ' 2Mp . Let f be a trigonometric polynomial of degree N . Then eiN�f .ei� / is an analytic
polynomial and can be considered as an element of `p

A
. Thus, since ' is a multiplier of `p

A
, we have 'eiN�f 2 `p

A

and
k'eiN�f kp 6 k'kMp

keiN�f kp:
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Multipliers of sequence spaces 87

Since the operator f 7! eiN�f is isometric on Ap.T/, we can rewrite the previous inequality as

k'�f kAp.T/ 6 k'kMp
kf kAp.T/:

Since trigonometric polynomials are dense in Ap.T/, the estimate above holds for all f 2 Ap.T/. Therefore '� 2
Mp.T/ and k'�kMp.T/ 6 k'kMp

. Combine this inequality with the reverse of it shown before to complete the
proof.

Though this Fourier multiplier problem might seem like a detour from our main discussion concerning the multipliers
of `p

A
, it will surface again later when examining boundary values of multipliers.

10 Quotients of multipliers

Classical factorization results [7] say that any f 2 H2 can be written as f D h1=h2 where h1 and h2 are bounded
analytic functions and h2 is zero free. Since the multiplier space of H2 is precisely H1, this result can be stated in
the following equivalent form for a Banach space of analytic functions X and its multiplier space M, i.e.,

f D
h1

h2
; (19)

where h1 and h2 belong to the multiplier space M and h2 is zero free. This point of view opens the door for the same
question about any Banach space of analytic functions. In some cases the answer is known. Besides the Hardy space
H2, it seems that the answer is affirmative for the classical Dirichlet space as well as reproducing kernel Hilbert
spaces with a Nevanlinna-Pick kernel (several unpublished results). We are interested in this question for `p

A
spaces.

When p D 2, we are in the classical setting of `2
A
D H2 and thus, as seen above, the answer is affirmative. The case

p D 1 is also trivial since `1
A

is itself an algebra, and thus it coincides with its multiplier algebra. For p 2 .1; 2/, the
question is still open. Using function theory tools mentioned earlier, we can show that the answer is negative when
p 2 .2;1/.

Corollary 10.1. Let p 2 .2;1/. Then there are functions in `p
A

which cannot be represented as the quotient of two
multipliers.

Proof. By Corollary 5.2, there are functions in `p
A

which are not in the Nevanlinna class N . Such a function cannot
be represented as the quotient of two multipliers, since by (14), such a quotient is in N .

Using a similar technique, one can show that the representation (19) fails in the Bergman space since it is well-known
that the Bergman space is not contained in the Nevanlinna class.

11 Isometric multipliers

Which multipliers ' satisfy
k'f kp D kf kp; f 2 `

p

A
‹ (20)

These are known as the isometric multipliers.
Once again the case p D 2 is exceptional. It is well known that (20) holds for `2

A
D H2 if and only if ' is an

inner function. Indeed, Proposition 7.1 and (20) show that

j'.z/j 6 1; z 2 D:

Then use Parseval’s identity to rewrite (20) in integral form as

2�Z
0

jf .ei� /j2 .1 � j'.ei� /j2/
d�

2�
D 0; f 2 H2;
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88 R. Cheng et al.

which holds if and only if j'.ei� /j D 1 almost everywhere. In other words, ' is inner. When p 6D 2 the story is
different. Observe that

kznf kp D kf kp; f 2 `
p

A
; (21)

for all n > 0. In other words, the monomials zn are isometric multipliers for `p
A

. Are there others?

Theorem 11.1 (Nikolskii [21]). If p 2 .1;1/ n f2g and ' is an isometric multiplier for `p
A

, then '.z/ D zn for
some n > 0 and a unimodular constant  .

The proof is based on two sets of elementary inequalities due to Bernoulli [22, p. 31]. In the following x > 0, y > 0

and t > �1.

(i) For 0 < ˛ < 1
(a) we have

.x C y/˛ 6 x˛ C y˛

and equality holds if and only if either x D 0 or y D 0.
(b) we have

.1C t /˛ 6 1C ˛t

and equality holds if and only if t D 0.
(ii) For 1 < ˛ <1

(a) we have
.x C y/˛ > x˛ C y˛

and equality holds if and only if either x D 0 or y D 0.
(b) we have

.1C t /˛ > 1C ˛t

and equality holds if and only if t D 0.

Proof of Theorem 11.1. We treat the case 1 < p < 2 for which the first set of inequalities above are used. The other
case is similar.

We may write '.z/ D zn'1.z/, where  is unimodular, n is the order of the zero of h at the origin, and '1 is
such that '1.0/ > 0. By (21), we have

k'1f kp D kf kp; f 2 `
p

A
:

We will now show that '1 � 1.
Hence, considering the above reduction, assume that '.0/ > 0 and k'f kp D kf kp for all f 2 `p

A
. Take

f .z/ D 1C ei�z;

where we treat � as a free parameter. If

'.z/ D

1X
nD0

anz
n;

the isometric identity can be rewritten as

ja0j
p
C

1X
nD0

janC1 C ane
i�
j
p
D 2: (22)

We integrate both sides with respect to d� . First, due to periodicity, we have

2�Z
0

jaC bei� jp d� D

2�Z
0

ˇ̌
jaj C jbjei�

ˇ̌p
d�:
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Multipliers of sequence spaces 89

Second, an elementary calculation reveals thatˇ̌
jaj C jbjei�

ˇ̌2
D jaj2 C jbj2 C 2jabj cos � D .jaj2 C jbj2/ .1C s cos �/;

where

s D
2jabj

jaj2 C jbj2
:

Note that 0 6 s 6 1 and thus t WD s cos � > �1. Third, by the above Bernoulli inequalities we have

1

2�

2�Z
0

ˇ̌
jaj C jbjei�

ˇ̌p
d� D

.jaj2 C jbj2/
p
2

2�

2�Z
0

.1C s cos �/
p
2 d�

6
jajp C jbjp

2�

2�Z
0

�
1C

ps

2
cos �

�
d�

D jajp C jbjp;

and the equality holds if and only if either a D 0 or b D 0. Returning to (22), we get

2 6 ja0jp C
1X
nD0

.janC1j
p
C janj

p/ D 2

1X
nD0

janj
p:

If we plug f D 1 in we see that

k'kp D

 
1X
nD0

janj
p

!1=p
D 1:

Hence, in the above relation, equality holds, which in return implies that equality holds in all preceding inequalities.
Since a0 ¤ 0, we must have

a1 D 0:

We now repeat the above procedure with the function

f .z/ D 1C ei�z2

and deduce that a2 D 0. By induction, we have an D 0 for all n > 1. Since a0 > 0 and
P1
nD0 janj

p D 1, we
conclude that ' � a0 D 1.

