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Abstract: Previous studies of land degradation, topsoil erosion, and hydrologic alteration
typically focus on these subjects individually, missing important interrelationships among these
important aspects of the Earth’s system. However, an understanding of water–soil–vegetation
dynamic interactions is needed to develop practical and effective solutions to sustain the globe’s
eco-environment and grassland agriculture, which depends on grasses, legumes, and other fodder or
soil-building crops. This special issue is intended to be a platform for a discussion of the relevant
scientific findings based on experimental and/or modeling studies. Its 12 peer-reviewed articles
present data, novel analysis/modeling approaches, and convincing results of water–soil–vegetation
interactions under historical and future climates. Two of the articles examine how lake/pond water
quality is related to human activity and climate. Overall, these articles can serve as important
references for future studies to further advance our understanding of how water, soil, and vegetation
interactively affect the health and productivity of the Earth’s ecosystem.

Keywords: climate change; experiment; hydrology; modeling; soil water; steppe grassland;
transpiration; vegetation growth

1. Introduction

Water, soil, and vegetation are key elements in the Earth’s system [1]. Their dynamic interactions
affect, and are affected by, anthropogenic activities (e.g., grazing, farming, and/or urbanization)
and climate change [2–7]. For a given area, inappropriate land management practices can result
in soil and vegetation degradation [8,9], which in turn will inevitably alter natural hydrologic
processes. The possible consequences are more severe flooding, drought, and pollution of lakes
and streams. On the other hand, an altered hydrologic condition tends to prompt soil erosion through
wind and water [9], which in turn can cause further vegetation degradation or even loss. Such
interactions will likely become more interwoven in changing climate [10] because the non-stationary
climate, superimposed on human interventions, can further deteriorate the already-altered hydrologic
condition. Our understanding is very limited, with few algorithms and parameterization schemes that
can be used to account for these dynamic interactions. Existing hydrologic models (e.g., Soil and Water
Assessment Tool or SWAT) [11,12] and land–atmosphere models (e.g., Community Land Model or
CLM) [13] do not represent such important dynamic interactions well [11,12,14].
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Steppe grasslands occupy about 8% of the Earth’s terrestrial surface and are now considered the
most altered and beleaguered ecosystem on the planet [15,16]. Over 40% of the globe’s grasslands
have been somewhat altered from their indigenous state, including more than 70% of the Inner
Mongolian steppe grasslands of China [17], which are part of the Earth’s largest and most characteristic
grassland ecosystem, the Eurasian Steppe (or Great Steppe). Here, degradation has caused serious
environmental and ecological problems including more frequent and damaging hydrologic extremes
(i.e., flooding and/or drought), desertification, dust storms, which has led to shortage of agricultural
commodities [9,10,18]. These problems are in turn likely to threaten the sustainability of “grassland
agriculture,” a system of agriculture in which the major emphasis is on grasses, legumes, and other
fodder or soil-building crops [19]. The main factors causing degradation are overgrazing, cultivation,
overdevelopment, and climate change [16,20–23], which have altered the natural hydrology in the
area [24] and led to the erosion of approximately 10 to 20 cm of calcic castanozem topsoil [25].
This topsoil is vital for efforts to sustain grasslands because it is loose and has a plentiful supply
of humus/organic matter. Policy choices to reduce or reverse grassland degradation are often
made with only a vague understanding of the causative complexity of the linkages between steppe
hydrology, topsoil erosion, and grassland degradation, limiting efforts to manage, protect, and/or
restore steppe grasslands.

