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Crowds are a part of everyday public life, from stadiums and arenas to 
school hallways. Occasionally, pushing within the crowd spontaneously 
escalates to crushing behavior, resulting in injuries and even death. The 
rarity and unpredictability of these incidents provides few options to 
collect data for research on the prediction and prevention of hazardous 
emergent behaviors in crowds. This study takes a close look at the way 
states of agitation, such as panic, can spread through crowds. Group 
composition—mainly family groups composed of members with differ-
ing mobility levels—plays an important role in the spread of agitation 
through the crowd, ultimately affecting the exit density and evacuation 
clearance time of a simulated venue. This study used an agent-based 
model of pedestrian movement during the egress of a hypothetical room 
and adopted an emotional, cognitive, and social framework to explore 
the transference and dissipation of agitation through a crowd. The pre-
liminary results reveal that average group size in a crowd is a primary 
contributor to the exit density and evacuation clearance time. The study 
provides the groundwork on which to build more elaborate models that 
incorporate sociobehavioral aspects to simulate human movement 
during panic situations and account for the potential for dangerous 
behavior to emerge in crowds.

Pedestrian evacuation and crowd movement have obvious implica-
tions for transportation, venue, and emergency managers. However, 
pedestrian modeling and research often neglect to account for group 
dynamics in the crowd, instead treating independent, individual 
human movement as analogous to that of gas particles or fluids (1–4). 
Reduced to physics equations, much of the sociobehavioral decision 
making that influences individual members of groups within a crowd 
is lost and leads to oversimplification of the evacuation scenario. 
Attempting to fill this gap, contemporary pedestrian research and 
modeling have focused on agent-based or cellular automata modeling 
techniques that incorporate individual decision making within a group 
context (1, 5–8).

This study built on previous agent-based and cellular automata 
models to understand how groups might manifest panic-like behaviors 
in a way that dissipates or intensifies through a crowd. The model 
allows for individual and group-level behaviors as agents egress 
from a building through a centralized exit. The model incorporates 

a recently developed emotional, cognitive, and sociobehavioral 
framework, called Agent_Zero, for modeling the spread of ideas or 
emotions through populations (9). Although the model is still in its 
preliminary development stage, it has established the groundwork 
for future studies of panic and crushing behaviors that occasionally 
emerge in crowded pedestrian environments. This study has direct 
relevance for transportation, venue, and emergency planners as they 
look to simulation models to understand potential egress scenarios.

This paper first provides an overview of pedestrian modeling 
research relevant to the study of group behavior. A brief description 
of the Agent_Zero framework follows before moving on to describe 
the model implementation. Closing the paper is a discussion of the 
preliminary modeling results and the future development path for 
this pedestrian model.

Pedestrian evacuation  
and agent_Zero overview

Pedestrian evacuation

The study of pedestrians in egress scenarios constitutes a complex 
body of research that involves sociological, psychological, and engi-
neering considerations that manifest dynamically through individual- 
and group-level decision making. Inspired by principles from physics, 
Helbing and Molnar paved the way for modeling human movement 
in crowds by introducing the social forces model (2). Matarić added 
to the development of human crowd movement models by identify-
ing basis behaviors—namely, avoidance, safe wandering, following, 
aggregation, dispersion, and homing—to describe pedestrian behav-
iors (10). Goal-seeking behaviors and individual movement through 
crowds laid the foundational work for adding realism to models and 
simulations of pedestrian scenarios (11–14).

Most real-world pedestrian contexts do not involve entire popu-
lations of individuals operating independently, so one facet of the 
research in this area has examined group behavior and formation to 
reflect crowd composition more accurately (7, 8, 15–18). Some pedes-
trian research has examined the emergence and composition of group 
structures through individual behaviors (19, 20). The study reported 
here took the existence of groups as a given and pursued greater 
understanding of pedestrian egress in an environment where groups 
of varying sizes interact during a venue evacuation (6, 21).