12 Smooth multipliers

The family of analytic functions which are defined on a disk larger than the open unit disc is denoted by Hol.D/.
From Young’s Inequality (see (5)) we see that

`1A �Mp; p 2 Œ1;1/

with equality when p D 1. Thus certainly we have

Hol.D/ �Mp:

We present below an alternative proof of this fact where we can obtain further information.
Let us recall Schur’s test. Let A D Œaij � be an infinite matrix, and let p 2 .1;1/. Assume that there are positive

constants ˛ and ˇ and positive sequences fpi g and fqj g such thatX
i

jaij jp
p

i
6 ˛ q

p

j
; j > 1;
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90 R. Cheng et al.

and X
j

jaij j q
q

j
6 ˇ p

q

i
; i > 1:

Then A is a bounded operator on `p and moreover,

kAk`p!`p 6 ˛
1
p ˇ

1
q : (23)

For each f 2 Hol.D/ with Taylor series expansion

f .z/ D

1X
nD0

anz
n;

there is R > 1 and a c > 0 such that
janj 6

c

Rn
; n > 0: (24)

The constants R and c depend on f , but work uniformly with respect to n. This exponential decay plays the major
role in establishing the following result.

Theorem 12.1. If p 2 .1;1/, then Hol.D/ �Mp .

Proof. By Proposition 8.2, it is enough to show that the matrix A formed with the coefficients of ', according to
recipe (15), is a bounded operator on `p . We apply Schur’s test with pi D qi D t i , where t is a positive parameter
to be determined momentarily.

Fixing j , by (24), we have X
i

jaij jp
p

i
D

1X
iDj

jai�j j t
ip

6 c

1X
iDj

t ip

Ri�j

D ctjp
1X
iD0

�
tp

R

�i
D

c

1 � t
p

R

q
p

j
; j > 0:

Similarly, fixing i , by (24), we have

X
j

jaij j q
q

j
D

iX
jD0

jai�j j t
jq

6 c

iX
jD0

tjq

Ri�j

D ct iq
iX

jD0

�
1

tqR

�j
D

c

1 � 1
tqR

p
q

i
; i > 0:

Schur’s test ensures that

kAk`p!`p 6

 
c

1 � t
p

R

! 1
p
 

c

1 � 1
tqR

! 1
q

:

The above geometric series are convergent provided that tp < R and tq > 1=R. Hence, the acceptable range of t is

1

R1=q
< t < R1=p:
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Therefore we can say that

kAk`p!`p 6 inf
t2.R�1=q;R1=p/

 
c

1 � t
p

R

! 1
p
 

c

1 � 1
tqR

! 1
q

: (25)

In particular, with t D 1 we get
kAk`p!`p 6

c

1 � 1
R

; (26)

which is enough for our applications.

In the above proof, we took t D 1 in (25). Is it possible to get a better bound by choosing another value of t? In other
words, what is the optimal value of t?

The proof of Theorem 12.1 contains more information than presented in the theorem. By a closer look, we
obtain the following interesting convergence result.

Corollary 12.2. For p 2 .1;1/ and ' 2 Hol.D/ and denote its Taylor polynomial of degree n by 'n. Then

lim
n!1

k'n � 'kMp
D 0:

Moreover, the rate of decay is exponential.

Proof. Since

'.z/ � 'n.z/ D

1X
kDnC1

akz
k
D znC1

1X
kD0

akCnC1z
k ;

by (21), we have

k'n � 'kMp
D

 1X
kD0

akCnC1z
k


Mp

:

Thus, according to Proposition 8.2,
k'n � 'kMp

D kAnk`p!`p ;

where the matrix An is given by (15) but with the sequence

˛k D akCnC1; k > 0:

By (24) we have the estimate

j˛k j D jakCnC1j 6
c

RkCnC1
D
.c=RnC1/

Rk
; k > 0:

Therefore by (26),

kAnk`p!`p 6
c=RnC1

1 � 1
R

;

which reveals that k'n � 'kMp
exponentially decreases to zero.

Corollary 12.2 does not hold for an arbitrary multiplier. For example, we saw that M2 D H
1. However if ' 2M2

satisfies
k'n � 'kM2

D k'n � 'k1 ! 0;

then ' is continuous on D.
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13 `1
A

embeds contractively in Mp

In this Section, we provide a result which contains Theorem 12.1 as a special case. However, we stated that theorem
separately since the estimate in (25) should provide a better bound for the norm of the narrower class of multipliers
Hol.D/.

Theorem 13.1. For p 2 .1;1/ we have `1
A
�Mp and

khkMp
6 khk1

for every h 2 `1
A

.

Proof. Of course the result follows immediately from (5) (and also observed in [21]) but we include a proof using
the tools developed above. We again appeal to Proposition 8.2. Hence, it is enough to show that the matrix A formed
with the coefficients of h according to recipe (15) is a contraction on `p . We apply the simplest version of Schur’s
test, i.e., with pi D qi D 1.

Fixing j , we have X
i

jaij jp
p

i
D

1X
iDj

jai�j j D

1X
kD0

jak j D khk1:

Similarly, fixing i , we obtain

X
j

jaij j q
q

j
D

iX
jD0

jai�j j D

iX
kD0

jak j 6 khk1:

Therefore we may take
˛ D ˇ D khk1:

Schur’s test (23) ensures that
kAk`p!`p 6 khk1:

Corollary 13.2. Let p 2 .1;1/ and for h 2 `1
A

denote its Taylor polynomial of degree n by hn. Then

lim
n!1

khn � hkMp
D 0:

If the coefficients of h are all nonnegative, then Theorem 13.1 is reversible.

Theorem 13.3. Let p 2 .1;1/. If h 2Mp and the Taylor coefficients of h are nonnegative, then h 2 `1
A

.