Steppe grasslands across the world are suffering from moderate to severe degradation [26],
which has become a key constraint limiting the sustainability of grassland agriculture. Peart [23]
examined policies and economic systems that have contributed to grassland degradation, while
Gőri et al. [27] assessed the impacts of grassland degradation on wildlife species. Christensen et al. [28]
and Endo et al. [29] analyzed climate change and its effect on the vulnerability of steppe grasslands.
Climate in the Inner Mongolia steppe, for instance, has been shown to be undergoing a significant
spatiotemporal trend, with increasing air temperatures in winter and more frequent droughts in
spring [3,30–32]. Other researchers (e.g., [24,28,33,34]) have investigated the ecological functions of
steppe grasslands and how these functions are affected by grazing and overgrazing, demonstrating
that a grazing intensity (i.e., the ratio of the biomass in a non-grazed area to the biomass in the
same area if grazed) of 1.5 or below may not cause a sustainability problem for steppe grasslands.
Only a few studies [24,35–37] have begun to assess the hydrologic processes of steppe grasslands.
These studies largely focus on how evapotranspiration (ET) varies with precipitation and/or soil
water content, revealing that ET is limited by the availability of soil water (i.e., atmospheric heat
stress is weaker than soil water stress, and soil evaporation is the primary contributor to ET) and
that ET has maximum daily values ranging from 3.0 to 6.2 mm d−1 in these grasslands. Daily ET
rates tend to increase with increasing soil water content, which in turn is highly dependent upon the
dry-wet fluctuations experienced by steppe grasslands. Overall, soil water content is higher when
grass coverage is denser [38]. These studies also indicate that the aboveground biomass of grassland
communities has a positive linear relationship with precipitation and that precipitation in the first half
of the year (January to July) is the primary climatic factor causing fluctuations in community biomass
production [2,4,10,26].

As we do not yet know how the erosion of approximately 10 to 20 cm of the calcic castanozem
topsoil will affect, and is affected by, degradation of the grasses covering it. Steppe grasslands’
vulnerability and resilience depend not only on the phenomena linking hydrologic cycle and topsoil
properties but also their interactions. Understanding perturbations in the cycle that trigger unwanted
changes in the spatiotemporal characteristics of steppe grasslands remains a challenge because
developing such an understanding generally transcends disciplinary and geographical boundaries;
it is, however, the key to developing adaptive measures for mitigating the degradation of grasslands.
Most previous studies have focused on grassland degradation, topsoil erosion, or hydrologic alteration
individually and were thus unable to examine the important interrelationships between them.
Consequently, the results from these studies are of only limited utility for those seeking to develop
practical and effective solutions to sustain grassland agriculture. In this regard, an ecohydrologic
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approach, which uses a systematic framework that seamlessly integrates three core components
(Figure 1), namely field and laboratory measurement, remote sensing analysis, and modeling, should
be adopted to develop effective tools for future steppe-related practice, research, education, training,
and learning.
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Figure 1. Schematic showing the ecohydrologic approach.

The objective of this special issue is to provide a forum for original articles on experimental
and modeling studies that address: (1) interrelations between hydrologic alteration and soil and/or
vegetation degradation with climate change as a possible additional factor; (2) consequences from
the alteration of natural hydrology in rural and urban environment; and (3) fate and transport of
contaminants (e.g., nutrients) in streams and lakes from altered hydrology.

2. Overview of this Special Issue

This special issue consists of 12 papers that cover a wide range of research topics related to water,
soil, and vegetation under the influence of changing climate and human activities. The specific topics
include steppe vegetation affected by climate change [39,40], interactions of climate, anthropogenic
activities, and watershed hydrology [41–43], SWAT modeling for quantifying topography-controlled
hydrologic processes and sediment yield [44,45], snow cover and frozen soil dynamics in cold
regions [46], quantification of plant transpiration in arid/semiarid environment [47], coupled
infiltration-runoff modeling for slope stability analysis [48], and assessment of nutrients in aquatic
systems [49,50]. In terms of methodologies, these studies involve both field/laboratory experiments
and mathematical modeling across different scales.

