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Origins and transformations of 
dissolved organic matter in large 
Arctic rivers
Karl Kaiser1,2, Maria Canedo-Oropeza2, Rachel McMahon1,3 & Rainer M. W. Amon1,2

Arctic river watersheds are important components of the global climate system and show an amplified 
response to climate change. Here, we characterize origins and transformations of dissolved organic 
matter (DOM) in five major Arctic rivers (Kolyma, Lena, Yenisei, Ob, Mackenzie) over 3 years with 
seasonal sampling periods using measurements of carbohydrates, amino acids, bacterial biomarkers 
(D-amino acids), and plant protein biomarkers (hydroxyproline). A strong seasonal cycle of bioavailable 
DOM export was observed that correlated with discharge, vegetation, river morphology and 
water residence time. The chemical composition of bioavailable DOM was different among rivers 
reflecting unique characteristics of Arctic river watersheds. Trends in specific bacterial biomarkers 
were synchronous to changes in bacterial community compositions demonstrating that bacterial 
communities responded to the seasonal shifts in organic matter quality and chemical composition. 
Extensive heterotrophic processing of plant and soil-derived DOM resulted in major inputs of bacterial 
detritus, and bacterial organic matter accounted for 21–42% of DOC in all watersheds. Dissolved 
organic nitrogen sources were dominated by bacterially-derived nitrogen and important contributions 
of soluble plant protein during the Spring freshet. Overall, our results demonstrated the importance 
of watershed characteristics and bacterial metabolism in regulating DOM composition, reactivity and 
carbon fluxes in Arctic river watersheds.

Arctic watersheds store approximately 50% of global soil organic carbon of which much is held in shallow con-
tinuous and discontinuous permafrost soils1. In addition, these watersheds hold a significant portion (10% or 
~50 Pg C) of the global biomass in the form of vegetation2. Recent estimates for carbon fluxes in this region 
indicate that the large Arctic watersheds are currently net sinks for CO2 (200–400 TgC yr−1)2, net sources for CH4 
(33–46 TgC yr−1)2, and deliver between 25 and 36 TgC yr−1 in the form of dissolved organic carbon (DOC) to the 
Arctic Ocean3,4. Although most studies agree that a warmer climate will intensify the carbon cycle in high latitude 
watersheds, estimates of future terrestrial carbon transport in these rivers are variable and uncertain. While some 
studies predict a several fold increase in high latitude river organic carbon transport, other studies indicate a 
reduction of organic carbon concentrations due to elevated respiration rates within the watersheds5–7.

Arctic river watersheds also integrate diverse vegetation and soil regimes with complex hydrological charac-
teristics and various climate zones. The latitudinal vegetation gradient generally captures a transition of boreal 
forests (taiga) dominated by coniferous evergreen trees (gymnosperm) in the southern regions to tundra popu-
lated by lichens, mosses and angiosperm vegetation in the North. Above 50–60°N, discontinuous and continuous 
permafrost is widespread restricting soil drainage that leads to extensive development of peatlands especially in 
the Siberian river watersheds2.

Detailed information on DOM sources in Arctic rivers is limited. What is known is mostly based on meas-
urements of lignin and hydroxy-benzene biomarkers, and optical parameters such as chromophoric dissolved 
organic matter (CDOM) absorbance and fluorescence8–11. Lignin and hydroxy-benzene biomarkers indicate that 
water-soluble components of fresh litter from angiosperm and gymnosperm plants are likely important sources 
of DOM in these rivers during the Spring freshet10. At low flow conditions in late summer, fall and winter, Arctic 
river DOM appears to carry a substantial fraction of DOM derived from mosses and peat bogs with an older 
radiocarbon signature indicative of deeper soil horizon drainage9,12–14.
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Dissolved organic nitrogen (DON) constitutes the majority of total dissolved nitrogen (TDN) in Arctic rivers 
and potentially supports a substantial fraction of near-shore primary production4,15. DON in terrestrial environ-
ments is an operational definition for a structurally complex mixture derived from various sources16. Dominant 
N-containing compounds in DON are characterized by amide linkages found in amino acids and amino sugars, 
amine functional groups and aromatic structures of the pyrrolic and pyridinic type17,18. There have been few 
reports indicating a major bacterial contribution to riverine DON19–21. Dissolved amino acids are important 
components of DON in boreal streams19 and appear to be important constituents of bioavailable DOM in Arctic 
rivers22. Nitrogen-bearing biopolymers in plants are dominated by hydroxyproline-rich glycoproteins. These gly-
coproteins represent families of arabinogalactan proteins, extensins and solanaceous lectins and occur in the 
primary cell wall of all land plants and most green algae23.

