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Fit to predict? Eco-informatics for predicting the catchability
of a pelagic fish in near real time

KYLIE L. SCALES,1,2,3,8 ELLIOTT L. HAZEN,1,2 SARA M. MAXWELL,4 HEIDI DEWAR,5 SUZANNE KOHIN,5

MICHAEL G. JACOX,1,2 CHRISTOPHER A. EDWARDS,1 DANA K. BRISCOE,6 LARRY B. CROWDER,6

REBECCA L. LEWISON,7 AND STEVEN J. BOGRAD
2

1Institute of Marine Science, University of California Santa Cruz, Santa Cruz, California 95064 USA
2Environmental Research Division, NOAA Southwest Fisheries Science Center, 99 Pacific Street, Suite #255A,

Monterey, California 93940 USA
3University of the Sunshine Coast, Maroochydore, Queensland 4556 Australia

4Old Dominion University, 5115 Hampton Boulevard, Norfolk, Virginia 23529 USA
5NOAA Southwest Fisheries Science Center, 8901 La Jolla Shores Drive, La Jolla, California 92037 USA

6Hopkins Marine Station of Stanford University, 120 Ocean View Boulevard, Pacific Grove, California 93950 USA
7San Diego State University, 5500 Campanile Drive, San Diego, California 92182 USA

Abstract. The ocean is a dynamic environment inhabited by a diverse array of highly
migratory species, many of which are under direct exploitation in targeted fisheries. The time-
scales of variability in the marine realm coupled with the extreme mobility of ocean-wandering
species such as tuna and billfish complicates fisheries management. Developing eco-informatics
solutions that allow for near real-time prediction of the distributions of highly mobile marine
species is an important step towards the maturation of dynamic ocean management and eco-
logical forecasting. Using 25 yr (1990–2014) of NOAA fisheries’ observer data from the Cali-
fornia drift gillnet fishery, we model relative probability of occurrence (presence–absence) and
catchability (total catch per gillnet set) of broadbill swordfish Xiphias gladius in the California
Current System. Using freely available environmental data sets and open source software, we
explore the physical drivers of regional swordfish distribution. Comparing models built upon
remotely sensed data sets with those built upon a data-assimilative configuration of the Regio-
nal Ocean Modelling System (ROMS), we explore trade-offs in model construction, and
address how physical data can affect predictive performance and operational capacity. Sword-
fish catchability was found to be highest in deeper waters (>1,500 m) with surface temperatures
in the 14–20°C range, isothermal layer depth (ILD) of 20–40 m, positive sea surface height
(SSH) anomalies, and during the new moon (<20% lunar illumination). We observed a greater
influence of mesoscale variability (SSH, wind speed, isothermal layer depth, eddy kinetic
energy) in driving swordfish catchability (total catch) than was evident in predicting the relative
probability of presence (presence–absence), confirming the utility of generating spatiotempo-
rally dynamic predictions. Data-assimilative ROMS circumvent the limitations of satellite
remote sensing in providing physical data fields for species distribution models (e.g., cloud
cover, variable resolution, subsurface data), and facilitate broad-scale prediction of dynamic
species distributions in near real time.

Key words: dynamic ocean management; ecological forecasting; fisheries; ocean model; Regional Ocean
Modelling System; remote sensing; satellite; species distribution model.

INTRODUCTION

In the age of data science, ecological informatics (“eco-
informatics”) confers unprecedented opportunity to
improve the management of natural resources across ter-
restrial and marine systems. Eco-informatics is an emerg-
ing interdisciplinary framework that seeks to generate new
knowledge through innovative digital approaches to the
generation, sampling, processing, analysis, visualization,

management, and dissemination of ecological, environ-
mental, and socioeconomic data (Michener and Jones
2012). A key aspect is the development of practical
tools to inform decision making and offer policy and
management solutions to complex environmental
problems.
In the marine environment, eco-informatics tools are

currently in their infancy. Dynamic ocean management,
an approach to the management of marine resources that
changes in space and time in response to the shifting nat-
ure of the ocean and its users, has been proposed as a
solution to balancing marine resource use with the con-
servation of biodiversity (Hobday et al. 2013, Lewison
et al. 2015, Maxwell et al. 2015, Dunn et al. 2016).
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Integrating biological, ecological, environmental, and
socioeconomic data collected over multiple spatiotempo-
ral scales to provide information to managers and
resource users in near real time, dynamic ocean manage-
ment is a new paradigm that holds promise for fisheries
sustainability (Hobday et al. 2013, Lewison et al. 2015),
protected area design (Dunn et al. 2016), and manage-
ment of populations of highly migratory and protected
marine species (Maxwell et al. 2015).
Central to developing dynamic ocean management is