Prior research has shown that the presence of groups makes a dif-
ference in evacuation time (6, 22). Pedestrian movement in models 
and simulations encompasses a range of factors related to groups, 
from individual mobility to behaviors adjusted to accommodate group 
configurations. Most often, individuals maintain a desired speed that 
is influenced by their own mobility limitations (for example, physi-
cal disability, reliance on mobility devices, or age) as well as their 
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response to group movement and dynamics (12, 15, 18, 23). Altruism 
also features in pedestrian models, as group members help one another 
during egress (15, 18). Some influences of altruism are reflected in 
the current model, as groups adjust speeds to accommodate and assist 
slower members. Particularly relevant to this model is the idea of 
group cohesion; that is, certain forces keep group members together 
as they evacuate toward an exit (5).

In a crowd, an individual’s actions are the result of an accumulation 
of factors, such as past experiences, the emergency level, or observance 
of others’ behaviors. Events occurring in the immediate environment 
also have a strong influence (9, 24). Past studies have used various 
approaches to capture the human decision making that drives behavior 
during an evacuation. For example, the Belief-Desire-Intention (BDI) 
framework (25) is one of the most popular among researchers model-
ing human decision making during evacuation scenarios (26–28). A 
BDI agent is characterized by his or her mental state, with three major 
components: beliefs, desires, and intentions. According to Shendarkar 
and Vasudevan (26, p. 546),

[b]eliefs correspond to information the agent has about the world.  
It may be incomplete or incorrect. Desires represent the state of affairs 
that the agent would wish to be brought about. Intentions represent 
desires that the agent has committed to achieve.

For instance, in an emergency evacuation simulation, an agent’s 
desire is to leave the current hazardous location as quickly as pos-
sible using the fastest and safest path while following beliefs and 
taking the necessary actions based on intentions (29). Evacuation 
studies using BDI agents add social complexity to the model by 
extending the framework to include human relations (27, 28).

agent_Zero overview

The model presented here implements a framework similar to BDI to 
support a better understanding of interpersonal influences in groups 
and crowds. Agent_Zero, a framework developed by Epstein (9), 
is an attempt to quantify the behavior leading to an individual act-
ing in a way that influences the behavior of others. The framework 
provides an explicit computational mechanism with which to under-
stand how, with very little initial intent, certain behaviors emerge 
from crowds. This wave of behavioral change ripples through the sys-
tem in unexpected ways and leads to emergent crowd properties. In 
pedestrian crowds, the framework could be thought of as the natu-
ral pushing between individuals leaving a stadium after an event. 
In most cases, the pushes are normal and tolerated. Occasionally, 
this pushing precipitates crushing behavior with potentially fatal 
consequences (30–32).

Epstein expressed his curiosity about these types of phenomena 
and the motivation to develop Agent_Zero in the following statement 
(9, pp. 2–3):

People often do things in groups that we would not do alone. . . . 
We do things for which we have no basis in evidence . . . we do them 
knowing we have no evidence, and sometimes, despite this, we are 
even the first in the group to do them. [Therefore, the premise is not] 
to characterize the rational behavior, but to generate behavior that is 
far from rational.

The Agent_Zero framework is based on the premise that indi-
vidual emotional, cognitive, and social components influenced by 
interactions with others drive human behavior (9). The power of this 
approach comes from its generality, which allows its application to a 

variety of disciplines, including sociology, psychology, and national 
defense. The framework enables the exploration of how panic can 
arise and spread in an otherwise calmly evacuating crowd.

