Provided by Old Dominion University

Old Dominion University

ODU Digital Commons

Computer Science Faculty Publications Computer Science

2010

Fully Generalized Two-Dimensional Constrained
Delaunay Mesh Refinement

Panagiotis A. Foteinos

Andrey N. Chernikov
Old Dominion University

Nikos P. Chrisochoides
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience fac pubs

b Part of the Computer Sciences Commons

Repository Citation

Foteinos, Panagiotis A.; Chernikov, Andrey N.; and Chrisochoides, Nikos P,, "Fully Generalized Two-Dimensional Constrained
Delaunay Mesh Refinement" (2010). Computer Science Faculty Publications. 74.
https://digitalcommons.odu.edu/computerscience_fac_pubs/74

Original Publication Citation

Foteinos, P. A., Chernikov, A. N., & Chrisochoides, N. P. (2010). Fully generalized two-dimensional constrained Delaunay mesh
refinement. SIAM Journal on Scientific Computing, 32(S), 2659-2686. doi:10.1137/090763226

This Article is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact

digitalcommons@odu.edu.


https://core.ac.uk/display/217289948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs/74?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

Downloaded 10/23/17 to 128.82.253.43. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. Sc1. COMPUT. (© 2010 Society for Industrial and Applied Mathematics
Vol. 32, No. 5, pp. 2659-2686

FULLY GENERALIZED TWO-DIMENSIONAL CONSTRAINED
DELAUNAY MESH REFINEMENT*
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Abstract. Traditional refinement algorithms insert a Steiner point from a few possible choices at
each step. Our algorithm, on the contrary, defines regions from where a Steiner point can be selected
and thus inserts a Steiner point among an infinite number of choices. Our algorithm significantly
extends existing generalized algorithms by increasing the number and the size of these regions. The
lower bound for newly created angles can be arbitrarily close to 30°. Both termination and good
grading are guaranteed. It is the first Delaunay refinement algorithm with a 30° angle bound and
with grading guarantees. Experimental evaluation of our algorithm corroborates the theory.
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1. Introduction. Delaunay refinement algorithms can be categorized into two
families of algorithms: truly Delaunay and constrained Delaunay refinement algo-
rithms. The former produce meshes which are truly Delaunay by repeatedly splitting
the constrained segments until they appear in the mesh. The latter produce meshes
which are as Delaunay as possible; i.e., they preserve most (but not all) of the nice
properties of truly Delaunay triangulations [8, 19]. The advantage of constrained De-
launay refinement algorithms is that they produce meshes with fewer elements and
guarantee better bounds on the minimum angles and grading. For these reasons, we
chose to develop a constrained Delaunay refinement algorithm.

Traditional Delaunay refinement algorithms [7, 8, 12, 15, 18, 20] improve the
quality of the mesh by inserting additional points into the mesh: the so-called Steiner
points. Specifically, they insert the circumcenter of a bad triangle and the midpoint
of an encroached segment.

There is no universal rule, however, for where the Steiner points should be in-
serted. In the literature, there are methods that insert points other than circumcenters
and midpoints. For example, in [22], a bad triangle is split with its offcenter instead
of its circumcenter producing a smaller mesh in practice. Similarly, in [10], a bad
triangle is split by inserting a point chosen among a total number of four candidate
points. Our goal is to develop an algorithm that allows for customizable point inser-
tion strategies. This flexibility could also help to remove slivers in three dimensions
deterministically, as opposed to randomized algorithms [9, 14]. In this paper, we show
that there is an infinite number of Steiner points that can be chosen to split a tri-
angle or a segment. The points that can be selected as Steiner points form selection
regions. When a bad triangle is considered for splitting, the selection region is a two-
dimensional region called a selection disk. (Sometimes, we refer to selection disks as
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selection circles). Similarly, when a segment is considered for splitting, the selection
region is a one-dimensional region called a selection interval.

Our group has already devised two generalized Delaunay refinement algo-
rithms [4, 6]. The algorithm in [4] (called semi-generalized refinement algorithm)
deploys only selection disks; i.e., selection intervals are not used. Rather, each en-
croached segment is traditionally split at its midpoint. The algorithm in [6] (called
generalized refinement algorithm) extends the semi-generalized refinement algorithm
by introducing the selection intervals. When the encroached segment to be split, how-
ever, forms an acute input angle, the selection interval is not defined; the generalized
refinement algorithm traditionally splits such segments at their midpoint. In this
paper, we extend the generalized refinement algorithm by introducing the selection
interval of segments forming acute input angles.

Some of the applications of selection regions are discussed in our previous work.
Specifically, our work in [3, 6] describes how the selection circles can be utilized
in order to decrease the size of the mesh. In addition, our work in [5] shows how
selection regions can incorporate many different point placement strategies performed
in parallel.

As proved theoretically in [21] and shown practically in [11], mesh quality strongly
affects the convergence speed and the solution accuracy of the finite element solver:
the larger the minimum angle of the mesh is, the lower the condition number of the
linear system becomes which yields a faster and a more robust solution.

Both the semi-generalized [4] and the generalized refinement algorithm [6] are
proved to terminate with a lower angle bound as high as 20.7°. In this paper, we
improve the quality of the mesh, proving termination with a lower angle bound arbi-
trarily close (but not equal) to 30°.

Hudson [13] developed a theoretical framework for both two and three dimensions
which shows that one can split elements at points other than their circumcenters. He,
however, derives a rather weak angle bound in two dimensions: his algorithm guaran-
tees that the lower bound for the angles is 20.7° (we guarantee that the lower bound
for the angles is 30°). Furthermore, his framework suffers from a severe restriction:
the input cannot form acute angles. As it will become obvious in section 3, the input
of our algorithm can have acute angles as small as 60°.

To our knowledge, among the truly Delaunay refinement algorithms guaranteeing
good grading, the algorithm presented by Miller, Pav, and Walkington [16] comes
with the highest lower angle bound (26.45°). As far as constrained Delaunay refine-
ment techniques are concerned, Chew [8] describes a constrained Delaunay refine-
ment algorithm with a 30° lower angle bound, but with no proof of good grading.
Shewchuk [20] shows that Chew’s algorithm [8] offers good grading for a worse angle
bound (i.e., 26.56° instead of 30°). In this paper, we show that Chew’s algorithm
produces well-graded elements with the original angle bound (i.e., 30°), confirming
in this way the observations of practitioners. The work by Miller, Pav, and Walking-
ton [16] does not address this issue; they focus on inputs with small input angles. In
fact, the integration of our work in [16] is likely to yield graded elements with better
angles near the boundary of the input.

In summary, the contributions of this paper are twofold.

e It extends the flexibility offered by the existing generalized algorithms [4, 6,
13]: our algorithm presented here increases the number and size of regions
from where Steiner points can be chosen.
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e [t improves the quarantees on mesh quality: our algorithm terminates and
produces well-graded triangles for a lower angle bound arbitrarily close to
30°.

The rest of the paper is organized as follows. In section 2, we briefly describe
the traditional Delaunay refinement algorithms. In section 3, we define the selection
regions and give the pseudocode of our algorithm. In section 4, we prove important
lemmas and theorems needed for the proof of termination and good grading. The proof
of good grading is presented in section 5 and the proof of termination in section 6.
Finally, section 7 experimentally evaluates our algorithm, and section 8 concludes the

paper.

2. Delaunay refinement background. The input domain 2 to be meshed is
usually described as a planar straight line graph (PSLG) [18, 20]. A PSLG X is a set
of input vertices and segments. The input segments are constrained; i.e., they have to
appear in the final mesh, possibly as a union of smaller subsegments. We shall refer to
an input segment as simply a segment. The input vertices should also be preserved in
the final mesh. For brevity, we call both the segments and the input vertices features.

Let p;, pj be two vertices in the mesh. We denote the mesh edge that connects p;
with p; as e (p;, pj) regardless of whether it is an input segment or not. The Euclidean
distance between these points is denoted as ||p; — pj|.

We use the circumradius-to-shortest-edge ratio p of a triangle to measure its
quality. If the circumradius-to-shortest-edge ratio of a triangle ¢ is equal to or larger
than a specified upper bound p, then ¢ is said to be a poor or skinny triangle. Mesh
refinement algorithms split poor triangles until the circumradius-to-shortest-edge ratio
of all the triangles in the mesh is less than p. This upper bound sets a lower bound
for the angles in the mesh, since the circumradius-to-shortest-edge ratio of a triangle
with shortest edge [, circumradius r, and smallest angle A is p = 7 = ﬁ [17, 20].
Therefore, when the refinement terminates, it is guaranteed that all the angles in the
mesh are larger than arcsin 2%' For brevity, we denote this angle lower bound as 6:
6 = arcsin 2%. Clearly, 6 can only be an acute angle.