Proof. In the inequality (17), take
x D y D .1; 1; : : : ; 1; 0; 0; : : : /

to get
nX
iD0

iX
jD0

aj 6 .nC 1/khkMp
:

After rearranging the sums we obtain

nX
kD0

�
1 �

k

nC 1

�
ak 6 khkMp

:

By the monotone convergence theorem, let n!1 to deduce

1X
kD0

ak 6 khkMp
:
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14 Boundary properties of multipliers

Since Mp � H
1 each h 2Mp has a non-tangential limit

^ lim
z!ei�

h.z/

for almost every � . Lebedev and Olevskii [14, 17, 18] observed that more can be said. Their work is based on the
following technical discussion.

Recall the definition of Ap.T/ for p 2 Œ1; 2� from (18)

Ap.T/ WD

(
f 2 L2.T/ W

1X
nD�1

jbf .n/jp <1)
and its corresponding space of multipliers

Mp.T/ WD f' 2 L1.T/ W f 2 Ap.T/ W 'f 2 Ap.T/g:

This next result is a bit technical and we refer the reader to the references for the proof.

Theorem 14.1 (Lebedev and Olevskii [14, 17, 18]). If p 2 Œ1; 2/ and  2Mp.T/, there is a continuous function ‰
on T such that  D ‰ almost everywhere on T.

Corollary 14.2. Let p 2 Œ1; 2/ and ' 2Mp . Then the unrestricted limit

lim
z!ei�

'.z/

exists for almost all � .

Proof. From Proposition 9.1 we know that the almost everywhere defined radial boundary function '� belongs to
Mp.T/ and, by Theorem 14.1, there is a continuous function ˆ on T that is equal to '� almost everywhere. Since
'� is the radial boundary function for ', we have the well-known Poisson integral formula

'.z/ D

2�Z
0

Pz.e
i� /'�.ei� /

d�

2�
D

2�Z
0

Pz.e
i� /ˆ.ei� /

d�

2�
;

where Pz.ei� / is the Poisson kernel.
If eit is a point of continuity of ‰, a well-known fact from harmonic analysis says that

lim
z!eit

2�Z
0

Pz.e
i� /ˆ.ei� /

d�

2�
D ˆ.eit /:

However, almost every point of T is a point of continuity of ˆ and the result now follows.

The essential feature of Corollary 14.2 is that z 2 D freely tends to the boundary point � and it is not obliged to stay
in a Stolz domain (non-tangential approach region). We also mention that it is sometimes (often?) the case the set of
multipliers for a Banach space of analytic functions are better behaved near the boundary than generic functions in
the space.

15 Inner multipliers

A worthy set of functions to test as possible multipliers for Mp are the inner functions. We know that the monomials
'n.z/ D z

n are multipliers, in fact isometric multipliers. Are there any other inner multipliers?
Certainly any finite Blaschke product is an inner multiplier since these are analytic in an open neighborhood of

D (see Theorem 12.1). There are some infinite Blaschke products which are multipliers for all of the `p
A

classes.

Brought to you by | Old Dominion University
Authenticated

Download Date | 11/30/17 7:54 PM



94 R. Cheng et al.

Theorem 15.1 (Vinogradov [25], Verbitskii [23]). Let fzngn>1 be a Blaschke sequence in D such that
(i) limn!1 zn D 1,

(ii) and X
fnWj1�znj<"g

j1 � znj D O."/; "! 0:

Let B be the corresponding Blaschke product. Then

B 2
\

1<p<1

Mp:

The Blaschke product presented in Theorem 15.1 is discontinuous at the point z D 1. As a matter of fact,

lim inf
z!1

jB.z/j D 0 while lim sup
z!1

jB.z/j D 1:

The first example of this type was constructed by Vinogradov. He proved Theorem 15.1 for zeros tending
nontangentially to 1 in [24] and then generalized it in [25]. The same result was obtained independently by Verbitskii
[23]. Finally, Lebedev [15] showed that Theorem 15.1 is partially reversible. See also [16] for a short survey on inner
`p-multipliers.

It is worth mentioning that Vinogradov [24] obtained the weak version of Theorem 15.1 as the corollary of a
more general result. To present his result, we need the domain

�.r; ˛/ D fz W jzj < rg n fz W j arg.z � 1/j 6 ˛g;

where r > 1 and 0 6 ˛ < �=2.

Theorem 15.2 (Vinogradov [24]). For each r > 1 and ˛ 2 .0; �
2
/, we have

H1
�
�.r; ˛/

�
�

\
p2.1;1/

Mp:

A little thought will show that any Blaschke product whose zeros tend non-tangentially to 1 (i.e., lie in a fixed
Stolz domain) satisfies the condition of Theorem 15.2 for some r > 1 and ˛ 2 Œ0; �; 2/, and thus the weak version
of Theorem 15.1 follows. However, there is a large family of functions which are not inner and still fulfill the
requirements of Theorem 15.2. Note that this result does not apply to the singular inner functions

sa.z/ WD exp
�
�a
1C z

1 � z

�
; .a > 0/:

As a matter of fact, we will see that sa does not belong to Mp , for any p 2 .1;1/ n f2g.
We can use Corollary 14.2 to eliminate certain classes of inner functions as multipliers. Let us recall that if h is

an inner function, then its boundary spectrum is

�.h/ WD
n
� 2 T W lim inf

z!�
jh.z/j D 0

o
:

Equivalently [11, p. 154], if h D BS is the decomposition of h as the product of a Blaschke factor B formed with
zeros fzngn>1 and a singular inner function S formed with the singular measure �, then �.h/ is precisely the union
of the spectrum of � and the accumulation points of fzngn>1 on T. The Lebesgue measure of a measurable set
E � T is denoted by jEj.

Theorem 15.3. Let h be an inner function such that j�.h/j > 0. Then

h 62Mp

for any p 2 .1;1/ n f2g.
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Proof. Since Mp DMq (Proposition 8.3) we can assume p 2 Œ1; 2/. If h 2Mp , then, by Corollary 14.2,

h.�/ D 0

for almost all � 2 �.h/. Since at the same time jhj D 1 almost everywhere on T, we conclude that the Lebesgue
measure of �.h/ is zero.

Surprisingly, the mere existence of a singular inner function in Mp is still an open question. According to Theorem
15.3, the condition j�.h/j D 0 is necessary for being a multiplier. However, this condition is not sufficient. For
example, as we mentioned before, Verbitskii [23] showed that the simplest singular inner function

sa.z/ D exp
�
�a
1C z

1 � z

�
; a > 0:

is not in any Mp , for p 2 .1;1/ n f2g. We provide some further results clarifying the fact that the condition
j�.h/j D 0 is far from being sufficient for multipliers.