In some cases, even when an individual has no compulsion to 
act a certain way, that individual may become the one who acts 
first and subsequently shapes group action. The framework driven 
by emotional, cognitive, and social factors allows for investigation 
of how certain behaviors—such as increased aggression, decreased 
patience, pushing, or running—might emerge from very simple 
individual choices and influence the outcome of the evacuation 
clearance time. Agent_Zero provides the mechanism with which to 
trigger the start of an increasingly agitated crowd.

evacuation of a Pedestrian venue

The pedestrian evacuation model described here was developed 
with the NetLogo platform for agent-based modeling (33). The 
simulation environment represents a room with one centralized exit 
(Figure 1). The environment is purposefully simplistic—that is, free of 
obstacles, corridors, counterflow, or choices between exits—to allow 
full exploration of the emotional, cognitive, and social influences 
on evacuation behavior and decision making. Elimination of the 
complicated agent heuristics for navigating a more complicated 
environment eliminates some of the interacting factors that might 
complicate analyses of whether a social or emotional contagion-type 
model can provide useful insight into the way pedestrians evacuate a 
venue. Future versions of this model will involve more complicated 
environments and decision-making features of pedestrian navigation.

At the start of the simulation, agents are randomly dispersed 
throughout the environment. During the simulation, individual and 
grouped agents navigate to avoid collisions with each other while 
moving toward the exit. Speeds and group cohesion strengths are 
randomly assigned to individuals, making agents heterogeneous on 
a number of factors. The model modifies the Agent_Zero components 
to simulate pedestrians’ behaviors and their propensities to become 
more agitated when evacuating a building. Furthermore, embedded 
in the mathematical equations quantifying emotional, cognitive, and 
social factor updating mechanisms, calming agents are introduced to 
represent authoritative figures, such as peace officers or venue staff 
whose roles are to de-escalate crowd-level agitation.

group dynamics and exiting Behaviors

At the core of the pedestrian agent-based model, autonomous, hetero-
geneous agents maneuver through a crowded environment toward a 
centralized exit. Many of the assumptions adopted to develop these 
agents’ behaviors derive from earlier qualitative research based on 
surveys of reported behavior during egress with less mobile group 
members. The agents comprise groups of varying sizes, from one to 
15 people, and attempt to maintain group configurations during the 
simulated egress.

Agents have two primary goals during the simulation: (a) to stay  
with predefined group members (cohesion) and (b) to exit the venue. 
Since agents have heterogeneous walking speeds, the first goal requires 
that the members of each group adjust their speeds to accommodate 
less mobile members. The slowest member has a weighted influence 
on the overall group speed, allowing groups to distribute the burden 
of slower members and thereby increase the overall group egress 
rate. This reflects the idea that slower members in the real world, 
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such as the elderly or children, could be helped along by other mem-
bers in the group. Although this help might increase the speed of 
the slowest members, it still amounts to some decrease in overall 
group speed. Equation 1 shows the weighted group speed based on 
the slowest member:

S sG( )= − δ + δ iGroupSpeed 1 (1)

where

 δ = weight of the slowest member’s speed,
 SG = unweighted group speed, and
 s = speed of the slowest member.

Here, if δ = 1, the slowest member dictates the entire group’s 
speed; if δ = 0, the group distributes the entire burden of the slowest 
member and helps the whole group move faster. This accounts for 
actions such as carrying small children through a dense crowd. In 
the current version of the model, groups cannot split apart; thus, the 
slowest member always has some influence on the overall speed of 
the group, as other members wait for the slowest to catch up.

Another contribution to the group configuration is that agents in 
the model have varying preferences for the distance they walk from 
their predefined groups. Some agents are willing to walk farther 
from their groups, say, to navigate in a different direction around 
an obstacle and meet up with the rest of the group on the other side. 
Others prefer to have very close contact with the members of the 
group and will not stray far as the group moves toward the exit. 
This feature attempts to replicate the diversity of group structures in 
which certain individuals—for example, teenagers—might embody 
loose bonds of group cohesion, whereas families with small children 
might prefer to walk closer together (34). Although some pedestrian 
models focus on the group space (5), the groups in this model have 

a predetermined leader agent chosen for having the fastest preferred 
walking speed. Implied in this framework is the intent to emphasize 
the representation of groups with generally well-defined leaders, such 
as families with dependents.