A triangle t is said to satisfy the constrained Delaunay property if there is no vertex
that lies strictly inside #’s circumscribed circle (circumcircle) and is visible from the
interior of ¢ [8, 20]. Two vertices p;, p; are visible to each other if the line connecting
p; with p; does not intersect (at exactly one point) the interior of any constrained
segment. See Figure 2.1 (left) and (middle). At any time during the refinement process,
all the triangles in the mesh have to satisfy the constrained Delaunay property.

Cavity [12] of a point p is defined to be the set C (p) of triangles ¢, in the mesh such
that the circumcircle of every ¢; in C (p) includes the point p, and p is visible from the
interior of ¢; (see Figure 2.1 (right)). We denote 9C (p) to be the set of boundary edges
of the cavity, i.e., the edges which are incident upon only one triangle in C (p). For our
analysis, we use the Bowyer—Watson (B-W) point insertion algorithm [1, 24], which
can be shortened as in Algorithm 1. Note that this definition of a cavity implies that if
p is inserted into the mesh, then all the triangles in C (p) do not satisfy the constrained
Delaunay property and must be deleted. After the deletion of these triangles, the
cavity has to be re-triangulated such that all the newly formed triangles respect the
constrained Delaunay property.

As mentioned above, refinement algorithms repeatedly split skinny triangles until
the ratio of all the triangles in the mesh is less than the upper bound p. Traditionally,
a skinny triangle ¢ is deleted by inserting its circumcenter p (using the B-W point

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Fi1c. 2.1. (Left) Triangle t; satisfies the constrained Delaunay property: although p is inside the
circumcircle, it is not visible from the interior of t; because of the constrained segment s. (Middle)
Triangle t; does not respect the constrained Delaunay property: p lies inside the circumcircle and is
visible from the interior of tj. (Right) The cavity C (p) of p includes only the triangle t;. Although
p lies inside t;’s circumcircle, t; does not belong to C (p), since p is not visible from the interior of
t;. Notice that t; respects the constrained Delaunay property, but t; does not; therefore, t; must be
deleted.

Algorithm 1: The Bowyer—Watson point insertion procedure.

1 Algorithm: BowyerWatson(V, T, p)
Input :V is the set of vertices.
T is the set of triangles.
p is the Steiner point to be inserted.
Output: V and T after the insertion of p.

2 V+ VU{ph
3T+ T\C(p)u{(ps) |£€aC(p)};

insertion algorithm). We will show, however, that there is a whole two-dimensional
space inside the circumcircle of ¢ where a Steiner point p can be chosen from.

Even though the Steiner point p of a skinny triangle ¢; is always inserted inside ¢;’s
circumcircle, ¢; may not belong to C (p). This can happen when p is not visible from
the interior of ¢;; that is, when ¢; and p lie on opposite sides of a constrained segment.
See Figure 2.1 (right) for an illustration: in such a case, the insertion of p fails to
remove the skinny triangle ¢; from the mesh. To deal with these circumstances and
to prevent the insertion of Steiner points outside the domain, Delaunay refinement
algorithms obey special encroachment rules [8, 20]. We define encroachment as follows.

DEFINITION 2.1 (encroachment of a constrained segment). A segment s is said
to be encroached upon by a skinny triangle t if p; is not visible from the interior of t
due to s; i.e., the line connecting p; and any point in the interior of t intersects the
interior of s. If more than one segment lies between t and p;, the segment closest to
t is encroached.

See Figure 2.2 for an illustration.

If a skinny triangle ¢ encroaches upon a segment s, then its Steiner point is rejected
from the mesh. In addition, all the free vertices (i.e., vertices that neither are input
vertices nor lie on segments) which lie inside the diametral circle of s and are visible

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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TR AR A

Fic. 2.2. A skinny triangle t and its Steiner point p; when (left) t encroaches upon segment
s and when (middle) it does not. (Right) Does t encroach upon s or not? No matter where p; is,
the case illustrated in this figure cannot happen, since t did not satisfy the constrained Delaunay
property before the insertion of p;. Indeed, p., lies inside t’s circumcircle and is visible from the
interior of t, because the line connecting p,, with any point in the interior of t does not intersect the
interior of s but one of its endpoints.

from the interior of s are deleted. (The diametral circle of a segment is the smallest
circle that circumscribes the segment.) Then a new Steiner point is inserted on s.
Traditionally, the midpoint of s is inserted, but we will show that there is a whole
one-dimensional space inside s from where a Steiner point can be chosen.

The following definitions of the local feature size, insertion radius, and parent
play a central role in the analysis in [18, 20], and we use them for our analysis in the
generalized form, too.

DEFINITION 2.2 (local feature size (Ifs) [18, 20]). The function Ifs (p) for a given
point p is equal to the radius of the smallest disk centered at p that intersects two
nonincident features of the PSLG.

Ifs (p) satisfies the following Lipschitz condition.

LEMMA 2.3 (see Lemma 1 in [18], Lemma 2 in [20]). Given any PSLG and any
two points p; and p;, the following inequality holds:

(2.1) Ifs (pi) <1fs (p;) + llpi — psll-

DEFINITION 2.4 (insertion radius). The insertion radius R (p) of point p is the
distance from p to its nearest visible vertex, immediately after p is inserted. If p is
an input vertex, then R (p) is the Euclidean distance between p and the nearest input
vertex visible from p.

Remark 1. Assume that p; and p,, are mutually visible vertices inserted into the
mesh and that p; was inserted after p,, (or both p; and p,, are input vertices); then
R(p1) < |lp1 — pm||- Indeed, if p,, was the closest visible vertex from p; at the time
p; was inserted into the mesh (in the case of input vertices, assume that they were
inserted simultaneously), then R (p;) = ||pi — pm|| by the definition of the insertion
radius; otherwise, R (p;) < ||pi — pm||-

Remark 2. As shown in [20], if p is an input vertex, then R (p) > lfs (p). Indeed,
the (closed) disk with center p and radius R (p) intersects two nonincident features:
the input vertex p and p’s closest visible vertex.

Next, we define the parent of a Steiner point.

DEFINITION 2.5 (parent of a Steiner point). The parent p; of point p; is the
vertex defined by the following four rules:

Rule 1. If p; is either an input vertex or a rejected vertex, then it has no parent.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/23/17 to 128.82.253.43. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2664 P. FOTEINOS, A. CHERNIKOV, AND N. CHRISOCHOIDES

Rule 2. If p; is inserted inside the circumcircle of a poor quality triangle t, p; is
the most recently inserted vertex of the shortest edge of t. See Figure 2.3
(left).

Rule 3. If p; is inserted on a segment s, encroached upon by a skinny triangle t
and mo nonfree vertex visible from p; lies inside the diametral circle of
s, then p; is the most recently inserted vertex of the shortest edge of the
encroaching triangle. See Figure 2.3 (middle).

Rule 4. If p; is inserted on a segment s, encroached upon by a skinny triangle t,
and at least one nonfree vertex visible from p; lies inside the diametral
circle of s, then p; is the nonfree, visible vertex which is closest to p;. See
Figure 2.3 (right).

LEMMA 2.6. The parent p; (if one exists) of a point p; is visible from p;.

Proof. Let p; be a vertex and p; be its parent. For the sake of contradiction,
assume that p; is not visible from p; due to a segment §; i.e., the line connecting p;
and p; intersects the interior of 5. We will investigate what that means for each rule
of Definition 2.5.

Rule 1 does not apply, since we have assumed that p; does have a parent in this
lemma. This also implies that p; is neither an input nor a rejected vertex.

If Rule 2 applies, then consider Figure 2.4 (left): the skinny triangle ¢ must
encroach upon 5. But that means that p; should have been rejected from the mesh: a
contradiction.

If Rule 3 applies, then consider Figure 2.4 (right): the skinny triangle ¢ does not
encroach upon s but upon §: a contradiction.

Finally, if Rule 4 applies, p; and p; are visible to each other by definition: a
contradiction. d

Notice that a rejected point does not have a parent according to our definition
(Rule 1), whereas it does in the traditional approaches. This change is not necessary,
but it considerably simplifies the proofs in the next sections.