Wang et al. [40] proposed a new method that utilized remote sensing images and a total
Net Primary Production (NPP) model to predict grazing removal rate of grasses under different
climate conditions at a watershed scale. The authors applied their method to evaluate the potential risk
of steppe grassland degradation in a semiarid watershed in the Eurasian Steppe, demonstrating the
advantages of the new method over the conventional approach that is over reliant upon detailed animal
survey data. Particularly, the application of such a new methodology to precisely predict grazing
removal rate is of importance to protect the vulnerable steppe ecosystem and effectively mitigate the
adverse environmental and ecological consequences (e.g., desertification). In a case study for a desert
steppe in China, Song et al. [39] analyzed micro-scale, pixel-level dynamics of Vegetation Fractional
Coverage (VFC) and examined the correlations of VFC and its influential factors associated with
climatic conditions, hydrologic processes, and human activities. The identified dominant factors were
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further used for evaluating the distribution of vegetation in the selected desert steppe. The quantitative
information on vegetation variations in a desert steppe is useful for assessing the impacts of climate
change and human activities and further facilitating ecological restoration.

Apart from the properties of the soil itself, rainfall–runoff processes are controlled by climate
variations and affected by human activities in a hydrologic system. Li et al. [42] utilized hydrologic
modeling and sensitivity analysis, and the climate elasticity method, to evaluate the impacts of climate
and human activities on runoff changes in the upper Red River watershed in China. They found that
runoff reduction could be primarily attributed to climate variability in the watershed. The modeling
results can be used for sustainable water resources planning and management. In another study,
Li et al. [41] analyzed the decreased streamflow in the Yellow River basin in China and examined
the potential impacts of climate and human activities based on the observed flow data over a period
of more than half a century. The results from their improved Budyko framework and hydrologic
modeling indicated that instead of the climatic factors, human activities (e.g., land use and land cover
changes, operation of reservoirs, and population) had the greatest impacts on the streamflow in the
Yellow River basin. This case study provides analysis approaches to demonstrate the dominant impact
of human activities on streamflow. Lu et al. [43] applied the Coupled Model Intercomparison Project
Phase 5 (CMIP5) dataset and a large-scale Variable Infiltration Capacity (VIC) hydrologic model to
assess the impact of climate change on droughts in the upstream Yangtze River region in China. Their
predictions revealed that regional drought could be more severe by the 2030s, in terms of duration,
frequency, areal extent, and intensity, demonstrating that coupled climatic and hydrologic modeling
can be effectively applied to address the hydrologic extreme issues.

Tahmasebi Nasab et al. [45] developed the PD-SWAT model that coupled the widely used SWAT
with Puddle Delineation (PD) algorithm for hydrologic modeling in depression-dominated areas.
The model incorporated topographic characteristics from the PD into SWAT at the hydrologic response
unit (HRU) scale. They tested their new PD-SWAT model for a large watershed in North Dakota
and demonstrated the important role of topographic depressions in runoff generation and the
related threshold behavior. Implications of the modeling method developed in this study would
improve the simulation of the effects of surface depressions on overland flow dynamics, especially for
depression-dominated areas such as the Prairie Pothole Region (PPR) in North America. Moon and
Kang [44] conducted SWAT modeling to predict basin-scale long-term runoff and sediment yield by
using bias-corrected and downscaled Regional Climate Model (RCM) datasets. Their simulation results
suggested that sediment yield was closely related to high-intensity and high-frequency rainfall events
and the changes in sediment runoff rate mainly depended on climate scenarios and spatiotemporal
scales. This study demonstrated the application of combined hydroclimatic modeling and stochastic
analysis for terrestrial sediment yield projection.

Two studies on snow cover and frozen soil, and plant transpiration in Northeast China are
included. To better understand the dynamic changes and distributions of soil water and heat in a black
soil area of Songnen Plain in Northeast China, Fu et al. [46] analyzed the soil freeze–thaw process
under different snow cover conditions, and further identified the critical freeze–thaw soil depth using
field observed data. Their study helps determine the critical level of soil water and heat dynamics
in cold regions with seasonally frozen soils. The findings from this study can be potentially used
for soil–water management, soil salinity control, and integrated crop management. Duan et al. [47]
measured sap flow of individual stems of two selected plants and then estimated the community-level
transpiration using an upscaling function for a site in the Horqin Sandy Land in Northeast China.
Their study emphasized the important role of the plant community in stabilizing fixed and semi-fixed
sandy dunes. The upscaling function can be utilized for managing and restoring sand-fixing vegetation
in arid/semiarid environments.