Let E � T. For an arc I � T, we define the quantity

dE.I / WD supfjJ j W J is an arc, J � I; J \E D ;g:

In other words, and naively speaking, when we remove the points of E from I, then dE.I / is the size of largest arc
among the remaining pieces. We say that � 2 T is a point of thickness of E provided that dE.I / D o.jI j/ for arcs I
containing � and shrinking to this point. The set of all points of thickness of E is denoted by Eth. It is clear that for
a closed set E, we have Eth � E. The following result establishes the connection between the measures of an arc
and dE.I /.

Lemma 15.4. Let S be a singular inner function, corresponding to the singular measure �, let E be its support.
Suppose that S 2Mp for some p with p 2 .1;1/ n f2g. Then for each arc I � T with dE.I / > 0 we have

�.I / 6 c
jI j4

d3
E
.I /

;

where c does not depend on I .

We need a technical result first which uses our previous Fourier multiplier discussion.

Proposition 15.5. Let ‚.t/ be a real-valued 2�-periodic function on R such that

' WD ei‚ 2Mp.T/

for some p 2 .1;1/nf2g. Suppose I � R is an interval of length at most 2� and that‚ has a continuous derivative
of order n > 2 on I . Then

inf
t2I
j‚.n/.t/j 6

c

jI jn
;

where the constant c D c.‚; p; n/ does not depend on I .

Proof. By Corollary 8.3, we have Mp DMq . Therefore, without loss of generality, we assume that p < 2. Let �I
denote the characteristic function of I . It is easy to directly verify that �I 2 Ap.T/ and estimate its norm. In fact,
the Fourier coefficient of �I are given by c�I .0/ D jI j

2�

and c�I .k/ D k sin.kjI j=2/
�k

; k 2 Z n f0g;

where k is a unimodular constant. Hence, �I 2 Ap.T/ and, moreover,

k�IkAp.T/ D kc�Ik`p.Z/
Brought to you by | Old Dominion University

Authenticated
Download Date | 11/30/17 7:54 PM



96 R. Cheng et al.

D

 
1X

kD�1

jc�I .k/jp! 1
p

>

0@ X
jkj6�=2jI j

jc�I .k/jp
1A 1
p

>

0@ X
jkj6�=2jI j

.jI j=4�/p

1A 1
p

>
�
�

jI j
.
jI j

4�
/p
� 1
p

>
1

15
jI j1�

1
p :

Note that the last estimate also holds for p D1. Since ' 2Mp.T/, and thus

k�IkAp.T/ D k' � N'�IkAp.T/ 6 k'kMp.T/ k N'�IkAp.T/;

we conclude that
k N'�IkAp.T/ >

1

15k'kMp.T/
jI j1�

1
p : (27)

Therefore, we need a strategy to deal with the left side of above inequality. To this end, we need the well-known
Corput lemma [3, Chapter I]: if a real-valued function g has a continuous derivative of order n > 2 on an interval I ,
then ˇ̌̌̌

ˇ̌Z
I

eig.t/ dt

ˇ̌̌̌
ˇ̌ 6

cn�
inf
t2I
jg.n/.t/j

� 1
n

;

where cn is a positive constant that just depends on n. We apply this result to the function g.t/ D ‚.t/C kt . Since
n > 2, we have

inf
t2I
jg.n/.t/j D inf

t2I
j‚.n/.t/j:

Thus, for all k 2 Z,

jbN'�I .k/j D 1

2�

ˇ̌̌̌
ˇ̌Z
I

e�i.‚.t/Ckt/ dt

ˇ̌̌̌
ˇ̌ 6

cn

2�

�
inf
t2I
j‚.n/.t/j

� 1
n

:

In short, this means that
kbN'�Ik`1.Z/ 6

cn

2�

�
inf
t2I
j‚.n/.t/j

� 1
n

:

At the same time,

kbN'�Ik`2.Z/ D k N'�Ik`2.Z/ D
�
jI j

2�

� 1
2

:

Now, we can interpolate `p between `2 and `1 [? , Chapter 6] to obtain

k N'�IkAp.T/ D kbN'�Ik`p.Z/
6 kbN'�Ik1�

2
p

`1.Z/k
bN'�Ik

2
p

`2.Z/

6

0BBB@ cn

2�

�
inf
t2I
j‚.n/.t/j

� 1
n

1CCCA
1� 2p �

jI j

2�

� 1
p

:

If we plug this estimation into (27) we obtain the required result.
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Proof of Lemma 15.4. Assume that dE.I / > 0 (otherwise the result is trivial). Hence, there is an arc J � I such
that J \ E D ; and jJ j > dE.I /=2. Moreover, we may also assume that dist.J;E/ > 0. We consider a copy of J
on R in the following way: let � be an interval on R such that j�j < 2� and

J D feit W t 2 �g:

We can write S.eit / D ei‚.t/, where ‚ is a real-valued 2�-periodic function and, for t 2 �, it is given by

‚.t/ D

2�Z
0

cot
�
s � t

2

�
d�.eis/:

Since dist.J;E/ > 0, the function ‚ is infinitely differentiable on � and the operator @=@t can commute with the
integral. Since

@3

@t3
cot

�
s � t

2

�
D
3 cos2..s � t /=2/C sin2..s � t /=2/

4 sin4..s � t /=2/

>
1

4 sin4..s � t /=2/
D

4

jeis � eit j4
;

we see that

‚.3/.t/ >
Z
T

4

jeis � eit j4
d�.eis/ >

Z
I

4

jeis � eit j4
d�.eis/ >

4�.I /

jI j4
:

By Proposition 9.1, the assumption S 2 Mp is equivalent to ei‚ 2 Mp.T/. Therefore, applying Proposition 15.5
for the third derivative of ‚, we obtain

4�.I /

jI j4
6

c

j�j3
:

Since j�j D jJ j > dE.I /=2, the result follows.

Now we have all the required tools to establish an important result which shows that the condition jEj D 0 alone is
not enough to ensure that S 2Mp , for some p 2 .1;1/ n f2g. The set E is the boundary spectrum of S .