Also, observe that the parent of a Steiner point p; inserted on an encroached,
constrained segment s might lie outside the diametral circle of s (see Figure 2.3

Di

FiG. 2.3. Different cases of parenthood as defined in Definition 2.5. t is a skinny triangle, p;, p;
are Steiner points, and s,s’ are (constrained) segments. Point p; is inserted after pj. (Left) t does
not encroach upon s, and therefore, its Steiner point p; is not rejected. The parent p; of p; is the
most recently inserted vertex of t’s shortest edge. (Middle) t encroaches upon s and its Steiner point
p; is rejected. Instead, the Steiner point p; is inserted on s. Since the diametral circle of s is empty
of nonfree vertices, the parent of p; is the most recently inserted vertex of t’s shortest edge. (Right)
t encroaches upon s, and therefore, its Steiner point p; is rejected. Instead, the Steiner point p;
is inserted on s. Since the diametral circle of s contains a nonfree vertex lying on the constrained
segment s', the parent p; of p; is this nonfree vertex.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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F1G. 2.4. The constrained segment 3 is shown with the dashed line. (Left) Rule 2 applies (i.e.,
pi is not rejected), as in Figure 2.3 (left), but now § obstructs visibility between p; and p;. (Right)
Rule 3 applies (i.e., t encroaches upon s), as in Figure 2.3 (middle), but now 3 obstructs visibility
between p; and p;.

(middle) for an illustration). This is different from the traditional approaches where
the parent of p; is always inside or on the diametral circle of the encroached segment.
This modification of the parent definition is crucial, since the diametral circle of an
encroached segment might not contain any traditional parent candidates at all in our
generalized algorithm. For our analysis, it is useful to know whether the parent of p;
is strictly inside the diametral circle of s or not; we, therefore, classify the parent as
either an external or a nonexrternal parent according to the following definition.

DEFINITION 2.7 (external parent). Assume that p; is a Steiner point inserted on
an encroached segment s. If its parent p; lies on or outside the diametral circle of
s, then we say that p; is an external parent. Conversely, if p; lies strictly inside the
diametral circle of s, then we say that p; is a nonexternal parent.

P P

F1G. 2.5. The separator of an encroached (constrained) segment s. A skinny triangle t encroaches
upon the constrained segment s (because t and its Steiner point p; lie on opposite sides of s). The
edge e (pmpx) is the separator of s. Intuitively, the separator of s is the edge of t which s would fall
on if we moved s toward t. The right figure illustrates the special case where the encroached segment
coincides with its separator.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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For example, the point p; is an external parent in Figure 2.3 (middle), but it is a
nonexternal parent in Figure 2.3 (right).

Remark 3. If p is inserted on a segment s, encroached upon by a skinny triangle
t, and p is an external parent, then p is the most recently inserted vertex of ¢’s shortest
edge. Indeed, if Rule 3 did not apply, then Rule 4 would; i.e., p would lie inside the
diametral circle of s: a contradiction.

Next, we define the separator of an encroached segment.

DEFINITION 2.8 (separator of an encroached, constrained segment). Let ¢t en-
croach upon a segment s. The separator of s is the unique edge of t that lies between
s and the interior of t.

Notice that the separator of an encroached segment always exists and is unique.
See Figure 2.5 for a couple of examples.

The density [20] of a vertex p, denoted as D (p), is defined as follows:

_ Ifs (p)
R(p)

Refinement algorithms are proved to produce well-graded triangles by showing that
the density of all mesh vertices is less than a constant.

(2.2) D (p)

3. Generalized Delaunay refinement algorithm. In the following sections,
we will show that our generalized constrained Delaunay refinement (GCDR) algorithm
guarantees termination and good grading for a circumradius-to-shortest-edge ratio
upper bound p arbitrarily close to 1. This value for p corresponds to an angle lower
bound of 0§ = arcsin% = 30°.

DEFINITION 3.1 (selection circle). For a skinny triangle with circumcenter c,
shortest edge length 1, circumradius r, and circumradius-to-shortest-edge ratio p =
r/l > p > 1, the selection circle is the circle with center ¢ and radius r(1 — d2), where
0o 18 a constant parameter chosen such that

(3.1) <8y <1

=

See Figure 3.1 (left) for an illustration.
Remark 4. If 69 = 1, then the selection circle shrinks to the circumcenter point.
DEFINITION 3.2 (type B selection interval). If s is an encroached segment with
center c, then the type B selection interval of s is the subsegment of s with center c
and length |s|(1 — 61), where 81 is a constant parameter chosen such that

1
(3.2) 5 <6 <1,
and |s| is the length of s. See Figure 3.1 (middle) for an illustration.

Remark 5. If §; = 1, then the type B selection interval shrinks to the center
point.

Remark 6. If p =1, then both d5 and d; can only be equal to 1; therefore, both
the selection circles of skinny triangles and the type B selection intervals of encroached
segments shrink to the respective center points.

Remark 7. 1If 6o = %, then §; can only be equal to 1; therefore, the type B
selection intervals of encroached segments shrink to the center points.

Remark 8. If §6; = %, then 05 can only be equal to 1; therefore, the selection
circles shrink to the circumcenters.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Dk

e/
~ Pm

Pr = DPpi

F1G. 3.1. The three kinds of selection regions. Large dots denote nonfree vertices lying on (con-
strained) segments, while small dots denote free vertices. Point ¢ is not a part of the mesh; it is
rather an auxiliary point that denotes the center of the selection regions. Point p; is a Steiner point
inserted into the mesh. Point p; is a Steiner point rejected from the mesh. (Left) Selection circle
(shaded) for the skinny triangle Apgpipm with the shortest edge e (pypm). Also illustrates case (1)
from Table 4.1. (Middle) Type B selection interval (bold) for an encroached segment e (pupv). Also
tllustrates case (2) from Table 4.1. The constrained segment e (pupv) is encroached since the skinny
triangle Apypipm and its Steiner point p; lie on opposite sides. The Steiner point p; is rejected, and
the diametral circle is emptied of vertices which are free and wvisible from the interior of e (pupv);
in this example, only the free vertex pm is deleted. Another Steiner point p; in the type B selection
interval of e (pupv) is inserted instead. The parent p; of the vertex p; may be an external vertex (as
depicted), i.e., a vertex outside the diametral circle of e (pupy). (Right) Type C selection interval
(bold) for an encroached segment e (pupo). Also illustrates case (4) from Table 4.1. The Steiner point
pi has been inserted in the type C selection interval. The parent p; is a monexternal vertexr which
lies on a segment incident to e (pupv). The input angle formed by the segments e (pupv), € (Pupw) s
denoted with a.

DEFINITION 3.3 (type C selection interval). If s is a segment with center c, then
the type C selection interval of s is the subsegment of s with center ¢ and length
|s|(1 — p), where u is a constant parameter chosen such that

(3.3) 208 Qmin < p < 1,

and auin 1S the minimum input angle in the PSLG. Clearly, amin cannot be smaller
than 60°. See Figure 3.1 (right) for an illustration.

Remark 9. If p = 1, then the type C selection interval shrinks to the center
point. In our previous generalized algorithms [4, 6], the type C selection interval is
always the center point.

Remark 10. If apiy is equal to 60°, then p can only be equal to 1, and therefore,
the type C selection interval of the corresponding segment shrinks to its center point.

Remark 11. If §; = 02 = p = 1, then our GCDR algorithm is identical to Chew’s
second algorithm, as described in [20].

Algorithm 2 presents the GCDR algorithm. For brevity, let us classify the non-
rejected Steiner points, inserted by the GCDR algorithm, into three categories:

e If a point p; is inserted inside the selection circle of skinny triangle, then p;
is called a type A point.

e If a point p; is inserted on an encroached segment s, and there is no nonfree
vertex strictly inside the diametral circle of s and visible from p;, then p; is
called a type B point. Type B points are only inserted in the type B selection
interval of encroached segments.

e If a point p; is inserted on an encroached segment s, and there is at least
one nonfree vertex strictly inside the diametral circle of s and visible from p;,
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Algorithm 2: The generalized constrained Delaunay refinement
algorithm.

1 Algorithm: GeneralizedDelaunayRefinement (X, p, da, 01, 1, Fa O, FpQ,

FceO, M)
Input : X is the input PSLG.

p is the upper bound on circumradius-to-shortest-edge ratio, p > 1.

02 is the parameter which defines selection circles for skinny
triangles, L<g,<1.

071 is the parameter which defines type B selection intervals of
encroached segments, %;2 <6 <1.

w is the parameter whicfl defines type C selection intervals of
encroached segments, 2 cos apin, < p < 1, where oy is the
minimum input angle present in X.