The bioavailability of Arctic riverine DOM appears to be closely linked to its chemical composition and 
source. High bioavailability of Spring freshet DOM reflects the recent origin of DOM leached from fresh litter 
and surface soil horizons, abundant mineral nutrient, and little previous decomposition due to cold temperatures 
in soils11,22,24. DOM transported in the rivers after the freshet, when flow is dominated by groundwater, bears the 
signature of older, extensively decomposed organic matter from soils, peat- and wetlands and exhibits drastically 
lower bioreactivity10,24.

Mineralization of riverine DOM continues at the river-estuary interface, on the Arctic shelves, and the Arctic 
Ocean, and contributes to nutrient budgets, air-sea CO2 exchange, and acidification in coastal seas25,26. Microbial 
and photochemical mineralization removes about 50% of discharged riverine DOC per year on the shelves sug-
gesting only a very small fraction survives in the ocean over centuries and millennia26,27. Yet the question about 
the importance of riverine DOC for the marine carbon cycle is still debated. A recent study by Zigah et al.28 
reported a large allochthonous source of DOC in the ocean (~25% of DOC) possibly derived from terrestrial 
sources or from hydrothermal vent systems.

Bioassay incubations have shown amino acids and neutral sugars serve as biochemical indicators of the 
labile and semi-labile DOM reactive on timescales of hours to years29–31. These biomolecules are enriched in 
freshly-produced organic matter, and they are preferentially utilized during biodegradation. Here, we analyzed 
amino acids and neutral sugars including bacterial biomarkers (D-amino acids) and plant biomarkers (hydroxy-
proline) to examine seasonal sources and bioavailability of DOM in five major Arctic rivers (Ob, Yenisei, Lena, 
Kolyma, Mackenzie) over multiple years. Seasonal patterns observed among rivers reveal fundamental mecha-
nisms that link chemical composition, bacterial community compositions, and watershed characteristics to trans-
formations of DOM in Arctic watersheds and export to the coastal margins. Results of our study demonstrate 
bacterial metabolism plays an important role in the export of terrestrial carbon from Arctic watersheds.

Results
Concentrations of DOC, total hydrolysable amino acids (THAA), and total hydrolysable neutral sugars (THNS) 
exhibited pronounced changes connected to the seasonal rate of water flow in all Arctic rivers (Fig. 1, Table S1, 
Table S2). In general, peak discharge during each year was associated with highest concentrations followed by a 
substantial decline during summer, fall and winter seasons. In the Ob river, the highest concentrations of total 
hydrolysable amino acids (THAA) were observed at the end of the freshet whereas in other rivers highest concen-
trations occurred with the onset of the freshet. The Mackenzie showed much smaller concentrations changes of 
THAA and total hydrolysable neutral sugars (THNS) than the Siberian rivers.

Discharge-weighted average concentrations of THNS ranged from 359–4460 nmol L−1 during the Spring 
freshet, 300–1589 nmol L−1 during Summer/Fall, and 246–1168 nmol L−1 during Winter/early Spring. 
Discharge-weighted average concentrations of THAA ranged from 1585–6887 nmol L−1 during the Spring 
freshet, 1117–5281 nmol L−1 during Summer/Fall, and 824–2354 nmol L−1 during Winter/early Spring.

The five Arctic rivers exported a combined total of 17.23 TgDOC yr−1, 0.19 TgTHAA-C yr−1 and 0.22 
TgTHNS-C yr−1 annually (Table 1). The Ob, Yenisei and Lena accounted for ~90% of DOC and organic car-
bon contained in THAA and THNS. Annually discharged DOC showed lowest THAA and THNS yields in the 
Mackenzie than any other river. The Kolyma discharged the most THNS enriched DOC (% OC) followed by the 
Ob and Yenisei (Table 1).