Theorem 15.6 (Lebedev [15]). Let S be a singular inner function and let E be its boundary spectrum. If Eth ¤ E,
then S 62Mp for any p with p 2 .1;1/ n f2g.

Proof. Suppose that, to the contrary, there is a p 2 .1;1/ n f2g for which S 2Mp . Then, by Lemma 15.4, for any
arc I � T, we have

�.I / 6 c
jI j4

d3
E
.I /

;

where c does not depend on I . Let us write this inequality as�
dE.I /

jI j

�3
6 c

jI j

�.I /
:

Since � is singular, for �-almost all � 2 T, we have

�.I /

jI j
! 1

as I contains � and shrinks to this point. Therefore, at all such points,

dE.I /

jI j
! 0;

or equivalently, they are points of thickness for E. Hence, we can surely say �.T n Eth/ D 0. As E is closed and
Eth � E, we must have Eth D E, which contradicts our assumption.
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98 R. Cheng et al.

To effectively use Theorem 15.6, let us introduce the concept of porous sets. We say that E � T is a porous set if
there exists a constant c > 0 such that for all arcs I � T

dE.I / > cjI j:

For example, a singleton is a porous set. But, there are more sophisticated constructions. Clearly, if E is porous, then
Eth D ;. Hence, we immediately deduce the following corollary.

Corollary 15.7 (Lebedev [15]). Let S be a singular inner function whose spectrum is a porous set. Then S 62 Mp

for any p 2 .1;1/ n f2g.

In particular,

sa.z/ D exp
�
�a
1C z

1 � z

�
; a > 0; (28)

is not in Mp , for any p 2 .1;1/ n f2g. Using special techniques from the theory of Bessel functions, this particular
result was first obtained by Verbitskii [23]. However, the original proof of Verbitskii has interesting pieces worth
mentioning. Bessel functions are an important topic in the theory of special functions [8–10]. A Bessel function of
the first kind and order � is defined by

J�.x/ WD

1X
nD0

.�1/n

nŠ�.nC � C 1/

�x
2

�2nC�
:

Fix the constant  > 0 and define the kernel

k.x/ WD
1
p
x
J1.
p
x/; x > 0:

From here we can define the integral operator

.Kf /.x/ WD

1Z
0

k.t/f .t � x/ dt

on Lp.RC/. Using special properties of Bessel functions, we can show that K is unbounded whenever p 2 .2; 4/.
To see this, consider

f .x/ WD x�=2J�.ˇ
p
x/; x > 0;

where the parameters � and ˇ will be determined soon. If

� C
1

p
> 0 and .

�

2
�
1

4
/p C 1 < 0;

then f 2 Lp.RC/. Moreover, one of the Sonine relations for Bessel functions [9] says that

.Kf /.x/ D
ˇ�

.2 � ˇ2/�=2
x�=2J��

�
.2 � ˇ2/1=2

p
x
�
; x > 0:

Therefore,

kKf k
p

Lp.R/

kf k
p

Lp.R/
D

ˇ�p

p.2 � ˇ2/�p=2

1Z
0

ˇ̌
x�=2J��

�
.2 � ˇ2/1=2

p
x
�ˇ̌p

dx

1Z
0

ˇ̌
x�=2J�

�
.2 � ˇ2/1=2

p
x
�ˇ̌p

dx

D
ˇ2.�pC1/

p.2 � ˇ2/�pC1

1Z
0

ˇ̌
x�=2J��

�p
x
�ˇ̌p

dx

1Z
0

ˇ̌
x�=2J�

�p
x
�ˇ̌p

dx

:
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The above estimate shows that
kKf k

p

Lp.R/

kf k
p

Lp.R/
!1

as ˇ tends to  . Hence, K is an unbounded operator on Lp.RC/ when p 2 .2; 4/. Therefore,

bk 62Mp.R/;
whereMp.R/ is the class of Fourier integrals that is defined similarly toMp.T/ [12]. However, the Fourier transform
of the kernel k is bk.x/ D 2


.1 � e�2i˛=x/;

where ˛ D 2=8 whence
e�2i˛=x 62Mp.R/:

This assertion is equivalent to
e�i˛= tan.x=2/

62Mp.R/:

The advantage of the latter is that it is a 2�-periodic function on R. Thus in light of de Leeuw’s theorem [6], the
atomic inner function given by the formula (28) is not a multiplier on Mp .

Our second theorem has the same flavor and it leads to interesting corollaries which are easy to verify.

Theorem 15.8 (Lebedev [15]). Let S be a singular inner function, and let E be its spectrum. Suppose that, for each
" > 0, there are at most countably many arcs In such that

E �
[
n>1

In

and X
n>1

jInj
4

d3
E
.In/

< ": (29)

Then S 62Mp for any p 2 .1;1/ n f2g.

Proof. Suppose that, to the contrary, there is a p 2 .1;1/ n f2g for which S 2Mp . Therefore, for each " > 0, there
is a covering of E by arcs In such that (29) holds. In the light of Lemma 15.4, we deduce that

�.E/ 6
X
n>1

�.In/ 6
X
n>1

c
jInj

4

d3
E
.In/

6 c":

Since " is arbitrary, we must have � D 0 which is a contradiction.

The success of Theorem 29 lies on the fact that a covering with the property 29 forces the �-size of the set to be zero.
Hence, if the covering holds just for a smaller subset F � E for which �.F / > 0, then the conclusion of theorem
is still valid. The condition of Theorem 29 is rather difficult to verify. However, we can establish a link between this
result and the length of complementary arcs of E which is way easier to handle.

Corollary 15.9 (Lebedev [15]). Let E � T be a closed subset of Lebesgue measure zero. Let Jn denote the arcs
that are complementary to E and ordered such that

jJnj > jJnC1j; n > 1:

Assume that

lim inf
N!1

1

jJN j3=4

X
n>N

jJnj D 0: (30)

If S is a singular inner function whose spectrum is contained in E, then S 62Mp for any p 2 .1;1/ n f2g.
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100 R. Cheng et al.