FAQ, Fg(), and Fo () are user-defined functions which return
specific Steiner points of type A, type B, and type C, respectively.

M = (V,T) is an initial constrained Delaunay triangulation of X,

where V' is the set of vertices and T is the set of triangles.

Output: A constrained Delaunay mesh M whose triangles have

circumradius-to-shortest-edge ratio less than p.

2 Let SkinnyTriangles be the set of triangles in 7' whose

circumradius-to-shortest-edge ratio is larger than or equal to p;

3 while SkinnyTriangles # () do

4 Pick t € SkinnyTriangles;

5  p FalM, o2, 1); /* p is of type A */
6 if t encroaches upon a segment s then /* p is rejected */
7 Delete the free vertices inside the diametral circle of s;

8 if there is a nonfree vertexr which lies strictly inside the diametral circle

of s and is visible from the interior of s then

9 p Fo(M, u, s); /* p is of type C */
10 else
11 p < Fp(M, 61, s); /* p is of type B */
12 end
13 end
14 BowyerWatson(V, T', p) ; /* insert p into the mesh */
15 Update SkinnyTriangles;
16 end

then p; is called a type C point. Type C points are only inserted in the type

C selection interval of encroached segments.

For example, the vertex p; in Figure 3.1 (left), (middle), and (right) is a type A,

a type B, and a type C point, respectively.

Notice that the parent of type B and type C points is not the same as in our

previous generalized refinement algorithm presented in [6]: the parent p of a type C

point p is now a nonfree vertex strictly inside the diametral circle of an encroached
segment s, regardless of whether p lies on a segment incident to s or not. This change

is not necessary, but it further simplifies the proofs in the sections that follow.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/23/17 to 128.82.253.43. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

GENERALIZED CONSTRAINED DELAUNAY REFINEMENT 2669

The analysis below assumes that all angles in the input PSLG are not less than
60°. (Input angles less than 60° can be removed via postprocessing techniques [8] or
via concentric circular shell splitting [18, 20], but without guarantee of good grading.)

4. Point spacing theorem. The main result of this section is Theorem 4.6
which establishes the relation between the insertion radius of a point and that of its
parent or the local feature size. In particular, in both cases, the insertion radius is
bounded from below, and therefore, the lengths of the edges created by the GCDR
algorithm are bounded from below. This result allows us to prove in the following
sections the termination of the algorithm and the good grading of the meshes it
produces.

First, we prove Lemmas 4.1, 4.2, 4.3, 4.4, and 4.5 that establish important re-
lations used in the proof of Theorem 4.6 as well as in the proof of good grading in
section 5. Lemmas 4.1, 4.2, and 4.3 bound the insertion radius of a Steiner point from
below in terms of the size of the corresponding selection region. Lemma 4.4 relates the
length of the encroached segment with the length of the circumradius of the encroach-
ing triangle. Finally, Lemma 4.5 determines which of the edges of a skinny triangle
can be the shortest.

LEMMA 4.1. If a Steiner point p; is of type A, then

(4.1) R(pl) Z 527",

where 1 is the circumradius of the corresponding skinny triangle.

Proof. Consider Figure 3.1 (left). By the way we defined type A Steiner points
(see section 3), p; is actually inserted into the mesh; therefore, there is no segment
that lies between p; and the skinny triangle t = Apgpipm (i-e., t does not encroach
upon any segment). By the constrained Delaunay property, t’s circumcircle does not
contain vertices visible from ¢’s interior. Since p; and t lie on the same side of any
constrained segment, there is no vertex inside the circumcircle which is visible from p;.
Therefore, the “donut” between the boundary of the circumcircle and the boundary
of the selection circle cannot contain points visible from p;. Thus, the distance from
p; to the closest mesh vertex visible from p; has to be greater than or equal to the
width of the donut. This implies that the insertion radius of p; has to be greater than
or equal to the width of the donut which is equal to dor. |

LEMMA 4.2. If a Steiner point p;, inserted on an encroached segment s, is of type
B and p; is either a type A point or a nonfree external parent, then

e there are no nonfree vertices inside the diametral circle of s that are visible
from p;, and
e the following inequality holds:

(4.2) R(p) > 5,12

Proof. For the first part, for the sake of contradiction, assume that the diametral
circle of s is not empty of nonfree vertices visible from p;. Let p; be the closest to
p; nonfree vertex which is inside the diametral circle of s and visible from p;. By
Definition 2.5 (Rule 4), p; is the parent of p;. However, p; is neither a type A point
(since it is a nonfree vertex) nor an external parent (since it lies inside the diametral
circle of s): a contradiction.

For the second part, recall that all the free vertices which are inside the diametral
circle of s = e (pypy) (see Figure 3.1 (middle)) and visible from the interior of s are
deleted. Also, from the first part above, there are no nonfree vertices which lie inside
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the diametral circle of s and are visible from p;. Therefore, one of the endpoints of
s—say the endpoint p,—is the vertex closest to p; among the vertices that are visible
from p;. This means that R(p;) = ||p; — pv||, and from the definition of the type B
selection interval, R (p;) > 51%. a
LEMMA 4.3. If p;, inserted on an encroached segment s, is of type C, then
o if p; is the closest vertex to p;, the following equality holds,

(4.3) R (pi) = |lpi — pill,

or
e if one of the endpoints of s is closest to p;, the following inequality holds:

(4.4) R(pi) > M|2i|~

Proof. Consider Figure 3.1 (right). By the way we defined a type C point, there
is at least one nonfree vertex strictly inside the diametral circle of s = e (p,p,) and
visible from the interior of s (i.e., visible from p;). Therefore, by Definition 2.5 (Rule
4), p; is the closest to p;, nonfree vertex visible from the interior of s. Recall, however,
that all the free vertices which are inside the diametral circle of s and visible from the
interior of s are deleted. Therefore, there are two scenarios: either p; or one of the
endpoints of s is the closest vertex to p;. In the first case, (4.3) holds by definition
of the insertion radius (Definition 2.4). In the second case, since p; is inserted in the
type C selection interval of s, p; is separated from the endpoints of s by a distance at
least ,u@, and inequality (4.4) holds. O

LEMMA 4.4. Let p; be a Steiner point inserted on a segment s encroached upon
by a skinny triangle t with circumradius equal to r. If the parent of p; is an external
parent, then

e s intersects t’s selection circle, and
e the following inequality holds:

5]

7 27’\/2(52-5%.

Proof. From Remark 3, we obtain that the parent p; of p; is a vertex of ¢ (in
fact, p; is the most recently inserted vertex of ¢’s shortest edge). We claim that s has
to intersect t’s selection circle. Indeed, if it does not, either s cannot be encroached
upon by t (see Figure 4.1 (left)) or p; cannot be an external parent (see Figure 4.1
(middle)): a contradiction.

For the second part, observe that the length of s reaches its smallest value when
s is tangent to t’s selection circle and its endpoints lie precisely on t’s circumcircle.
See Figure 4.1 (right) for an illustration. From the right triangle formed, we obtain
that % is at least /72 — r2(1 — d2)2, and (4.5) holds. a

LEMMA 4.5. Let triangle t encroach upon the constrained segment s. The separator
of s cannot be the shortest edge of t.

Proof. See Figure 3.1 (middle). From Definition 2.8, the separator of s = e (pypy)
is the edge e (pmpr). We will prove the lemma by showing that the angle Zpipipm
cannot be the smallest angle of the encroaching triangle ¢t = Apgpipm .

(4.5)
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) »Pk p //\, ) / p»lpk
> L 2
— \—7

F1G. 4.1. The shaded circle represents the selection circle of the skinny triangle t. Point c is the
center of the selection circles. (Left) Segment s does not intersect the selection circle, but t cannot
encroach upon s. (Middle) Segment s does not intersect the selection circle, t encroaches upon s,
but P; is not an external parent since it lies strictly inside the diametral circle of s. (Right) If s
intersects the selection circle, then its length is minimized when it is tangent to the selection circle.
The radius of t’s circumcircle is denoted as .

For the sake of contradiction, assume that ¢ = Zpgp;pm, is the smallest angle of
t. It is well known that all inscribed angles subtended by the same arc of a circle
are equal. Therefore, we can turn ¢ into an isosceles triangle, without changing the
value of ¢, by moving appropriately the point p; on t’s circumcircle. Now, observe
that the value of ¢ decreases as the endpoints of e (p,,pr) move on t’s circumcircle
and away from the point p;. Thus, the smallest value that ¢ can take is when e (p,,px)
is tangent to the selection circle of ¢, as depicted in Figure 4.2. Note that the edge
e (pmpk) cannot move farther away from p; since otherwise ¢ could not encroach upon
S any more.