Mol percentages of THNS and THAA in all rivers were relatively uniform, although Arctic rivers integrated 
diverse vegetation and soil regimes with complex hydrological characteristics and various climate zones (Fig. 2, 
Figs S1, S2 Table S3). Compositions of THNS showed some variability during the different stages of the flow 
regime, although no clear trend was visible (Fig. S1). THAA were compositionally different during the Spring 
freshet compared to low flow conditions observed during Winter/early Spring showing strong enrichment in 
glycine during Winter in all rivers (Fig. S2). Compositions of amino acids during Summer/Fall reflected the tran-
sition between Spring freshet and base flow.

Carbon-normalized yields of THNS and THAA were consistently highest during the Spring freshet in the 
Siberian rivers ranging from 1.8–3.0 and 1.3–2.3% DOC (Fig. 3) and indicating the presence of bioavailable 
DOM. In contrast, yields in the Mackenzie River did not change much during seasons. Both, THNS and THAA 
yields, were well correlated with total dissolved lignin phenol yields reported by Amon et al.10 (Fig. S3). Total 
dissolved lignin phenols (TDLP) included hydroxy, vanillyl, syringyl, and cinnamyl phenols.

Nitrogen-normalized yields of THAA followed trends observed for C-normalized yields in the Siberian rivers, 
showing 22–38% of DON was derived from amino acids during the Spring freshet, and 16–26% of DON during 
Winter/early Spring. Again, the Mackenzie showed only small changes between seasons (18 ± 5% DON).

Together, THNS, THAA, and TDLP comprised 2–7% of freshet DOC in all rivers (Fig. 4). The percentage of 
DOC characterized by amino acids, neutral sugars and lignin phenols was ~3 times higher in the Siberian rivers 
compared to the Mackenzie. Freshet DOC in the Kolyma showed highest yields of carbohydrates among all rivers. 
Lignin phenol yields were lowest in the Ob among the Siberian rivers.

http://S1
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Mol percentages of D-amino acids peaked during low flow conditions across all rivers with exception of the 
Yenisei (Fig. 5). DOC-normalized concentrations of Hyp, a proxy for the input of plant-derived protein, showed 
the opposite trend peaking during the Spring freshet, and they were low or below the limit of quantification 
during Summer/Fall and Winter/early Spring (Fig. 5). Concentrations of Hyp were lowest in the Yenisei and 
Mackenzie.

Characteristic ratios of D-amino acids provided clues on the macromolecular origin of bacterial DOM32–34. 
Molar ratios of D-Ala:D-Asx and D-Ala:D-Glx and in bacterial DOM from coastal ecosystems and groundwater 
were 0.7–1.3 and 1.2–2.0, respectively34,35 (Table S2).

D-Ala is more widely distributed among biopolymers than other D-amino acids, including D-Ala-rich 
teichoic acids derived from Gram-positive bacteria34. Thus, D-Ala yields exceeding D-Asx and D-Glx by more 
than two-fold likely indicate increasing contributions of specific bacterial sources in particular teichoic acids.

D-Ala:D-Asx ratios were lowest (0.9–1.4) during the Spring Freshet, and highest during the Winter/early 
Spring period (1.0–1.7, Fig. 6). D-Ala:D-Glx ratios followed a similar trend, ranging from 2.4–3.7 during the 
Spring freshet and 3.1–4.9 during the Winter/early Spring period, with the exception of the Yenisei during 

Figure 1. Seasonal discharge (m3 s−1) and concentrations (μmol L−1) of total hydrolysable amino acids (THAA) 
and total hydrolysable neutral sugars (THNS) in the Kolyma, Lena, Ob, Yenisei, and Mackenzie between 2003 
and 2007. Light-blue shaded areas show discharge.

http://S2
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Winter/early Spring where a ratio of 12.1 was observed. Both, D-Ala:D-Asx and D-Ala:D-Glx ratios suggested 
relatively similar macromolecular sources of bacterial DOM as observed in coastal ecosystems and groundwater, 
and they indicated limited contributions of D-Ala rich macromolecules such as teichoic acids.