The current implementation of this model envisions groups to be 
family-like structures. Thus, the group is centered on an individual 
rather than an average central location in the group. The hetero-
geneity of individual preferences allows some agents to stray far-
ther from the group, but the leader will take the initiative to ensure 
that all group members are within his or her preference for group 
distance while navigating toward the exit. Future versions of the 
model may consider alternative arrangements that would be repre-
sentative of less hierarchical group structures, such as peers or even 
acquaintances. In line with this assumption of family group structures, 
groups in the model maintain their composition throughout the 
egress period. Group members will wait for slower members before 
proceeding to the exit.

In addition, the main contributing factors in the model for the 
agents’ decision-making processes are

•	 Emotional: conditioned learning through associations;
•	 Cognitive: reasoning based on the agitation of others;
•	 Social: overall disposition based on the disposition of others; and
•	 Action rule: act or not act on a behavior.

The following section discusses each of these factors and their 
impacts on agent behavior in the model.

Behavior dispersion through a crowd

For each defined group, the model randomly selects one agent to 
become the group leader while the others in the group become the 

FIGURE 1  Model interface and simulation environment (peds 5 pedestrians).
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followers. This assumption simplifies the Agent_Zero implementa-
tion, as only the group leader is endowed with relevant cognitive, 
emotional, and social decision-making properties. Although only 
the leader adjusts his or her level of agitation, members of the group 
adjust their behavior to reflect that of the leader. In this way, groups 
manifest the same levels of aggression across all members, as instigated 
by their leaders.

Elevated levels of agitation in this model cause the agents to 
increase their speed, simulating pedestrians beginning to run toward 
an exit. As the pedestrians navigate to the exit, the calming agents 
gravitate toward those agents that display the most agitation. The 
presence of calming agents de-escalates individual agitation levels  
by some small amount (35, 36). The counteracting interactions of  
agents escalating one another while calming agents attempt to decrease 
crowd-level agitation (24) create nonlinear emergent effects in the 
model that arise from individual interactions but affect group-level 
evacuation clearance times and overall agitation levels. These 
dynamics begin to reveal how panic spreads through crowds.

Emotional Component

To represent the emotional component, the agent draws associa-
tions with certain behaviors and learns to act accordingly. The agent 
is conditioned in a certain way and develops instinctual feelings 
about particular events, people, or experiences. In evacuations, 
for example, people tend to be conditioned positively to associate 
authoritative figures with safety or even conditioned negatively to 
associate emergency evacuations with panic (37). Personal experi-
ences dictate people’s thinking processes and response to a given 
situation.

In the model, the agents tend to draw associations with the adverse 
behavior of agitation as their emotional component increases. 
Equation 2 represents this emotional component mathematically. 
[Equations 2 to 8 are formulas used in the model that were derived 
from the Agent_Zero methodology (9)].

A A A( )( )= + λ −emotional LR (2)p p

where

 A = agent’s emotional value,
 LR = learning rate, and
 λ =  maximum associative strength attained through the learning 

process.

However, a gradual dissipation (extinction) of the adverse behavior 
begins whenever the conditioned associations subside. This dis-
sipation occurs because of the presence of an authoritative figure 
or calming agents and results in a decline in the emotional affect. 
Therefore, Equation 3 incorporates an extinction rate, ε. In addition, 
the maximum associative strength, λ, becomes zero after all negative 
associations die out.

A A N AC ( )( ) ( )= + ε µ −i iemotional LR 0 (3)p p

where

 ε = extinction rate,
 µ = calming effect caused by the presence of calming agents, and
 NC =  number of calming agents within the agent’s sightline (vision 

radius).

The vision radius restricts how far the agent can observe other agents 
in the model. The strength of the calming effect grows as the number 
of calming agents increases. In addition, with the presence of calming 
agents, the extinction rate increases and adverse behavior subsides 
more rapidly.