See Figure 4.2. From the right triangle App,p;c, we obtain that ||p, — p;|| =

r4/02(2 — d2). Similarly, from the right triangle Ap,,p;p;, we obtain that ||p,, —pi|| =
r4/2(2 — d2). Therefore, we have that

pm p_] pk

Fic. 4.2. The skinny triangle t = Apgpipm where e (pmpy) is the separator of the encroached
segment. Since e (pmpy) is tangent to the selection circle at the point pj;, angle ¢ takes its minimum
value. Without loss of generality, t is an isosceles triangle with e (pmpy) being the base.
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TABLE 4.1
All possible type combinations of p; and p;. The cells above labels “external” and “nonexternal”
correspond to the cases when p; is an external and a nonexternal parent, respectively. Also, the cells
above labels “incident” and “nonincident” correspond to the cases when p; and p; lie on incident
and nonincident constrained segments, respectively. Each of the cases (n) is analyzed separately.

pi
Type—-A Type-B Type—C—or—input

Type-A (1)

pi |Type-B (2) (3) n/a n/a (3) n/a n/a

Type-C n/a n/a (4) (5) n/a (4) (5)

incident non—incident incident non—incident
external non—external external non—external
sin% = H (from the right triangle App,p;pr)

_ T4/ 02 2—52)

T\/2(2—52)
2
25
si
n

=

v

i
\/7
\/Tp (from (3.1))
no

0

si

Vvl

(0 < sinf < 1; therefore, v/sin > sin 6),

yielding that ¢ > 26.

However, since t is a skinny triangle, its smallest angle must be no larger than 6:
¢ < 0, a contradiction. a

THEOREM 4.6 (point spacing theorem). With the use of the GCDR algorithm
either

(4.6) R(pi))>C,-R(p;), n=1,2,3,
or
where Cy, are defined separately for each of the cases (n) from Table 4.1 as follows:
= 552, Csy : 615/5, C3 = [)51\/252 —5%, Cy = ﬁamin’ Cs = ﬁ, where oupin 18
the minimum input angle of the PSLG.

Proof.

Case (1): By the definition of the parent vertex, Definition 2.5 (Rule 2), p; is
the most recently inserted endpoint of the shortest edge of the triangle. Consider
Figure 3.1 (left). Without loss of generality, let p; = p; and e (ppy,) be the shortest
edge of the skinny triangle Apgp;p,n with circumradius . Then

R (pi) > dar (from Lemma 4.1)
= Samprzpo e — Pl
= 02pllpr = pm|
> 53pllpt — pol (since p > )
> 02pR (p1) (from Remark 1)
= 02pR (Pi) ;
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therefore, (4.6) holds with Cy = pds.

The argument above holds for all types of p;, because it does not involve the
properties of p; specific for a particular type.

Case (2): See Figure 3.1 (middle). In this case, p; is a type B point inserted
on an encroached, constrained segment s = e (p,p,), and its parent p; is of type A.
Therefore, Lemma 4.2 holds.

From the first part of Lemma 4.2, we have that there are no nonfree vertices that
are inside the diametral circle of s and visible from p;. Therefore, by Definition 2.5
(Rule 3), the parent p; of p; is the most recently inserted vertex of the shortest edge
of the encroaching triangle ¢ = Apgp;pm. By Lemma 4.5, e (pm,pr) cannot be the
shortest edge of ¢, since it is the separator of s. Therefore, the shortest edge of ¢
is either e (pipm) or e (pipr). If e (pipm) is shorter than e (p;pg), then the parent is
the vertex p; or p,,. In either case, R (p;) < |[p1 — pm|| from Remark 1; otherwise,
e (pipr) is the shortest edge, and thus, the parent is the vertex p; or pi. In either case,
R (p;) < ||pi —pxl| from Remark 1. Hence, no matter which exact vertex is the parent,
we obtain that R (p;) < min{|p; — pm |, [[pe — prll}-

Furthermore, from the second part of Lemma 4.2, we obtain that R (p;) >
(51@ (inequality (4.2)).

We next try to find an upper bound for the ratio ggf ‘g . Without loss of generality,
assume that segment s has been rotated around its midpoint ¢ in such a way that
the separator of s (i.e., e (pmpr)) is parallel to s, as depicted in Figure 3.1 (middle).
Note that this rotation does not change either the upper bound of R (p;) or the lower
bound of R (p;) because both the length of s and ¢’s vertices remain intact.

Keeping the lower bound of R (p;) fixed (i.e., keeping the position of s’s endpoints
fixed), we will first try to calculate what is the maximum value R (p;) can reach. See
Figure 3.1 (middle): by moving the endpoints of the edge e (p,pr) (the separator
of the encroached segment) on t’s circumcircle and toward the encroached segment
e (pupwv), R (p;) does not decrease, because the length of the edges e (p;p.,) and e (ppk)
increases. Note that e (p;,pr) can at most fall on e (p,p,), since otherwise e (p,py)

Di

Fi1G. 4.3. Points ¢ and ¢’ are the centers of the encroached segment s = e (pupv) and the
circumcircle of the encroaching triangle t = Apmpipi, respectively. The endpoints of the separator
of s (points px and pm) have moved exactly on s, while t is an isosceles triangle (with e (pmpk)
being the base) mazimizing in this way the upper bound of R (p;).
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would intersect the interior of ¢. Also, by moving appropriately the vertex p; on the
circle between the endpoints of e (p,,pr), we can turn t into an isosceles triangle,
and therefore, we can further increase the quantity min{||p; — pm/||, [lpi — prll}- See
Figure 4.3 for an illustration.

R (ps) < min{{|p; — pmll, [|pr — pell}

llpi — Pl (since t is turned into an isosceles triangle)
[[prm —cll

I IA

(from the right triangle Ap,,cp; of Figure 4.3)

cos A
|Pu—poll
2cos A

51RC(01;) A (from inequality (4.2)).

VANRVAN

However, Lemma 4.5 also implies that the minimum angle of ¢ is A, and since t is a
skinny triangle, we have that A < 6. Therefore, we finally get that

(4.8) R(i) < ;nga.
Since 6 is an acute angle, we obtain that
cosf = 1 —sin?@
= 1- ﬁ (since sinf = Qip by definition)
> 4 /1-1 (since p > 1 from Definition 3.1)
_

and inequality (4.8) becomes

15

Therefore, (4.6) holds with Cy = 213

Case (3): Let t be the triangle encroaching upon s, [ be its shortest edge, and
r be its circumradius. From Remark 3, we have that p; is the most recently inserted
vertex of [. Since t is a poor triangle, |I| can at most be equal to %. Therefore, from
Remark 1, we obtain that

(4.9) R(pi) <

Also, notice that

Ell

oty (from inequality (4.2))
817r/262 — 63 (from inequality (4.5))
51pR (pi) /282 — 63 (from inequality (4.9)).

Therefore, in this case, (4.6) holds with C3 = pd;+/202 — 3.

The argument above holds for each type of p; shown in Table 4.1, because it does
not involve the properties of p; specific for a particular type.

Case (4): Since p; is a type C point, Lemma 4.3 holds. Consider Figure 4.4 (left).
Based on Lemma 4.3, we separate two possibilities:

R (p:)

VIV IV
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F1G. 4.4. Point p; is a type C point inserted on the encroached segment s. Point p; is a nonez-
ternal parent. Point c is not part of the mesh; it is an auxiliary point that denotes the center of
the segments. (Left) Points p; and p; lie on incident constrained segments separated by angle a,
60° < a < 90° (case (4) from Table 4.1). (Right) p; and p; lie on nonincident constrained segments
(case (5) from Table 4.1).

(a)

If the parent p; is the closest point to p;, then

R(p:) _  |pi—pil]
2 |'|‘§Zi§i'|'\ (from Remark 1)
= :Eg (considering Ap;p,p;).

We wish to determine what values angle ¢ can take. Since ||p; —5;|| < ||pi—pol|
by our assumption, we get that o < & from Ap;p,p;. Therefore, ¢ < 180°—2a.
This implies that

R(pi) > sin o
R(p:) sin (180—2a)
sin o

sin (2ar)
sin

2sin acos o
1

2cosa’

yielding that
1
4.10 R(p;)) > —R(p;) .
(4.10) (p)*2cosamin (Pi)
If an endpoint of the constrained encroached segment e (p,p,) is the closest
point to p;, then

lPu—puvll
pLbu_Pul

o (R (from inequality (4.4))

% (from Remark 1).