DOC-normalized concentrations of D-amino acids varied seasonally in all rivers with highest concentrations 
during the Spring freshet. Among D-amino acids, D-Ser exhibited strongest seasonal changes occurring almost 
exclusively through the Spring freshet (Fig. 7). The percent of DOC derived from bacteria calculated on the basis 
of D-Ala, D-Asx, and D-Glx abundance showed highest contributions during the Spring freshet and declined 
during the remainder of the year (Fig. 7). During the Spring freshet 31–42% of DOC was derived from bacteria, 
whereas during Winter/early Spring 21–33% of DOC was from bacteria (Fig. 7).

Discussion
Previous studies found the reactivity of DOM in Alaskan Rivers and the Kolyma was strongly linked to the sea-
sonal flow regime11,24. Our biochemical data confirmed that all Siberian rivers carried pulses of bioavailable DOM 
during the Spring freshet and DOM of lower bioavailability for the remainder of the year. Seasonal variability 
in DOM quality was closely linked to its chemical composition. DOC-normalized yields of major biochemicals 
including carbohydrates, amino acids and plant phenols across all watersheds were 3–4 times higher during 

Kolyma Lena Ob Yenisei Mackenzie

DOC (μmol L−1)1 651 ± 71 1008 ± 66 842 ± 25 901 ± 50 396 ± 13

THNS (nmol L−1)2,3 2809 ± 1070 3726 ± 922 2066 ± 209 2711 ± 208 327 ± 40

THAA (nmol L−1)2,4 4079 ± 693 5375 ± 1194 4817 ± 181 5609 ± 463 1365 ± 163

D-AA (nmol L−1)2,5 187 ± 28 239 ± 57 227 ± 14 207 ± 14 82 ± 3

Hyp (nmol L−1)2,6 20 ± 9 36 ± 11 22 ± 7 13 ± 7 7 ± 2

THNS (%OC)2 2.2 ± 0.6 1.9 ± 0.4 1.4 ± 0.2 1.7 ± 0.2 0.5 ± 0.1

THAA (%OC)2 2.1 ± 0.2 1.8 ± 0.4 2.0 ± 0.1 2.2 ± 0.1 1.2 ± 0.1

DOC load (TgC yr−1)7 0.86 6.66 3.91 4.65 1.15

THAA (GgC yr−1)7 12 61 44 63 7

THNS (GgC yr−1)7 16 76 53 67 5

DOC total (%)8 5 39 23 27 7

THAA-C total (%)8 6 33 24 34 4

THNS-C total (%)8 7 35 25 31 3

Discharge yieldTHAA (%OC)9 1.4 0.9 1.1 1.4 0.6

Discharge yieldTHNS (%OC)9 1.8 1.1 1.4 1.4 0.5

Table 1. Concentrations, yields, annual loads, and relative contributions of DOC and biochemicals. 
1Concentrations of DOC were weighted to discharge. 2Concentrations and yields were weighted to discharge 
and DOC concentrations. 3THNS, total hydrolysable neutral sugars. 4THAA, total hydrolysable amino acids. 
5D-AA, sum of D-Asx, D-Glx, D-Ser and D-Ala. 6Hyp, hydroxyproline. 7Annual loads of DOC, THAA-C and 
THNS-C was calculated using LOADEST with LoadRunner61,62. 8Relative contributions of each river. 9Carbon 
normalized discharge of biochemicals.

Figure 2. Average relative abundances (mol%) of (A) total hydrolysable neutral sugars (THNS) and (B) amino 
acids (THAA) for all flow regimes. See methods for abbreviations and Tables S1 and S2 for detailed data.

http://S1
http://S2
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the Spring freshet compared to low flow conditions in Winter. These three classes of biochemicals represent the 
majority of terrestrial biomass and are reactive substrates supporting aquatic food webs and contributing signifi-
cantly to carbon dioxide fluxes in rivers36,37. Additional compositional features of freshet DOM included low mol 
% D-amino acids and low mol % glycine, both sensitive indicators of bioavailable DOM38,39.

Biochemical trends in the Mackenzie diverged from the patterns observed in the Siberian rivers with no dis-
tinct pulses of bioavailable DOC during the freshet periods. This suggested watershed characteristics exerted a 
strong control on the amount of DOC exported throughout the year. Extensive leaching of surface soils in combi-
nation with limited microbial activity during Winter, and high hydrologic connectivity during the freshet explains 
DOC export in the Siberian rivers10,40. Oxygen and hydrogen isotope measurements showed water residence time 
in the Mackenzie was longest owing to the abundance of large lakes and other water bodies and allowing microbes 
to remove a large portion of bioavailable DOM41.