Cognitive Component

The cognitive component represents the reasoning of the agent based 
on an assessment of the behaviors of surrounding agents. While the 
emotional component focuses on the visceral feelings about what 
an individual already knows or has been conditioned to respond to 
over time, the cognitive component relies on observed evidence. In 
a pedestrian evacuation, as people navigate to an exit, the human 
tendency is to observe the behavior of others (38). An individual’s 
actions are then based on this observed evidence.

To this end, the model uses local sampling to estimate mathemati-
cally the agitation levels exhibited by the surrounding agents. The 
agents assess the percentage of agitated actors within their vision 
radii. The model assigns a percentage to the observing agent based 
on the surrounding agents’ adverse behavior. This value represents 
the agent’s propensity to act in the same adverse manner. Equation 4 
shows how the presence of calming agents decreases the influence 
of agitated evacuees:

N

N

NC

= 





µ

cognition (4)ag

tot

where

 Nag =  number of agents within the individual’s vision radius with 
an agitation level above the threshold,

 Ntot =  total number of agents within the individual’s vision radius, 
and

 µ = calming effect (µ ≤ 1) of calming agents in the model.

The more calming agents there are, the less influence the agitated 
agents have. When no calming agents are within the individual’s 
vision radius, the cognitive component simply becomes:

N

N
=cognition (5)ag

tot

Using past experiences and the current observations of others’ 
behavior in the immediate vicinity, an agent’s characteristic attitude 
or temperament (disposition) is predicted by mathematically adding 
the emotional and cognitive outcomes of Equations 4 and 5 to obtain 
the agent’s disposition, Di

solo, as shown in Equation 6:

D ti i i( ) = +emotional cognition (6)solo

Social Component

Throughout the model, each eligible pedestrian agent has his or her 
own disposition. However, in evacuating crowds, individuals’ actions 
are influenced to varying degrees by the actions of others (38). For 
the social component, the model takes into account not only the 
agent’s own disposition but also the dispositions of nearby agents. 
In the model, the influence is spatial through physical proximity; 
that is, only neighboring agents affect each other. However, in an 
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evacuation setting, influences can also be auditory (for example, a 
loudspeaker announcement), visual (such as exit signs), or tactile 
(nudging or pushing by others).

These influences are not considered in the current model but could 
easily be implemented by incorporating an additional influence 
(exogenous) on agent behavior, as in Equation 7. The model uses 
a weighted influence parameter to weight the dispositions of these 
nearby agents during the simulation run. An agent’s total disposition, 
Di

total, is defined in Equation 7.

D ti i i ji j j

j i
∑ ( )( ) = + + ω +

≠

emotional cognition emotional cognition

(7)

total

where (emotionali + cognitioni) is agent i’s disposition, and ωji and 
(emotionalj + cognitionj) are the weighted influence and dispositions 
of neighboring agents, respectively. This total disposition constitutes 
the social component, which rounds out the three necessary factors that 
will determine an agent’s actions in the evacuation model.

Action Rule

Finally, because individuals have varying tolerance levels when 
faced with other people’s behavior in a crowd, each agent has an 
action threshold. Compared with the agent’s total disposition, the 
binary action rule determines whether the agent will act on a spe-
cific behavior. Equation 8 calculates the agent’s net disposition, 
Di

net, which includes the action rule used by each agent:

D ti

i i

ji j j

j i

i∑ ( )( ) =
+

+ ω +













− τ
≠

emotional cognition

emotional cognition
(8)net

where τi is the action threshold for agent i.
The agent’s action threshold determines whether the agent will 

express adverse behavior in the model, in which case there will be 
some level of agitation and increase in speed toward the exit. Hetero-
geneous thresholds among individual agents introduce stochasticity 
into the model, as similar environmental and social conditions may 
induce agitation in certain agents while others with a higher threshold 
do not alter their emotional states.