AVARY,

An upper bound for the distance ||p; — py|| is obtained when p; lies on the
diametral circle of the segment e (p,p,) (in fact, p; cannot lie exactly on the
diametral circle, since it is a nonexternal vertex). From the isosceles triangle
Apicp, (see Figure 4.4 (left)), we get that ||5; — po| < ||pu — pull cosa, and
therefore,

R(pi) > wllpu—poll
; 2[[pu—po [[cosa
)

2cosa’?
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obtaining in this case that

p X
(4.11) R (p;) > 5 oos aminR (pi) -
In both cases, Cy =
holds.
The argument above holds for each type of p; shown in Table 4.1 because it does
not involve the properties of p; specific for a particular type.
Case (5): See Figure 4.4 (right). Based on Lemma 4.3, we, again, separate two
possibilities:
(a) If p; is the vertex closest to p;, then, from (4.3), R (p;) = |lp; — pil|. Since,
however, p; and p; lie on nonincident features, we obtain that Ifs (p;) < ||p; —
Di|| (see Definition 2.2), yielding that R (p;) > lfs (p;).
(b) Otherwise, an endpoint of the constrained encroached segment e (p,p,) is the
closest point to p;. Then, if ¢ is the center of s, by Definition 2.2 of the Ifs ()

satisfies both (4.10) and (4.11), and thus, (4.6)

[
2 COS Omin

function,
(4.12) Ifs (¢) < |le — P4
Therefore,
Ifs (p;) < Us(c)+|pi— ¢l (from Lemma 2.3)
< lle=nill + llpi —¢ll  (from (4.12))
< ‘% + |lpi — ¢l (because p; is inside the diametral
circle of s)
< L;' +(1- u)‘—é' (since p; lies in the type C selection
interval of s)
= (2-pk
< (2—p) R(lfi) (from inequality (4.4)).

In both cases, Cs = 5% satisfies the inequality (4.7).
The argument above holds for each type of p; shown in Table 4.1 because it does
not involve the properties of p; specific for a particular type. a

5. Proof of good grading. The main result of this section is Theorem 5.5
which proves that GCDR, produces well-graded triangles. Theorem 5.5 will also allow
us to prove termination, since it is possible to bound from below the closest distance
of any two visible vertices. Notice that we first prove good grading and then we prove
termination.

First, we prove Lemmas 5.1, 5.2, and 5.3 that bound from above the distance
from a point to its parent in terms of the size of the point’s corresponding selection
region. These results are used to prove Lemma 5.4 which shows that the vertex density
in a point is bounded from above by a linear function of the density in its parent.
Lemma 5.4 is proved only for cases (1)—(4) from Table 4.1, since for case (5) the
relation of the insertion radius to the local feature size proved by Theorem 5.5 follows
directly from the spacing theorem. Finally, we prove Theorem 5.5 by enumerating all
possible type combinations of a point and its parent.

LEMMA 5.1. If p is of type A, then

(5.1) lp—pll < (2= d2)r,
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Fi1G. 5.1. The circumcircle and selection circle of the triangle t which encroaches upon the
constrained segment s. The point c is the center of s. The parent p has been moved to the position
that mazimizes the distance ||c — p||, while s remained fized. Next, keeping the position of ¢ fized, we
are moving the endpoints of s such that |s| is minimized; in this case, s is tangent to the selection
circle, and at least one endpoint of s lies precisely on the circumcircle.

where 1 is the circumradius of the skinny triangle t.
Proof. If ¢ is the circumcenter of ¢, then

lp—=2l < lp—cl+le—p| (from the triangle inequality)
< (1—=962)r+]lc—p| (since p is in the selection circle)
= (1—=dq9)r+r (since p is a vertex of t)
= (2 - 52)7”. O

LEMMA 5.2. If p, lying on an encroached, constrained segment s, is of type B and
its parent p is an external parent, then

(5.2) lp =2l < (1 Ry i 51) I8l
P 2

Proof. By Definition 2.5 (Rule 2), p is a vertex of the skinny triangle ¢ encroaching
upon s.

First, we will try to find a tight upper bound for the ratio
center of s.

Keeping the position of ¢ and the position of s’s endpoints fixed, we are trying
to increase the distance |lc — p|| by moving only the parent p on t’s circumcircle. See
Figure 5.1: the distance ||c — p|| reaches its largest value when p lies on the extension
of the straight line connecting ¢ and t’s circumcenter ¢’

Conversely, keeping the position of ¢ fixed, we are trying to decrease |s| by moving
only the endpoints of s: the length of s reaches its smallest value when s is tangent
to the selection circle, and one of its endpoints—say the point p,—Ilies precisely on
the circumcircle. See Figure 5.1 for an illustration. Note that if s did not intersect
the selection circle at all, then the first part of Lemma 4.4 would be violated: a
contradiction.

lle—pll
[s]

, where c is the
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From the right triangle Acdc’ (see Figure 5.1), we obtain that

le=c? = ld = c'||? + fle - d|®
= r2(1=02)" + [l —d|]?

2
= 2=+ (5~ llpu —dl))

2
= r2(1 52)% + (M —14/202 — 5%) (from the right triangle Akdp,,)

= P sl V25

yielding that

2
(5.3) le—d = \/7'2—|—%—T|5| 209 — 63.

We also have that

lle=pll _  rtlle=cll
[s] Is]

ey 2+—‘—|rsm (from (5.3)),

and after the simplification, we finally get that

eo IR () () () e

Basic calculus, however, reveals that the right-hand part of (5.4) is an always
increasing function with respect to the “variable” \TI Also, from inequality (4.5), we

\ | - 2,/25 —82°

(5.4) with its largest value and sunphfylng the result, we get that

(since ¢, p and ¢’ are collinear)

already know that Thus, by replacing — Tl in the right-hand part of

lle=pll _ 1 /2—02
|S| -2 (52.

Lastly, the desired outcome is as follows:

(5.5)

lp=pl < lp—cll+lc—5l (from the triangle inequality)
< (1- 61)|2i‘ + |l — Pl (since p is in the type B
selection interval)
< (1-6)kl | 5252 (from (5.5))

(1 + 1/ — 5y ) 0
LEMMA 5.3. If p; is of type C, then

R s
(56) I~ < 2= w2,

where |s| is the length of the encroached segment s.
Proof. If ¢ is the center of s, then

lpi —pill < lps — ¢l + [lc — pill (from the triangle inequality)

< (1- u)% + |[e—pi]| (since p; is in the type C
selection interval)
< (1- ,u)@ + % (since p; is a nonexternal parent)
= 2-wh 0
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LEMMA 5.4. If p is a vertex of the mesh inserted by the GCDR algorithm and C,
(n =1,2,3,4) are the constants specified by Theorem 4.6 for the corresponding cases
listed in Table 4.1, then the following inequality holds:

D)
C 3

n

1+

61 2
— T H
) B4 - T

where By = = B3 = 5
Proof. Flrst we prove the mequahty

(5-8) lp—pll < By R(p)

for each of the cases below.
Case (1):

lp—p] < (2—4d2)r (from Lemma 5.1)
- %527’

= 25252R(p) (from Lemma 4.1);

therefore, inequality (5.8) can be satisfied with By = 252‘52.

Case (2): In this case, p; is of type B and its parent p; is a type A point. We
assume that p; is an external parent, since if it was a nonexternal parent, the distance
between p; and p; would be smaller.

lp—pl < (1 + F 51) 7' (from Lemma 5.2)

1+ 51

= 5612 o1 %
5
< 1—#(57111% (p) (from inequality (4.2));
5
therefore, inequality (5.8) can be satisfied with By = %

Case (3): The analysis is exactly the same as in case (2), since p; is a type B
point and p; is an external parent. Therefore, inequality (5.8) can be satisfied with
Bs = Bs.

Case (4): Based on Lemma 4.3, we separate two possibilities.

(a) If p; is closest to p;, then ||p; — p;|| = R (p;) from equality (4.3).

(b) If an endpoint of s is closest to p;, then

lpi — pil] < (2— u)% (from Lemma 5.3)
= 7”#‘-2'

S 27TMR(]9¢) (from inequality (4.3));

therefore, inequality (5.8) can be satisfied with By = 277“ in both cases.
Now, for all cases (1)—(4),

Ifs (p) < Us (p) + ||p — P (from Lemma 2.3)
<Us(5)+ BaR(p)  (from (58))
=D (p) R(p) + BuR(p) (from (2.2))
< D (p) %f) + B,R(p) (from Theorem 4.6).