Yields of biomolecules varied across rivers during the freshet indicating the influence of physical and chem-
ical watershed features on DOM compositions during the Spring flood. Differences were most pronounced in 
the Kolyma and Mackenzie, both rivers with unique watershed characteristics10,42. Dissolved organic carbon in 
the Kolyma contained higher contributions of carbohydrates than DOC in all other rivers. The Kolyma basin is 
almost entirely underlain by permafrost and contains carbon-rich Pleistocene loess deposits42,43. Extreme bio-
availability of permafrost DOC in the Kolyma watershed featuring carbohydrate-like and aliphatic molecular 

Figure 3. Carbon- and nitrogen-normalized yields of total hydrolysable neutral sugars (THNS) and amino 
acids (THAA) separated by different flow regimes.

Figure 4. Carbon-normalized contributions of total hydrolysable amino acids (THAA), total hydrolysable 
neutral sugars (THNS), and total dissolved lignin phenols (TDLP) to dissolved organic carbon (DOC) during 
the Spring freshet. Data for TDLP was from Amon et al.10 and include hydroxy, vanillyl, syringyl, and cinnamyl 
phenols.
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identities was observed, and the high yield of carbohydrates could be indicative of such DOM44,45. Kolyma DOC 
was modern (Δ14C-DOC = 47 ± 17) throughout the year, but the presence of a small pool of old DOC could fit 
within the constraints of endmember values for modern and permafrost DOC (~18,000 years)12. Another possi-
bility is that dominated larch forests and shrubland vegetation lead to the higher content of carbohydrates in the 
DOM.

Dissolved organic carbon in the Ob showed lowest contributions of TDLP among the Siberian rivers consist-
ent with the distribution of major vegetation types within the watershed. The Ob drains one of the largest peat 
bog system in the world that is dominated by sphagnum mosses with only occasional vascular plant vegetation 
within the lower reach of the watershed46. Only in the middle and upper reaches of the watershed vascular plant 
vegetation is abundant with strong representations of birch, spruce, and pine forests.

Bioavailable DOM discharged during the freshet already showed heterotrophic processing that must have 
occurred within the soil, during leaching of litter or during transport in the upper reaches of the watersheds. 
Neutral sugar compositions in dominant plants types in polar ecosystems substantially differ allowing distinction 
of vascular plant, moss and lichen sources47,48. The Ob watershed contains expansive peat bogs whereas other 
river watersheds show more diverse vegetation ranging from boreal forests, grasslands or moss-rich wetlands10. 
Relatively uniform neutral sugar compositions across all rivers clearly indicated early stages of degradation. In 
addition, the bacterial imprint on DOM compositions at all stages of the flow regime was reflected by high abun-
dances of D-amino acids.

Figure 5. Mol percentages (mol%) of D-amino acids (D-Asx, D-Glx, D-Ser, D-Ala) and C-normalized 
concentrations of hydroxyproline (Hyp). Mol% D-amino acids were calculated as the sum of the four measured 
D-amino acids ((D-Asx, D-Glx, D-Ser, D-Ala) divided by the total sum of THAA without glycine and 
multiplied by 100.

Figure 6. Ratios of D-alanine (D-Ala) to D-aspartic acid (D-Asx) and D-glutamic acid (D-Glx).
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Bacterial community structure determined in the same samples showed distinct seasonal shifts that correlated 
with hydrology and water chemistry in all rivers49. Characteristic microorganisms observed during the Spring 
freshet included Gram-negative bacteria with strong representations from Betaproteobacteria and Bacteriodetes, 
and smaller contributions from Gram-positive bacteria specifically Actinobacteria49. The observed shifts in 
bacterial assemblages correlated well with characteristic seasonal distributions of D-amino acids. High abun-
dances of D-Ala, D-Asx, D-Glx throughout the year demonstrated the presence of heterotrophic bacteria and 
bacterially-derived detritus. The regular appearance of D-Ser during the Spring freshet indicated a distinct change 
of the bacterial community that reassembled each year.