results

The model presented in this study is an experimental implementa-
tion of Epstein’s Agent_Zero framework to explore opportunities 
for understanding the spread of panic or other agitated behaviors 
throughout a pedestrian crowd. The results serve as a preliminary 
report on ongoing work in this area. Two measures constitute the 
primary focus of the initial model tests: evacuation time and density 
of pedestrians around the exit.

evacuation time

In the model, evacuation time is a measure of the number of simulated 
time-steps required to clear the modeled venue of all pedestrians 
(not including calming agents or peace officers). The parameters 
measured in the simulation account for 81% of the variation in evac-
uation time (r2 = .81). Of the parameters, the weighted influence 
of the slowest member on overall group speed had no statistically 
significant effect. This finding is reflected in Table 1 with a p-value 
of .402 for the influence of the slowest member. As groups distribute 
more of the burden of slower members (for example, by carrying a 
small child), there is no noticeable effect on overall evacuation time.

The most influential factor, as shown in Table 1, is average group 
size. Group sizes are heterogeneous in the modeled environment. 
As the average size of groups of pedestrians increases, the evacua-
tion time also increases. As groups get larger, the goals of agents 
to maintain group cohesion and accommodate the slowest member 
cause the group speeds to decrease. This decrease in overall speed 
likely accounts for the positive relationship between average group 
size and evacuation clearance times (Table 1).

The remaining factors—weighted influence, extinction rate, calm-
ing effect, number of calming agents, and vision radius—are all 
associated with the sociobehavioral aspects of the model. This model 
does not account for crushing behaviors and thus limits the inter-
pretation of panic in this context. The negative relationship between 
evacuation time and weighted influence and vision radius suggests 
that the panic of neighbors affects an individual less during longer 
egress scenarios. These longer evacuations are also associated with 
higher extinction rates (dismissing panicked feelings after a certain 
amount of time) and higher calming effects by more calming agents.

Together, these sociobehavioral factors may appear counter-
intuitive. In the model, however, crowding at exits likely accounts 

TABLE 1  Evacuation Time

Unstandardized Coefficients
Standardized 
Coefficients

Model β Standard Error β t Significancea

Constant 232.499 3.672 63.310 .000

Influence of slowest 3.020 3.605 .002 .838 .402

Weighted influence −35.731 1.815 −.058 −19.690 .000

Extinction rate 10.828 1.815 .018 5.967 .000

Average group size 58.376 .192 .896 304.049 .000

Calming effect 21.113 1.815 .034 11.635 .000

Number of calming agents .721 .036 .059 19.880 .000

Vision radius −1.253 .454 −.008 −2.762 .006

a P-values < .05 are significant.
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for these effects. Since these agents cannot harm one another to get out 
of the exits, longer evacuations are caused by longer lines. These are 
likely the result of large groups clogging egress routes. More calming 
agents cause the crowd to become calmer and be less influenced by 
agitated neighboring agents as they wait in long lines to leave. Future 
versions of this model will explore the possibility of aggression in 
the form of physical pushing to evaluate the effects of possible harm 
occurring in these contexts.

exit density

In the model, exit density is the number of pedestrians waiting in 
a region around the exit area to exit. The exit density measure is 
actually a count value for the number of time-steps that the exit 
region exceeded 75% occupied. This value was chosen to test the 
initial impact of Agent_Zero on crowding near the exit and will be 
calibrated to real-world scenarios in future versions of the model. 
The stochastic nature of exiting behaviors inspired by Agent_Zero 
made the exit density measure difficult to interpret. Using a multiple 
regression model, the r2 value indicated that the modeled parame-
ters only explained 56.2% of the variation in exit density. This likely 
comes from the interaction of Agent_Zero parameters that lead to 
highly stochastic outcomes in density around the exit.