The result follows from the division of both sides by R (p). O
THEOREM 5.5. Suppose that the following five inequalities hold:
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I1. p>1 (implying a lower angle bound arbitrarily close to 30°),

T2, aumin > 60° (recall that aumin is the smallest input angle),

13. 6> %,

14. 61 > %, and

I5. p>2cosapip-
Then, there exist fized constants Do > 1, Dp > 1, and Dc > 1 such that, for any
vertex p inserted by the GCDR algorithm, the following inequalities hold:

Dy if pis of type A,
(5.9) D(p) <4 Dp ifpis of type B,
D¢ if p is of type C.

Therefore, the insertion radius of p has a lower bound proportional to its local feature
size.

Proof. First of all, observe that there are legal values for the parameters s, 1,
and p that satisfy inequalities I 1,12, 13,14, and I 5. In fact, the parameters satisfy
these inequalities if they are assigned to any value other than their minimum possible
value as defined in Definition 3.1 (selection circles), Definition 3.2 (type B selection
intervals), and Definition 3.3 (type B selection intervals), respectively.

The proof is by induction and is similar to the proof of Lemma 7 in [20]. The base
case covers the input vertices, and the inductive step covers the other three types of
vertices.

Base case: The theorem is true if p is an input vertex, because in this case, by
Remark 2, D (p) =1fs (p) /R (p) < 1.

Inductive hypothesis: Assume that the theorem is true for p; i.e.,

Dy if pis of type A,
(5.10) D (p) <{ Dp if pis of type B,
D¢ if pis of type C.

Inductive step: For each of the cases (n), n = 1,2, 3,4, we start with (5.7) and
apply the inductive hypothesis considering the possible type combinations of p and p
from Table 4.1. As a result, the inequalities in (5.9) can be satisfied if Dy, Dp, and
D¢ are chosen such that the following inequalities (5.11)—(5.18) hold.

Case (1):

Dy

5.11 By + =22 < Dy,

(5.11) 1t A
D

(5.12) By + =2 < Da,
1
D

(5.13) By + =22 < Da.
1

Case (2):

D

(5.14) By + 22 < Dp,
Cy
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Case (3):
D
(5.15) Bs + =2 < Dp,
Cs
D
(5.16) B+ =2 < Dp.
C3
Case (4):
D
(5.17) By + =2 < D¢,
Cy
D
(5.18) By + =5 < De.
Cy

For case (5), from Theorem 4.6, we have D (p) = Ifs (p) /R (p) < 1/Cs; i.e., the
inequalities in (5.9) can be satisfied if D¢ is chosen such that the following inequality
holds.

Case (5):

1
5.19 — =By < De¢.
(519) o = Bi< Do
Notice that since B,, > 1 for every n = 1,2, 3, 4, the solution of the system above
guarantees that Dy, Dp, Dc are larger than or equal to 1.
From (5.11), we obtain that

B¢y
5.20 Dy > .
( ) A= C;—1
From (5.15), we obtain that
BsC3
5.21 Dp > .
( ) b= C3—1
Also, from (5.18), we have that
B,Cy
5.22 DA >
( ) ¢ = Cy—1

Finally, from (5.12)-(5.14), (5.16), (5.17), and (5.19)—(5.22), we obtain the fol-
lowing solution:

B1Cy _ BsC: ByC
Dy > max{ci_i,cl(&gjl) +Bl’C1(é4il) +B1}7
(5.23) Dp > max {8, Bl + By, B4l + Ba)

B4C. B3 C:
Dc > max{cii‘i,m +B4,B4}.

If we plug in the values for B,, and C,,, we have the following:
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(2-62+(1-61),/20,—63) 2,
55 (ﬁ61\/262—6§—1) 7 po2(p—2cos amin) [ 7
2—06
Dy 14,/ 52 =6 + max 1+ 41 (2—62)2 2—p
o1 51 (;361\/262—62—1) 7 61(pda—1)V/3’ P01/262 =02 (j1—2 cos min) [

_ 2p cos am 1+
D¢ > ‘QM# + max { 2(2—11) 08 Amin ”m(

51) \/265—02
1(1i—2 COS Ctmin) ? (pal,/252 62— 1) }

Note that the inequalities I 1, T 2, T 3, I 4, and I 5 guarantee that the grading
constants D 4, Dp, and D¢ are well defined, i.e., they are not infinite. a

The area (size) of the selection regions affects the grading of our algorithm, the-
oretically at least. Indeed, if either of the parameters 01,d2, or u decreases (thus
increasing the area of the selection regions), then the lower bounds for the constants
Dy, Dp, and D¢ of Theorem 5.5 increase, making the grading worse. In practice,
when we increase the area of the selection regions, the deterioration of grading is less
severe (see section 7).

> 2762 2762
Dy > 5, - T max 525 T)

Y

6. Proof of termination. The good grading of GCDR implies termination as
well. For reasons of completeness, however, we present a concrete proof.

THEOREM 6.1. GCDR terminates, producing triangles with angles arbitrarily
close to 30°.

Proof. To prove termination, it suffices to prove that no two vertices, visible to
each other, are closer than a real constant C’ > 0, since the insertion of an infinite
number of vertices would necessarily introduce at some point two visible vertices closer
than C’. From Remark 1, however, the distance of any two visible vertices is bounded
from below by the insertion radius of one of these vertices. Therefore, it is adequate to
prove that the insertion radius of any point is not less than the positive, real constant
C'.

Table 4.1 presents an exhaustive enumeration of all possible parent-child com-
binations. First, we prove by contradiction that the combinations marked as “n/a”
cannot arise. These combinations can occur in the following two cases:

1. A type B point p; lies on an encroached segment s, and its parent is a nonfree
nonexternal vertex; i.e., p; is a nonfree point that lies strictly inside the
diametral circle of s. Recall that the parent of any point p; is visible from p;
(see Lemma 2.6). By the way we defined type B points, however, there is no
nonfree vertex strictly inside the diametral circle of s and visible from p;: a
contradiction.

2. A type C point p; lies on an encroached segment s, and its parent is either a
free vertex or a nonfree external parent. By the way we defined type C points,
the diametral circle of s contains at least one nonfree vertex visible from p;.
Therefore, from Definition 2.5 (Rule 4), the parent of p; is the closest to p;,
nonfree vertex that lies inside the diametral circle of s and is visible from p;.
This means that p; can be neither a free vertex nor an external parent: a
contradiction.

All the remaining parent-child combinations (marked with numbers) have been
analyzed in Theorem 5.5. From that theorem it follows that with the use of the GCDR
algorithm the insertion radius of any vertex is no less than C' = W,
where fsyi, = I;éigzllfs (p) > 0. Note that inequalities T 1, 12, 13, T 4, and I 5 of

Theorem 5.5 imply that the positive constants D4, Dp, and D¢ cannot approach
infinity, and therefore, C’ is a positive real number. |
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7. Experimental evaluation. In this section, we experimentally evaluate the
grading achieved by GCDR. We have implemented GCDR on top of the Computa-
tional Geometry Algorithms Library (CGAL) [2]. For the visualization of the mesh,
we used the C++ Visualization Toolkit Library (VTK) [23].

The input PSLG used for the experiments is depicted in Figure 7.1. Other input
PSLGs yielded similar results.

We conducted two experiments denoted as experiment 1 and experiment 2. In
experiment 1, we executed GCDR 32 times. At every execution, we changed the size
of the selection regions by altering the values of the parameters ds,d7, and u. Also,
for each execution, all the Steiner points inserted (or considered for insertion) by
GCDR lay exactly on the boundary of selection circles or selection intervals. More
precisely, every type A Steiner point is inserted as close to an arbitrary vertex of the
corresponding skinny triangle as possible, and every type B/type C Steiner point is
inserted as close to an arbitrary endpoint of the corresponding encroached segment
as possible. In this way, we test our algorithm when the inserted Steiner points lie in
extreme positions.

Table 7.1 summarizes the results for the first experiment under the label “Experi-
ment 1.” The quality upper bound is set to g = v/2 which means that §, > \/Li ~0.71

and that 6; > 0"5—21. Since amin = 90°, we also have that p > 0. Each row of the
table corresponds to a specific execution where the values for the parameters are
shown in the 2nd, 3rd, and 4th cells of each row. The table reports the largest density
observed in practice per point type: the largest density observed among type A points
(8th column), among type B (9th column), and among type C points (10th column).
For comparison, the table also depicts (at the 5th, 6th, and 7th column) the tightest
theoretical upper bound of the density per point type for the respective configuration,
as calculated in inequality (5.23) of Theorem 5.5.