Proof. Fix N . By removing J1; : : : ; JN from T, we obtain N arcs which we call K1; : : : ; KN . Let In be the arc of
size 3jKnj and concentric with Kn. Then

E �

N[
nD1

In

and
dE.In/ > minfjKnj; jJN jg:

Note that, as an extreme case, it is possible that Jn is a singleton. In this case, to avoid certain technical difficulties,
we may replace it with a small arc, e.g., of size 2jJN j. Then

NX
nD1

jInj
4

d3
E
.In/

6
X

16n6N
jKnj6jJN j

jInj
4

d3
E
.In/

C

X
16n6N
jKnj>jJN j

jInj
4

d3
E
.In/

6
X

16n6N
jKnj6jJN j

.3jKnj/
4

jKnj3
C

X
16n6N
jKnj>jJN j

.3jKnj/
4

jJN j3

6 81

NX
nD1

jKnj C
81

jJN j3

 
NX
nD1

jKnj

!4

D 81
X
n>N

jJnj C
81

jJN j3

 X
n>N

jJnj

!4
:

By hypothesis, the right hand side can be made arbitrarily small. Therefore, the conditions of Theorem 15.8 are
fulfilled and S cannot be in any Mp for any p 2 .1;1/ n f2g.

It is easy to see that if X
n>1
jJnj <1;

then (30) holds. We provide further classes below.
To obtain a similar useful corollary, we need a well-known concept. Given E � T, its "-neighborhood is

E" WD f� 2 T W dist.�; E/ < "g:

To measure the distance, we might use either the arc length or the Euclidian metric. The choice is irrelevant for the
following result.

Corollary 15.10 (Lebedev [15]). Let E � T be such that

lim
"!0

jE"j

"3=4
D 0: (31)

If S is a singular inner function whose spectrum is contained in E, then S 62Mp for any p 2 .1;1/ n f2g.

Proof. Fix " > 0. Without loss of generality, we assume that E" ¤ T. Otherwise, we choose a smaller ". The set E"
is a disjoint union of a finite number of arcs, e.g., I1; : : : ; IN . Certainly, for each arc,

dE.In/ > ":

Therefore, for the covering In of E, we have

NX
nD1

jInj
4

d3
E
.In/

6
1

"3

NX
nD1

jInj
4 6

1

"3

 
NX
nD1

jInj

!4
D
jE"j

4

"3
:

By assumption, the right hand side can be made arbitrarily small and thus the conditions of Theorem 15.8 are
fulfilled. Hence, S 62Mp for any p with p ¤ 2, 1 6 p 61.
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We end this section by showing that a wide range of generalized Cantor sets fall into the family of sets described
above. Let .�n/n>0 be a sequence in the interval .0; 1/. Let I be a closed arc on T of size �0 D jI j. The generalized
Cantor set is constructed as follows:

Step 1: from I we remove the concentric open arc of length �0�0. As so, we obtain two arcs of length

�1 D
1

2
.1 � �0/�0:

Step 2: from each of the remaining two arcs, we remove an open concentric arc of length �1�1. As so, we obtain
four arcs of length

�2 D
1

2
.1 � �1/�1:

Step n: we continue the above process and in the n-th step we would have 2n intervals of length

�n D
.1 � �n�1/�n�1

2
D
.1 � �n�1/ � � � .1 � �0/�0

2n
:

The remaining set, which can be written as the intersection of the union of the above 2n arcs, is called the generalized
Cantor set. It is rather straightforward to see that if

lim
N!1

1

�3
N

N�1Y
nD1

.1 � �n/ D 0

then the conditions of Theorem 15.8 are fulfilled. Hence, S is any singular inner function whose spectrum is
contained in E then S 62Mp for any p 2 .1;1/ n f2g.

16 Orthogonality

The notion of Birkhoff-James orthogonality [2, 13] extends the concept of orthogonality from an inner product space
to a more general normed linear space. Let x and y be vectors belonging to a normed linear space X . We say that x
is orthogonal to y in the Birkhoff-James sense if

kxC ˇykX > kxkX (32)

for all scalars ˇ. In this situation we write x ?X y. It is straightforward to show that when X is a Hilbert space, then
x ? y is equivalent to x ?X y. The relation ?X is generally neither symmetric nor linear. When X D `p , let us
write ?p in place of the more cumbersome ?`p . Of particular importance here is the following explicit criterion for
the relation ?p when p 2 .1;1/.

Theorem 16.1 (James [13]).

a ?p b ”
1X
kD0

jak j
p�2akbk D 0; (33)

where any occurrence of “j0jp�20” in the sum above is interpreted as zero.

Borrowing from (33) we define, for a complex number ˛ D rei� , and any s > 0, the quantity

˛hsi D .rei� /hsi WD rse�i� : (34)

It is easy to verify that for any complex numbers ˛ and ˇ, real exponent s > 0, and integer n > 0, we have

.˛ˇ/hsi D ˛hsiˇhsi

j˛hsij D j˛js
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102 R. Cheng et al.

˛hsi˛ D j˛jsC1

.˛hsi/n D .˛n/hsi

.˛hp�1i/hq�1i D ˛:

In light of the definition (34), for a D .ak/k>0, let us write

ahp�1i WD .ahp�1i
k

/k>0: (35)

If a 2 `p , it is easy to see that ahp�1i 2 `q and thus from (2) and (33),

a ?p b ” .b; ahp�1i/ D 0: (36)

Note that ?p is therefore linear in its second argument, when p 2 .1;1/, and it then makes sense to speak of a
vector being orthogonal to a subspace of `p .

Due to the isometry between `p and `p
A

, we can pass the Birkhoff-James orthogonality from `p to `p
A

. More
explicitly, if

a.z/ D

1X
kD0

akz
k ; and b.z/ D

1X
kD0

bkz
k

are in `p
A

, then
a ?p b ” a ?p b:

Similarly, we define

ahp�1i.z/ D

1X
kD0

a
hp�1i

k
zk :

Note that ahp�1i 2 `q
A

and (36) is rewritten as

a ?p b ” .b; ahp�1i/ D 0: (37)

17 An application to zeros of analytic functions

In this section we discuss an application of multipliers and Birkhoff-James orthogonality to estimating zeros of
polynomials from [20].