Bacterial communities respond to physico-chemical conditions, and so bacterial activity and diversity is 
closely linked to the biogeochemistry of aquatic ecosystems50. Both, bacterial activity and diversity strongly react 
to the supply of bioreactive DOM51,52, an event occurring annually in the large Arctic rivers during the Spring 
freshet. The observation of bacterial communities following shifts in flow regime and compositions of organic 
matter has important consequences for river biogeochemistry and the cycling of organic matter in Artic water-
sheds. Heterotrophic bacteria rapidly mineralize plant and soil-derived organic matter to CO2 and also transform 
these substrates to new forms of organic matter with varying degrees of bioavailability.

The contribution of bacteria to DOC ranged from 21–42% across all watersheds. For comparison, lignin-based 
projections showed 16–87% of the DOC in these rivers was derived from vascular plants10 suggesting DOM 
sources were a mixture of plant, soil and bacterially-derived sources. Bacterial DOC estimates were comparable 
to marine environments (16–30%)34 and groundwater (15–34%)35. Multiple biomarkers occurring in various bac-
terial macromolecules were employed to narrow potential errors associated with variable bacterial communities 
and sources. Endmembers for bacterial DOC were derived from experiments performed in riverine-influenced 
coastal ecosystems and groundwater33–35.

The macromolecular origin of bacterially-derived DOM in rivers appeared to be fairly similar to 
bacterially-derived DOM in previous experiments33–35 although input of potentially Gram-positive soil-derived 
bacterial components such as teichoic acids especially during the low flow regime was detected. Amon et al.10 
observed a more dominant DOM contribution from deeper soil layers during the low flow seasons. Inputs of 
DOM from Gram-positive bacteria could overestimate bacterial contributions to DOM affecting most strongly 
values calculated for the low flow regime. Instead, estimates of bacterially-derived DOM were always lower dur-
ing low flow than high flow periods across all rivers. This suggested the applied approach lead to relatively robust 
estimates of bacterial contributions.

Higher bacterial contributions to freshet DOM potentially indicated the production of fresh 
bacterially-derived DOM. Carbon-normalized D-amino acid concentrations peaked on the downslope of high 
discharge synchronous with higher concentrations of Hyp in the Ob and Mackenzie. Bacterial metabolism 
during this period should have been stimulated considering a rich supply of bioavailable DOM and a reactive 
plant-derived nitrogen source. The production of bacterially-derived DOM with varying degrees of bioavailability 
is consistent with results from incubation studies and processes observed in the mesopelagic zone of the ocean. 
Kawasaki and Benner (2006)33 observed release of bacterially-derived DOM during growth that was quickly 
consumed. Kaiser and Benner34 found ~65% of bacterially-derived DOM produced in the surface ocean was 
bioavailable and had a higher reactivity than bulk DOC. Bacterial metabolism is also connected to the produc-
tion of refractory organic carbon, an observation that has been summarized in the “microbial carbon pump” 
concept34,53,54.

The large bacterial DOC source predicts that bacteria are even more important sources of DON, as they are 
rich in N-bearing molecules such as amino acids and nucleic acids. For example, amino acids comprised 22–38% 
of DON in the studied watersheds. We did not have reliable N-normalized yields of bacterial biomarkers to 
calculate bacterial contributions to riverine DON. In the marine environment, Kaiser and Benner34 calculated 
47–54% of DON was derived from bacteria, and similar contributions are expected to occur in Arctic watersheds. 

Figure 7. C-normalized concentrations of D-amino acid, D-serine (D-Ser), and percentages of dissolved 
organic carbon (DOC) derived from bacteria. Bacterial contributions to DOC were calculated on the basis of 
C-normalized yields of D-glutamic acid (D-Glx), D-alanine (D-Ala), and D-aspartic acid (D-Asx)34.
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In addition to bacterially-derived DON, Hyp indicated plant proteins were important sources of DON during the 
freshet. Vegetation type was identified as a driver of DON exported from Arctic watersheds55. C-normalized con-
centrations of Hyp were fairly similar across the Siberian rivers suggesting the release of plant-derived proteins 
was controlled by bacterial transformations and uptake.