Table 2 shows the output of a regression model that used all the 
available parameters in the simulation. The weighted influence of 
the slowest group member on the overall group speed (influence 
of slowest) does not significantly affect exit density. The two largest 
contributing factors are average group size and the number of calming 
agents (peace officers) in the model. As the average group size in the 
model increases (a heterogeneous factor with groups of differing sizes 
existing within the population), the density around the exit decreases. 
Since groups accommodate the speed of slower members as well 
as adjust speeds and trajectories to maintain group cohesion, larger 
groups generally move more slowly in the model. This behavior 
spaces out the agent groups as they approach the exit and leads to the 
exit area experiencing less time crowded with egressing pedestrians.

Alternatively, as the number of calming agents increases, the 
density around the exit increases. Since the calming agents migrate 
to the most agitated agents and navigate toward the exit as well, 
depending on an agents’ threshold, the agitation levels and walking 
speeds of agents near a collection of calming agents will decrease. 
Over time as agents respond to the presence of these calming agents, 

the overall speed of the crowd will slow, causing the pedestrian 
agents to reach the exit simultaneously, thus producing higher den-
sities around the exit. With the presence of calming agents walking 
toward the exit with the evacuees, the slower walking speeds allow 
for a more orderly and effective evacuation (39).

The less influential but still statistically significant factors in the 
model refer specifically to the sociobehavioral components based 
on the Agent_Zero framework. As agents place more emphasis on 
the agitation level of surrounding evacuees (weighted influence), 
exits have larger densities. Likewise, when agents retain the influence 
of neighbors’ dispositions longer (lower extinction rates), densities 
increase. High exit densities are also associated with a large number 
of calming agents who have very little calming effect. The calming 
agents acting on the evacuees crowded around the exit decrease 
agitation, although there may be increased exit density.

Future versions of this model will focus more on the inter action 
between calming agents and egressing pedestrians to improve under-
standing of the consequences of these dynamics on evacuation 
clearance time and exit density. Furthermore, the calming agents 
themselves may become panicked and drastically affect the behav-
ior of the egressing pedestrians. Future versions of the model should 
include this dynamic to understand its impact on clearance time and 
exit density.

discussion and conclusions

The preliminary results from the model indicate that average group 
size is the single most influential predictor of evacuation clearance 
time and exit density. These results follow from the fact that, in 
general, larger groups move more slowly and thus allow time for 
the exit to clear before reaching critical density, but also delay exit 
time. The finding of longer evacuation times for slower-moving 
crowds contradicts the established hypothesis that faster is slower 
(40) when it comes to pedestrian egress. According to the faster-
is-slower hypothesis, as crowds move faster to exit, this behavior 
actually causes a longer exiting delay. Therefore, if the crowd slows 
down, there will be shorter delays causing a decrease in evacuation 
times, so that, essentially, slower is faster where slower speeds result 
in faster evacuation times.

The contradictory result of the model that slower is slower likely 
follows from two specific modeling features that require further 
investigation. First, the original model that developed the notion 

TABLE 2  Exit Density

Unstandardized Coefficients
Standardized 
Coefficients

Model β Standard Error β t Significancea

Constant 124.766 1.942 64.256 .000

Influence of slowest .428 1.906 .001 .225 .822

Weighted influence 22.766 .959 .106 23.728 .000

Extinction rate −14.687 .959 −.068 −15.307 .000

Average group size −12.537 .102 −.553 −123.504 .000

Calming effect −14.869 .959 −.069 −15.497 .000

Number of calming agents 2.083 .019 .486 108.572 .000

Vision radius −1.127 .240 −.021 −4.699 .000

a P-values < .05 are significant.
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that faster is slower included friction variables to account for indi-
vidual interactions among agents. This feature accumulated in dense 
situations, causing a phenomenon where individuals in the model 
struggled to exit. Second, early models did not account for group 
dynamics. The preliminary results of this study show that, even if 
the crowd moves slower to exit because of the nature of groups and 
reduced panic, the exit delay still remains and continues to negatively 
affect evacuation times. However, the slower-is-slower hypothesis 
suggests a more efficient evacuation with less congestion at the exits, 
encouraging a more orderly egress. These contradictory results may 
further emphasize the importance of including group variables as a 
consideration when studying egress scenarios. A group dynamics– 
inspired counterfactual to the faster-is-slower hypothesis deserves 
further attention and will be a focus of future iterations of the model 
presented here.