Johnson and Loáiciga [48] proposed a new method that coupled numerical modeling of runoff
and infiltration under variable rainfall conditions for analyzing the translational stability of long slopes
associated with the advancing depth of infiltration. Particularly, their slope stability analysis accounted
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for the effect of the infiltration-induced reduction in apparent cohesion and the increased soil unit
weight caused by a moving wetting front. In addition to the basic slope stability analysis, the new
modeling method can also be used to improve landslide hazard assessment.

Cheng et al. [49] conducted a series of laboratory experiments to examine the mechanisms
of nutrient release from aquaculture sediments influenced by hydrodynamic and dissolved oxygen
conditions. They found that hydrodynamics (e.g., flow rate) significantly affected the release of nitrogen
(NH3-N, NO3-N, and NO2-N), while the adsorption–desorption processes dominated the phosphorus
release from the sediments. The results and findings from these laboratory-scale experiments provide
valuable data and information for larger-scale water quality studies. Based on the analyses of long-term
field data, Zhang et al. [50] evaluated the wind effects on spatiotemporal variations of total nitrogen,
total phosphorus, and Chl-a in Lake Tai in East China. Two critical wind speeds were identified and
used to characterize the eutrophication of the lake. It was highlighted in their study that a combination
of reduced wind speed and the ongoing anthropogenic activities tended to worsen the eutrophication
problem and further led to the deterioration of the entire aquatic ecosystem of the lake. This case study
concerning lake eutrophication affected by human activities and climate can be useful for other lake
monitoring and assessment research.

3. Conclusions

The 12 articles of this special issue advanced our understanding of water–soil–vegetation
interactions as three key components of the Earth’s system under various climatic conditions and
anthropogenic activities. The new algorithms presented in four articles [39,40,44,45,48] provide
necessary tools for better modeling effects of grazing on steppe grassland degradation, future
climates on sedimentation at watershed scale, micro-topographic features (e.g., puddles) on hydrologic
processes, and infiltration on the translational stability of long slopes. In addition, two articles [41,43]
found that human activities were the primary reason for runoff reduction, whereas, another article [42]
showed that climate variability was the dominant driver for decreasing trend of streamflow. Such an
apparent difference between these studies can be attributed to the fact that the basins of the former
study areas (i.e., Yellow River and Yangtze River basins) are much more populated than watershed of
the latter study area (i.e., upper Red River watershed). For an area of interest, the impacts of climate
variability and anthropogenic activities tend to affect runoff interactively, while their relative individual
impact usually depends on the population. Further, two articles [46,47] examined evaporation from
freezing soils and transpiration from sparse-vegetation environments, where the ecosystems are
vulnerable and sensitive to water–soil–vegetation interactions. Given that such ecosystems are common
across the world, the results presented in these two articles can be insightful for how to protect
the global eco-environment. Moreover, two articles [49,50] studied pond/lake water quality and
eutrophication as influenced by land management, water hydrodynamics, and climate, demonstrating
the linkages between terrestrial and aquatic systems.

The articles cover a wide range of geographic regions across China [39–44,46,47,49,50] and the
United States of America (USA) [45,48] with contrasting hydro-climate, soil, and vegetation conditions.
Thus, the results presented in these articles can have global inferences: the data, analysis/modeling
approaches, results, and findings will lay a solid foundation to further our scientific understanding
of water–soil–vegetation interactions, ultimately leading to the development of practically effective
solutions to sustaining the globe’s ecosystem health and productivity.
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