In essence, bacterial sources were important sources of DON throughout the year through leaching of soils, 
microbial leaching of plant detritus, and transformations of DOM within the river channels16. Additionally, 
plant-derived proteins were seasonally important sources of DON specifically during the Spring freshet. 
Bioavailable DON from both sources should help meet N demand in coastal seas after discharge. Although the 
overall N subsidy from rivers to the Arctic Ocean is considered to be limited, the potential for supporting estua-
rine and near-shore productivity is well recognized15.

The observed molecular and chemical features present a unifying concept for DOM cycling in Arctic water-
sheds and a better understanding of how bacterial metabolism is linked to DOM composition and carbon fluxes. 
The export of bioavailable DOC and DON from Arctic watersheds is connected to river morphology, dominant 
vegetation and soil characteristics. Similar to the marine ecosystems, bacterial metabolism and transformations 
shape bioactive element stoichiometries, the chemical compositions of organic matter, and export of carbon in 
Arctic watersheds.

The important contribution of bacterial detritus to riverine DOC alludes to high bacterial activity in these 
watersheds year round. Extensive remineralization and transformations of DOC already occur in the upper 
reaches of the watersheds, for example erasing the old radiocarbon permafrost signature in exported DOC in 
the Kolyma45. Applying terrigenous DOC decay constants of Kaiser et al.26 a transport time of a few weeks from 
drainage networks to the mouth of the river where samples were collected would result in up to 40% loss of riv-
erine DOC. This indicates a large portion of freshly mobilized DOC is rapidly lost in the upper reaches of the 
watersheds associated with substantial CO2 release that is not accounted for in current carbon budgets56. As the 
Arctic regions are projected to experience substantial warming affecting permafrost stability, increase freshwater 
runoff, shift in dominant vegetation and increased primary productivity, it is essential to study upper stream net-
works to more accurately capture the effect of a changing climate on biogeochemical cycles in Arctic watersheds.

Methods
Sample from five major Arctic rivers were sampled by the Pan-Arctic River Transport of Nutrients, Organic 
Matter, and Suspended Sediments (PARTNERS) project between 2003–2007. Samples were collected close to the 
river mouth for each river (Fig. S4). Raymond et al.3, McClelland et al.57, and Holmes et al.4 described detailed 
sampling programs and procedures. The PARTNERS collection protocol was designed to capture base flow 
(under ice), Spring melt, and late summer conditions. The timing of Spring sampling was determined by physical 
access to sampling sites immediately after the ice break-up. The collection device was a torpedo shaped, Teflon 
coated, 60 kg depth-integrated sampler (US D-96). The rivers were sampled at five different locations along a 
cross-channel transect and combined into one homogeneous sample using a Teflon churn. With the exception 
of winter samples, which were collected by drilling a hole in the ice, each water sample is representative not only 
of surface to bottom, but cross-channel chemistry. Water from the Teflon churn was then filtered (0.45 µm Pall 
Aquaprep 600 capsule filters) into acid washed 1 L polycarbonate bottles and frozen.

DOC and total dissolved nitrogen (TDN) were measured by high temperature combustion using a Shimadzu 
TOC-V analyzer.