We first introduce a special function that enables us to connect an analytic function to an orthogonality condition.
For p 2 .1;1/ and w 2 D n f0g, define

Bp;w.z/ WD
1 � z=w

1 � whq�1iz
:

Since jwhq�1ij D jwjq�1 < 1, the function Bp;w is analytic in D. When p D 2 observe that wh2�1i D w and so

B2;w D
1

w

w � z

1 � wz
; (38)

which is just a constant multiple of a Blaschke factor. Using the fact that jB2;w.ei� /j D jwj�1 for all � , we see that

2�Z
0

B2;w.ei� /S
kB2;w.e

i� /
d�

2�
D

1

jwj2

2�Z
0

eik�
d�

2�
D 0; k > 1:

Thus B2;w ?2 SkB2;w for all k > 1. It turns out that something analogous holds when p 2 .1;1/. We refer the
reader to [20] for the proof.

Lemma 17.1. For each p 2 .1;1/ and w 2 D n f0g we have
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(i) Bp;w ?p Bp;wf for all f 2 `p
A

with f .0/ D 0;

(ii) kBp;wkp D
h
1C

.1 � jwjq/p�1

jwjp

i1=p
:

It could be said that Bp;w plays a role in `p
A

analogous to that of a Blaschke factor in the Hardy spaceH2. However,
here the situation is more complicated. See [5] for an exploration of this idea.

Here is our application of `p
A

multipliers to obtain another proof of a set of classical bounds for the zeros of an
analytic function. These bounds are tied to the well-known estimates for polynomial roots by Cauchy, Lagrange, and
others (see, for example, [19]). Yet another proof of this result appears in [20], along with some extensions, based
on using Birkhoff-James orthogonality more directly.

Theorem 17.2. Suppose that

f .z/ D

1X
kD0

akz
k

is analytic in D, and a0 ¤ 0. If w 2 D is a zero of f , then

jwj >
�ˇ̌̌a1
a0

ˇ̌̌
C

ˇ̌̌a2
a0

ˇ̌̌
C

ˇ̌̌a3
a0

ˇ̌̌
C � � �

��1
(39)

jwj >
�
1C sup

nˇ̌̌a1
a0

ˇ̌̌
;
ˇ̌̌a2
a0

ˇ̌̌
;
ˇ̌̌a3
a0

ˇ̌̌
; � � �

o��1
(40)

and

jwj >
�
1C

�ˇ̌̌a1
a0

ˇ̌̌p
C

ˇ̌̌a2
a0

ˇ̌̌p
C

ˇ̌̌a3
a0

ˇ̌̌p
C � � �

�q=p��1=q
(41)

for all p 2 .1;1/.

Proof. Fix p 2 .1;1/ and assume that f 2 `
p

A
. Otherwise the right hand side is zero and the inequality is

automatically true. Recall that
Œf � D

_
fzkf W k > 0g

and note that SŒf � is a (closed) subspace of `p
A

since S is an isometry. Write ef for the metric projection of f onto
SŒf �. Since `p

A
is uniformly convex [4], this metric projection is the unique function ef 2 `p

A
satisfying

inffkf � gkp W g 2 SŒf �g D kf � ef kp: (42)

Let

f1.z/ WD
f .z/

1 � z=w
D �w.Qwf /.z/

and note, by hypothesis, that f1 analytic in D and

f1.0/ D f .0/ D a0: (43)

Furthermore, by Proposition 6.1, we have f1 2 `
p

A
. If P denotes the analytic polynomials, we have

kf kp > kf � ef kp (by (42)) (44)

D inffkf C zqf kp W q 2 Pg

D inf
�f1�1 � z

w

�
C zq

�
1 �

z

w

�
f1


p
W q 2 P

�
D inf

�f1�1 � z

w

�
.1C zq/


p
W q 2 P

�
D inf

�f1�1 � z

w

�
Q

p
W Q 2 P;Q.0/ D 1

�
: (45)
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104 R. Cheng et al.

For any Q 2 P with Q.0/ D 1 we have the identity

f1Bp;w.1 � w
hq�1iz/Q D f1

�
1 �

z

w

�
Q: (46)

Furthermore, if
Q

1 � whq�1iz
D

1X
kD0

dkz
k

and

Qn D

nX
kD0

dkz
k ;

then Qn 2 P with Qn.0/ D 1 and by Corollary 12.2, we getQn � Q

1 � whq�1iz


Mp

! 0;

From here we see thatQnf1�1 � z

w

�
� f1Bp;wQ


p

6
1 � z

w


Mp

Qn � Q

1 � whq�1iz


Mp

kf1kp

which goes to zero as n!1. Combine this with (46) to see that the sets

ff1Bp;wQ W Q 2 P;Q.0/ D 1g and ff1.1 �
z

w
/Q W Q 2 P;Q.0/ D 1g

have the same closure in `p
A

. Thus (45) is equal to

inffkf1Bp;wQkp W Q 2 P;Q.0/ D 1g: (47)

In a somewhat similar way, let Q 2 P with Q.0/ D 1. If

f1Q D

1X
kD0

ckz
k

and

Qn D
1

a0

nX
kD0

ckz
k ;

then Qn 2 P with Qn.0/ D 1 (see (43)) and

ka0Qn � f1Qkp D

0@ 1X
kDnC1

jck j
p

1A1=p ! 0:

Thus
ka0Bp;wQn � f1Bp;wQkp 6 kBp;wkMp

ka0Qn � f1Qkp ! 0:

This says that the closure of
fa0Bp;wQ W Q 2 P;Q.0/ D 1g

in `p
A

is contained in the closure of
ff1Bp;wQ W Q 2 P;Q.0/ D 1g:

From this containment of closures, we see that (47) is bounded below by

ja0j inffkBp;wQkp W Q 2 P;Q.0/ D 1g: (48)

Using the fact that Q.0/ D 1, write

Bp;wQ D Bp;w C .Q �Q.0//Bp;w
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and use Lemma 17.1 and (32) to see that (48) is bounded below by

ja0j � kBp;wkp:

By Lemma 17.1, the above is equal to

ja0j �
h
1C

.1 � jwjq/p�1

jwjp

i1=p
:

Following this all the way back to (44) yields the inequality

kf kp > ja0j �
h
1C

.1 � jwjq/p�1

jwjp

i1=p
from which it follows

.1 � jwjq/p�1

jwjp
6
ˇ̌̌a1
a0

ˇ̌̌p
C

ˇ̌̌a2
a0

ˇ̌̌p
C

ˇ̌̌a3
a0

ˇ̌̌p
C � � � :

Writing

M WD
nˇ̌̌a1
a0

ˇ̌̌p
C

ˇ̌̌a2
a0

ˇ̌̌p
C

ˇ̌̌a3
a0

ˇ̌̌p
C � � �

o1=p
;

we have

.1 � jwjq/p�1

jwjp
6 Mp

.1 � jwjq/p�1 6 jwjpMp

.1 � jwjq/1=q 6 jwjM
.1 � jwjq/ 6 jwjqMq

1

.Mq C 1/1=q
6 jwj:

This proves (41). The bounds in (39) and (40) are obtained by taking the limits p ! 1 and p !1, respectively.