As a prototype, the current model has undergone limited formal 
validation and verification procedures. The most logical next step in 
this model development process is to calibrate the Agent_Zero param-
eters to reflect real-world scenarios. This is a difficult task because 
panic is not well documented in human crowds. The researchers will  
rely on available human research on crushing behaviors and panic 
in crowds, as well as the work of those studying relatable animal 
behaviors (41). Once these values have been calibrated in the model, 
it is hypothesized that Agent_Zero factors will have a more significant 
influence as predictors of evacuation clearance and exit density.

Qualitative approaches to validating the modeled behaviors are 
also part of the future development plans (42, 43). For example, utili-
zation of survey-based qualitative data to capture aspects of decision 
making and human behavior that would be difficult to observe in 
video or laboratory settings is a viable approach for validation (43). 
Qualitative data relevant to the model presented here are currently 
being collected as part of the longer-term project. Other aspects of 
pedestrian crowd behavior in nonpanic scenarios can be helpful for 
validation purposes, such as group speeds, the effect of the slowest 
member on the group, and age-related factors. In addition, model 
performance comparisons can be applied for crowd behavior, such 
as well-used fundamental diagrams of observed speed–density–flow 
rate relationships. Lastly, the insight from emergency personnel sub-
ject matter experts through face validation could provide a level of 
confidence that the simulation model is performing credibly.

Preliminary validation of the pedestrian program used Behavior-
Search (44), based on the Active Nonlinear Tests (ANTs) approach 
to use search algorithms (genetic algorithms, simulated annealing, 
hill climbing, and random search) to test the extremes of the parameter 
values in the model (45). The ANTs approach revealed several sec-
tions of the vast parameter space—the many combinations of values 
in the model that contribute to the pedestrian egress and density  
outcomes—where unusual emergent behavior occurred in this model. 
In these cases, panic spread and dissipated rapidly, as if in waves, 
throughout the egressing agents. This type of emergent phenomenon 
is a common characteristic of agent-based models. It arises from 
the complexity of a multitude of interacting agent-level decisions 
contributing to unexpected global outcomes. The source of this 
particular emergent phenomenon in the pedestrian model will be a  
primary focus of future model development and research. At one 
extreme, it may reveal coding errors that have yet to be found; at the 
other, it may reveal interesting behaviors that arise when agents 
are acting independently on very simple egress rules that sow the 
seeds for pushing or crushing behaviors in crowds.

This model is part of a larger, ongoing project to understand pedes-
trian group egress. The findings related to group size and the influence 

of calming agents on exit density may have practical applications. 
More investigation into these phenomena is required; however, the 
results of this simulation may help venue managers and large event 
planners to use expected audience demographics related to group size 
to estimate more accurately the number of staff and peace officers 
needed at an event. This planning could support a more contextualized 
emergency evacuation and safe egress plan that adjusts dynamically 
based on the type of audience in attendance.

In the longer-term trajectory of this model, other advanced features 
that will be included are the potential for groups to split up and 
merge into other groups, reminiscent of early flocking models (46); 
adaptation of groups to be leaderless and instead congregate around 
shared goals of exiting and altruism; and further exploration of the 
implication of the Agent_Zero framework applied to larger, more 
complex pedestrian scenarios to anticipate the emergence of aggres-
sive behaviors in agitated crowd egress scenarios. In addition, the 
current model uses agent speed as a proxy for agitated behaviors. 
Another variation of this behavior could build a feedback loop in 
which the speeds of agitated agents, in addition to their disposition, 
affect the panic levels of neighboring agents. Positive feedback loops 
such as these could have an escalating effect on panic and provide 
even more understanding about the sociobehavioral impacts of 
calming agents in pedestrian egress.
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