Total and D/L-amino acids. Total amino acids including hydroxyproline (Hyp), histidine (His), serine 
(Ser), arginine (Arg), glycine (Gly), aspartic acid (Asx), glutamic acid (Glx), threonine (Thr), alanine (Ala), lysine 
(Lys), tyrosine (Tyr), methionine (Met), valine (Val), isoleucine (Ile), leucine (Leu), phenylalanine (Phe) were 
analyzed after vapor phase hydrolysis by liquid chromatography and fluorometric detection. The hydrolysis was 
performed according to Kaiser and Benner58. Primary amino acids were derivatized with o-phthaldialdehyde 
(OPA) and mercaptopropionic acid (MPA), and secondary amino acids were derivatized with 9-fluorenylmethyl 
chloroformate (FMOC) for separation and detection. The OPA reagent was made from 630 µL OPA stock (36 mg 
OPA in 2.5 mL methanol) mixed with 22 µL of MPA dissolved into 0.5 M sodium borate buffer (pH = 10.2). 
The FMOC reagent was prepared by dissolving 42 mg of FMOC into 1.0 mL of acetonitrile. After derivatiza-
tion and before injection the pH was adjusted to 7 by adding diluent (pH = 1.5) that was prepared with 33 mL 
of mobile phase A and 0.5 mL of concentrated phosphoric acid. The column was a Zorbax Eclipse Plus C18 
Rapid Resolution HT column (4.6 × 50mm 1.8 µm) with guard. Mobile phase A was 9.7 mmol L−1 K2HPO4 
and 9.7 mmol L−1 boric acid adjusted to 8.15 with 50 w/w % NaOH. Mobile phase B was acetonitrile: methanol 
(MeOH): MQ water (45:45:10 v/v). Separation of amino acids was achieved at 40 °C with a linear gradient starting 
with 98% A isocratically for 2 min., then 43% A after 7 minutes. The column was flushed with 100%B for 0.5 min 
after 7 min. and then returned to starting conditions. For detection the detector was set to excitation at 230 nm 
and emission at 450 for 5.7 min then switch to excitation at 266 nm and emission at 305 nm. The flow rate was 
2 mL min−1, and total run time was 9.4 minutes.

D- and L-amino acids were analyzed according to Kaiser and Benner58. Briefly, after hydrolysis and neutraliza-
tion, amino-acid enantiomers were derivatized with a mixture of N-isobutyryl-L-cysteine and o-phthaldialdehyde 
or N-isobutyryl-D-cysteine and o-phthaldialdehyde and separated on a reversed-phase column. Samples were 
run with both reagents to allow for correction of co-eluting peaks. Measured values of enantiomeric amino acids 
were corrected for acid-catalyzed racemization using the mean of the racemization observed in proteins and free 
amino acids58. Aspartic acid and glutamic acid were reported as Asx and Glx because acid hydrolysis converted 
asparagine and glutamine to the respective amino acid and so concentrations reflected both amino acids.

http://S4
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Neutral Sugar Analysis. Seven neutral sugars (fucose (Fuc), rhamnose (Rha), arabinose (Ara), galactose 
(Gal), glucose (Glc), mannose (Man), xylose (Xyl)) are analyzed according to Skoog and Benner59 with modi-
fications. Briefly, samples were hydrolyzed in 1.2 mol L−1 sulfuric acid and neutralized with a self-absorbed ion 
retardation resin60. After desalting with a mixture of cation and anion exchange resins, neutral sugars were iso-
cratically separated with 25 mM NaOH on a PA 1 column in a Dionex 500 system with a PAD. Detector settings 
were analogous to Skoog and Benner59.

Annual Load Calculations. Annual loads for THAA and THNS for each river were calculated using the 
US Geological Survey LoadEstimator (LOADEST) program coupled with the LoadRunner interface to automate 
runs61,62. Daily discharge data between 2003 and 2007 for the five Arctic rivers in this study were obtained from 
the Arctic Great Observatory and PARTNERS websites. Annual load outputs were converted to Tg C yr−1.

Bacterial contribution to riverine DOM. Bacterial processing of riverine DOM is reflected by 
C-normalized concentrations of D-Asx, D-Glx, D-Ser, and D-Ala21,34. Contributions of bacteria to carbon 
in DOM were determined by comparing C-normalized biomarker yields in field samples to average yields 
in freshly-produced bacterial DOM33,34. The percentages of bacterial C in riverine DOM were calculated as 
follows:

= ⁎Bacterial DOC biomarker
biomarker

(%) 100DOC

bacterial DOC

where BiomarkerDOM is the C- normalized concentration of a specific biomarker in riverine DOM and 
Biomarkerbacterial DOM is the C-normalized concentration in bacterial DOM. Average D-amino acid yields of 
D-Asx, D-Glx, and D-Ala (nmol mgC−1) from incubation experiments in two freshwater systems and groundwa-
ter were used as endmembers for 100% bacterial DOM (Table S4). D-Ser was excluded in the calculation because 
it’s distribution was very variable in bacterial cells and bacterial DOM and usually showed distinct bacterial 
populations34. Biomarker yields for bacterial DOC used for calculations were 16.2 ± 9.0 D-Asx, 15.5 ± 1.9 D-Glx, 
and 22.2 ± 5.9 D-Ala.
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