18 Coefficient estimates

We know from Corollary 8.4 that if h 2Mp then in fact h 2 `p
A

and

khkp 6 khkMp
: (49)

If we use the hhp�1i idea via Birkhoff-James orthogonality, we can sharpen this inequality considerably.

Proposition 18.1. Suppose that p 2 .1;1/ and h 2Mp . Then

khkp�1p � khkMp
>
h�
ja0j

p
C ja1j

p
C ja2j

p
C � � �

�q
(50)

C

ˇ̌̌
a
hp�1i

1
a0 C a

hp�1i

2
a1 C a

hp�1i

3
a2 C � � �

ˇ̌̌q
C

ˇ̌̌
a
hp�1i

2
a0 C a

hp�1i

3
a1 C a

hp�1i

4
a2 C � � �

ˇ̌̌q
C

ˇ̌̌
a
hp�1i

3
a0 C a

hp�1i

4
a1 C a

hp�1i

5
a2 C � � �

ˇ̌̌q
C � � �

i1=q
Proof. Let f .z/ D

P1
kD0 bkz

k belong to `p
A

. Let us write f for the isomorph of f in the sequence space `p and
hf for the corresponding sequence for hf . Then for any c 2 `q , the linear functional

f 7! .hf; c/
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106 R. Cheng et al.

is continuous on `p
A

with norm no greater than khkMp
kckq . In particular, we could consider the basic vectors

e0 WD .1; 0; 0; 0; : : :/;

e1 WD .0; 1; 0; 0; : : :/;

e2 WD .0; 0; 1; 0; : : :/;

:::

for `q , where we find that

hhf; eki D
kX
jD0

ak�j bj

D .f; .ak ; ak�1; : : : ; a1; a0; 0; 0; : : ://:

Set
u.k/ WD .ak ; ak�1; : : : ; a1; a0; 0; 0; : : :/:

It follows that for any c WD .c0; c1; c2; : : :/ 2 `q , we have

.hf; c/ D .f;
1X
kD0

ckh.k//

If we interpret this operation

f 7! .f;
1X
kD0

cku.k//

as a bounded linear functional on `p , the Riesz Representation Theorem says that the sequence

1X
kD0

cku.k/

must belong to `q . Let us write out what that means term by term:ˇ̌̌
a0c0 C a1c1 C a2c2 C � � �

ˇ̌̌q
C

ˇ̌̌
a0c1 C a1c2 C a2c3 C � � �

ˇ̌̌q
C

ˇ̌̌
a0c2 C a1c3 C a2c4 C � � �

ˇ̌̌q
C � � �

6 khkMq
� kck

q

`q
: (51)

Now it is a simple matter to substitute

c D .ahp�1i
0

; a
hp�1i

1
; a
hp�1i

2
; : : :/;

which belongs to `q , to obtain (50).

Remark 18.2. Notice that if you drop all but the first line in the right side of (50), then you obtain (49), and
so Proposition 18.1 does indeed represent a dramatic sharpening of (49). Also notice that if h is Birkhoff-James
orthogonal in `p

A
to zkh for all positive integers k, then in fact all but the first line in the right side of (50) is zero.

This is the case when h D Bp;w .
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Multipliers of sequence spaces 107

19 Hadamard multipliers

Let f and g be two analytic functions on D with Taylor series expansions

f .z/ D

1X
nD0

anz
n and g.z/ D

1X
nD0

bnz
n:

The Hadamard product of f and g is defined by

.f ˘ g/.z/ D

1X
nD0

anbnz
n:

Since f and g are analytic on D, it is easy to verify that f ˘g is also analytic on D. Note that the disk of convergence
might be larger, e.g., consider odd and even functions. We say that h is a Hadamard multiplier of `p

A
if the operator

Mh W `
p

A
! `

p

A
; Mhf D h ˘ f:

is well-defined and continuous. As a rule of thumb, if the norm is defined via Taylor coefficients, e.g., Dirichlet
space, Hardy space H2, Bergman space A2, and `p

A
spaces, then determining the Hadamard multipliers if usually

not a difficult task. However, if the norm is defined differently, e.g., via an integral as in the Hardy spaces Hp , the
Bergman spaces Ap , and the harmonically weighted Dirichlet spaces D�, determining the Hadamard multipliers is
non-trivial.

In [7] one can find a discussion of the Hadamard multipliers between various Hp classes. Here is a
characterization of the Hadamard multipliers for `p

A
.

Theorem 19.1. Let p 2 .1;1/. Then the Hadamard multiplier space of `p
A

is isometrically isomorphic to `1
A

.
More explicitly, for each h 2 `1

A
, we have

kMhk D khk`1A :

Conversely, if kMhk <1, then h 2 `1
A

.

Proof. First suppose that h.z/ D
P1
nD0 anz

n 2 `1
A

. Then for each f .z/ D
P1
nD0 bnz

n 2 `
p

A
, we have

kMhf k`pA
D

 
1X
nD0

janbnj
p

! 1
p

6
�

sup
n>0
janj

� 1X
nD0

jbnj
p

! 1
p

D khk`1A kf k`
p
A
:

Thus h is in fact a Hadamard multiplier and moreover,

kMhk 6 khk`1A :

To show that equality holds, consider the monomials fm.z/ D zm, m > 0. Then kfmk`pA D 1 and

kMhf k`pA
D

 
1X
nD0

janbnj
p

! 1
p

D jamj:

Thus
kMhk > jamj m > 0;

which implies the reverse inequality
kMhk > khk`1A :
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108 R. Cheng et al.

By a similar argument, we can show that if kMhk <1, then h 2 `1
A

. In fact, we must have

kMhf k`pA
6 kMhk kf k`pA

for all f 2 `p
A

. In particular, if we apply the inequality above to fm, we obtain

jamj 6 kMhk; m > 0:

Taking supremum with respect to m implies h 2 `1
A

.
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