The observed largest densities of experiment 1 should be less than their theoret-
ical counterparts. Indeed, the grading achieved in practice is much smaller than the
theoretical bound of Theorem 5.5. This fact verifies the theory and also implies that
GCDR behaves much better than theory suggests.
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Fi1c. 7.1. (Left) The input PSLG used for the experiments. It consists of five concentric squares.
The horizontal and vertical distance between two adjacent squares is one-hundredth of the side length
of the outermost square. (Right) The output mesh obtained by GCDR on the input PSLG with p
being set to 1. GCDR terminates producing 3200 triangles whose angles are more than 30°.
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TABLE 7.1
The 32 configurations used by experiment 1 and experiment 2. The results are shown in the last
7 columns.

Experiment 1 Experiment 2
3

= . 2
- 5 8 3 £|3 & =
£ S ST S |8 & A/
® < m o} ° < m o}
: OE R 5| EOEE
O o2 o1 m Da Dp D¢ a a. a 4 a. a. a
1 | 1.00 1.00 1.00 3.41 494 1.00 || 1.93 0.70 1.00 1583 | 1.93 0.70 1.00
2 | 1.00 1.00 0.80 3.41 494 150 || 1.75 0.68 1.00 1814 | 2.21 0.74 1.00
3 | 1.00 1.00 0.60 3.41 494 233 | 2.19 070 1.15 2052 | 241 0.74 1.20
4 |1 1.00 1.00 040 3.83 494 4.00 || 2.20 1.01 1.99 2557 | 2.49 1.09 2.19
5 | 1.00 0.90 1.00 5.03 570 1.00 || 1.60 0.79 1.00 1571 | 1.99 0.80 1.00
6 | 1.00 0.90 0.80 5.03 570 1.50 || 1.48 0.76 1.00 1804 | 2.19 0.79 1.00
7 | 1.00 0.90 0.60 5.03 570 2331 202 0.78 1.15 2047 | 2.35 0.80 1.19
8 | 1.00 0.90 0.40 5.03 5.70 4.00 || 2.23 0.86 1.66 2546 | 2.50 1.15 2.06
9 | 1.00 0.80 1.00 10.13 12.92 1.00 || 1.60 0.87 1.00 1565 | 1.85 0.89 1.00
10 | 1.00 0.80 0.80 10.13 1292 150 || 1.95 0.86 1.00 1818 | 2.18 0.91 1.00
11 | 1.00 0.80 0.60 10.13 12.92 2.33 || 2.02 0.88 1.15 2047 | 2.64 0.90 1.22
12 | 1.00 0.80 0.40 10.13 12.92 4.00 || 2.37 0.97 1.69 2505 | 2.48 1.61 2.11
131090 1.00 1.00 5.70 7.69 1.00 || 2.26 0.70 1.00 1586 | 2.41 0.70 1.00
141090 1.00 0.80 5.70 7.69 1501 1.99 0.71 1.00 1799 | 2.57 0.76 1.00
15| 090 1.00 0.60 5.70 7.69 2331 263 0.70 1.15 2055 | 2.63 0.76 1.24
16 | 090 1.00 0.40 5.70 7.69 4.00 || 261 1.01 1.95 2595 | 2.62 1.02 2.26
171 090 0.90 1.00 6.22 866 1.00 || 2.04 0.77 1.00 1540 | 2.70 0.82 1.00
18 1 0.90 0.90 0.80 6.22 866 1.50 || 1.98 0.76 1.00 1807 | 2.49 0.81 1.00
19 1 090 0.90 0.60 6.22 866 233 | 2.79 078 1.15 2083 | 2.79 0.83 1.20
20 | 0.90 0.90 0.40 6.22 8.66 4.00 || 2.60 1.07 1.93 2578 | 2.84 1.40 2.13
21 {090 080 1.00 12.70 14.61 1.00 || 2.47 0.87 1.00 1541 | 2.47 0.92 1.00
22 | 090 080 0.80 12.70 14.61 1.50 || 2.563 0.87 1.00 1811 | 2.56 0.92 1.00
231090 080 0.60 12,70 14.61 2.33 || 2.79 0.88 1.15 2091 | 2.57 091 1.20
24 |1 090 0.80 0.40 12.70 14.61 4.00 || 2.52 1.21 1.93 2540 | 2.71 1.25 1.94
251 0.80 1.00 1.00 1292 16.14 1.00 || 2.71 0.70 1.00 1615 | 2.81 0.70 1.00
26 | 0.80 1.00 0.80 1292 16.14 1.50 || 4.32 0.71 1.00 1868 | 4.32 0.78 1.00
27 |1 0.80 1.00 0.60 1292 16.14 2.33 || 3.65 0.70 1.15 2139 | 3.65 0.78 1.20
28 | 0.80 1.00 0.40 1292 16.14 4.00 || 3.73 0.97 195 2628 | 3.54 1.35 2.10
29 | 0.80 0.90 1.00 12.92 18.05 1.00 || 2.46 0.77 1.00 1562 | 3.15 0.84 1.00
30 | 0.80 0.90 0.80 12,92 18.05 1.50 || 3.47 0.76 1.00 1843 | 2.96 0.85 1.00
31080 090 0.60 1292 1805 2.33 | 3.53 0.83 1.15 2118 | 2.90 0.83 1.21
32| 0.80 090 0.40 1292 18.05 4.00 || 3.31 1.07 193 2615 | 3.26 1.23 1.95

Also, notice that the densities of type C points seem to strongly affect the size of
the output mesh. Indeed, at every execution where the maximum density of type C
points exceeds 1.00, the number of triangles is more than 2000. On the contrary, high
grading of type A points (e.g., 26th execution) or high grading of type B points (e.g.,
9th execution) do not result in a large size output mesh. This fact is attributable to
the high number of type C points: in all the executions, the number of type C points
(inserted into the mesh) is 3 to 4 times more than the combined number of type A
and type B points.

Lastly, observe that each parameter seems to deteriorate the density of points
of a certain type. Specifically, the decrease of d2 leads to a higher density of type A
points, the decrease of §; leads to a higher density of type B points, and the decrease
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of i leads to a higher density of type C points. This should be expected, since the
parameters do, 01, and p determine the size of the selection regions of type A, type B,
and type C points, respectively.

Although the Steiner points, in experiment 1, are inserted in extreme positions,
it is not certain whether the measured maximum densities are the worst. For exam-
ple, see the second configuration under the label “Experiment 1”: type C Steiner
points lie farther from the center of the encroached segments than they do in the first
configuration, but the maximum practical densities observed do not increase.

Therefore, we conducted another experiment which could potentially generate
the highest (i.e., worst) practical densities. The results are illustrated in Table 7.1
under the label “Experiment 2.” Here, each configuration of the previous experiment
is repeated for 100 times (and not just once as before). Each time, the Steiner points
inserted were randomly chosen from within their corresponding selection region (i.e.,
they do not always lie on the boundary of the selection regions as before). We re-
port the highest density per point type among the densities observed during the 100
repetitions.

The maximum densities measured in experiment 2 are slightly higher than before
but still less than the theoretical counterparts. These observations further verify the
theory and suggest that GCDR behaves much better in practice.

8. Conclusions and future work. We have presented and implemented a con-
strained Delaunay refinement algorithm in two dimensions. Our algorithm is more
flexible than the traditional approaches, since the user can choose which Steiner point
to insert into the mesh among an infinite, enumerable number of choices. Our algo-
rithm significantly increases the number of these choices over our previous generalized
algorithms [3, 4, 5, 6]. The flexibility offered by generalized algorithms can benefit
sliver removal in three dimensions [9, 14], since the area from which Steiner points
are selected now increases, potentially allowing to achieve even better dihedral angles.
These customizable point insertion strategies offered by our algorithm can also help
in boundary recovery by inserting, for instance, points on the boundary while refining
the mesh. Other applications of generalized algorithms can be found in [6].

Furthermore, this paper improves the quality guarantees: we have proved that our
algorithm terminates and preserves good grading for a lower angle bound 6 arbitrarily
close to 30°. Experimental evaluation of our algorithm verified the theory.

The parallelization of our generalized algorithm is left as future work. A paral-
lel generalized algorithm would automatically imply the parallelization of any point
insertion strategy as long as the Steiner points lie in the selection regions.

Lastly, we wish to implement our algorithm in three dimensions and identify point
insertion strategies suitable for sliver removal.
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