the capacity to integrate physical data with information
describing the distributions and environmental prefer-
ences of marine species, to predict key habitats or produc-
tive fishing grounds and track how they shift through
time (Hobday et al. 2013). Species distribution models
(SDMs; and counterparts known as habitat, habitat-
based, species–habitat, habitat suitability, and ecological
niche models) are powerful eco-informatics tools that can
quantitatively characterize the habitat preferences of
mobile marine species such as pelagic fish, cetaceans, sea-
birds, turtles, and marine mammals (Elith and Leathwick
2009, McGowan et al. 2013, Becker et al. 2014). Through
linking data sets describing animal presence or abundance
with measures of biophysical conditions, SDM have
become a go-to technique for mapping and predicting
habitat use by mobile species (Raymond et al. 2015).
When combined with data describing the spatial footprint
of anthropogenic activities, SDM predictions can also be
used to map hotspots of risk for species of conservation
concern (Guy et al. 2013, Maxwell et al. 2013, Fossette
et al. 2014, Queiroz et al. 2016).
Species presence records for marine SDMs can be

obtained from shipboard sightings, systematic surveys,
electronic tagging, fisheries observer records and under-
water acoustic monitoring technologies. Environmental
data are also available from a wide range of sources oper-
ating over different spatiotemporal scales, complicating
the choices inherent in model construction. For fine-scale,
mechanistic analyses of animal–environment interactions,
in situ measurements are often the most appropriate
(Benoit-Bird et al. 2013, Scott et al. 2013). Earth
Observation remote sensing provides physical data over
ocean-basin or global scales, matching the wide range of
movement of highly migratory species. Improvements in
satellite remote sensing have led to the expanded use of
remotely sensed environmental data in broad-scale,
predictive SDMs in recent years (Hobday et al. 2011,
Hobday and Hartog 2014), particularly when combined
with animal movement data from satellite telemetry and
biologging (Raymond et al. 2015, Hazen et al. 2016).
In addition to satellite remote sensing, ocean circula-

tion models are an emerging source of physical data on
which to construct marine SDMs. Use of ocean circula-
tion models, particularly those that incorporate real-
time data assimilation, overcomes several of the inherent
limitations of remotely sensed data (e.g., cloud cover,
surface measurements only, varying spatial and tempo-
ral coverage and resolution). Rapid developments in

ocean modelling are leading to more frequent use of
modelled products for marine eco-informatics, with
SDMs based on Regional Ocean Modelling Systems
(ROMS) showing comparable performance to those
based on in situ data in some applications (Becker et al.
2016). However, the trade-offs in the choice of environ-
mental data for marine SDMs has yet to be adequately
explored, particularly regarding the utility of SDMs in
generating near real-time predictions for dynamic ocean
management and fisheries applications.
Here, we explore these trade-offs, using the California

drift gillnet (DGN) fishery as a case study. We model the
dynamic distributions and catchability of broadbill
swordfish Xiphias gladius, a large, highly migratory, and
economically valuable predatory fish that is the main
target of the DGN, using only open-source software and
freely available environmental data. We seek to make
recommendations for the choice of environmental data
for modelling the dynamic distributions of highly mobile
species in near real time, through comparing SDMs built
using physical fields from satellite remote sensing to
those based on a data-assimilative California Current
configuration of ROMS (Shchepetkin and McWilliams
2005, Neveu et al. 2016). Specifically, we aim to (1) elu-
cidate the physical drivers underlying variation in catch-
ability of broadbill swordfish in the California Current
System (CCS); (2) compare performance of satellite and
ROMS-based SDMs for near real-time prediction of
swordfish catchability; (3) explore the role of SDMs in
the development of eco-informatics approaches to
dynamic ocean management.

METHODS

All data processing and analytical work was carried
out in the R environment (R 3.1.2; RCore Team 2013).

Fisheries observer data

We used 25 yr (1990–2014) of NOAA fisheries’ obser-
ver data from the California DGN fishery, which records
total catch of swordfish per gillnet set along with set haul
location and time. During this period, observer rates were
approximately 15% (Martin et al. 2015). This data set
comprised records for 8,665 gillnet sets, 3,235 (37%) of
which had zero swordfish catch. The distribution of fish-
ing effort was variable over the CCS domain through this
time period, with most effort concentrated off the coast
of Central and Southern California (Fig. 1).

Environmental data

Earth observation remote sensing.—We selected a suite of
physical variables on the basis of their availability, resolu-
tion, coverage, and functional relevance to swordfish
catch rates (Table 1). We extracted time-matched mea-
sures of physical conditions contemporaneous to each set
location from the full set of remotely sensed variables.
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Where product availability did not extend over the entire
timespan of fisheries data, we blended products to obtain
as complete a temporal coverage as possible. Chlorophyll
a data from the SeaWIFS and MODIS sensors were used
for different time periods of operation (SeaWIFS 1997–
2002; MODIS 2002–2014). Kahru et al. (2012) compared
these data sets extensively for the CCS region, establish-
ing a near 1:1 correlation for these data sets (R2 = 0.961),
so we did not process chlorophyll a data further. We cal-
culated the standard deviation of SST and SSH, both
proxies for (sub-)mesoscale frontal activity, over a 3 9 3

pixel window, centered on the pixel containing set loca-
tion. Eddy kinetic energy (EKE; also termed Turbulent
Kinetic Energy, TKE) was calculated from AVISO zonal
(u) and meridional (v) geostrophic velocity fields:

EKE ¼ u2 þ v2

2
:

For the purposes of prediction, all remotely sensed
physical data fields were standardized to the lowest com-
mon spatial resolution (0.25°; AVISO altimetry) by
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FIG. 1. Fisheries effort. California, USA drift gillnet (DGN) fishery, 1990–2014 (anonymized and spatially smoothed). Spatial
distribution of effort is shown as 95%, 50%, and 20% volume contours of Kernel Utilization Distribution (KUD) of all set locations
for which fisheries observer data were recorded. Yellow to red shading shows intensification of effort in coastal waters of central-
southern California, particularly in the Southern California Bight. Temporal distribution of effort over the annual cycle is shown in
the inset histogram, as the proportion of the total number of sets in each month over the complete data set. Effort was concentrated
in September–January, particularly in late October to early November.
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bilinear interpolation prior to extraction of point data
(raster package for R; Hijmans and van Etten 2012).

Regional Ocean Modelling System (ROMS).—We
extracted a comparable set of physical data for each set
location from the CCS configuration of ROMS (Table 1).
The CCS ROMS covers the domain 30° to 48° N, from
the coast to 134°W, with a 0.1° (~10 km) horizontal reso-
lution and 42 vertical layers. Near real-time assimilation
of measured data from satellite sensors (SST, SSH) and
in situ sources (e.g., temperature and salinity from ship
surveys, gliders, buoys) constrains the model, adjusting
for minor spatial inaccuracies in the positioning of mesos-
cale features and optimizing the realism of model-derived
physical fields (Broquet et al. 2009). To obtain complete
temporal coverage, we blended daily outputs of the 31-yr
(1980–2010) historical reanalysis product (Neveu et al.
2016) and a new near real-time (NRT) product (2010–pre-
sent), available from the University of California Santa
Cruz Ocean Modelling and Data Assimilation group
(available data online).9

The NRT CCS ROMS is configured differently from
the historical reanalysis (changes to boundary condi-
tions, data fields assimilated, and method of assimila-
tion), but its output represents a CCS state estimate that
is similar to that produced in the reanalysis. Quantitative
comparisons confirmed continuity between these model
configurations for most variables. A correction factor
was applied to the near real-time sea surface height
(SSH) fields (+0.035 m) to ensure continuity between
the historical reanalysis and NRT data sets used in
SDMs. We also applied some temporal smoothing to the
ROMS SSH time series to eliminate process noise, using
a Savitzky-Golay filter with a 7-d moving window
(signal package for R). Eddy Kinetic Energy was calcu-
lated from u and v geostrophic velocity fields. Isothermal
Layer Depth (ILD) was defined as the depth at which
the temperature was 0.5°C cooler than that at the sur-
face. Sea surface salinity, zonal (u) and meridional (v)
wind components and wind stress curl fields were not
used owing to an observed lack of continuity in these
variables between the two model configurations.
In order to develop the best possible model with each

set of physical data, we added satellite chlorophyll a as a
predictor in ROMS-based models, resampled to match
the 0.1° resolution common to other physical fields from
ROMS.

Static physiographic.—Bathymetric data were obtained
at one arc-minute resolution from ETOPO1 (Amante
and Eakins 2009; data available online).10 We extracted
mean water depth, and its standard deviation over a
3 9 3 pixel moving window, for each set location. The
standard deviation of water depth identifies areas of
rugosity associated with topographic features of the

seafloor, such as seamounts, ridges, and the continental
shelf break.

Lunar phase.—Swordfish are known to respond to
changing light conditions through the lunar cycle,
moving deeper in the water column during full moon
periods (Dewar et al. 2011). We therefore included a
quantitative measure of lunar phase, the proportion of
lunar illumination, as a predictor of swordfish catchabil-
ity (lunar library for R; Lazaridis 2014).

Model specification

In the interests of robustness and to inform technical
comparisons, we took a multi-model approach, building
both presence–absence (catch vs. zero catch per set, bin-
ary response) and catchability (total number of sword-
fish caught per set, count response) models with each set
of environmental data (satellite, ROMS).

Species distribution models: Boosted Regression Trees.—
Boosted Regression Trees (BRTs) are a flexible class of
classification algorithm that operate using machine
learning principles (De’Ath 2007, Elith et al. 2008). As
such, they are not subject to the caveats of more
commonly used techniques such as generalized linear or
generalized additive mixed models (GLMM/GAMM).
BRTs are tolerant to missing values, outliers, collinear-
ity, and non-independence, and the inclusion of
irrelevant predictors (Leathwick et al. 2006). While
GLMM/GAMM seek to fit the most parsimonious
model to a data set, BRTs combine predictions of many
simple models (each classification tree) to maximize
robustness and predictive performance. Accordingly, we
built BRTs with all available predictors for each set of
models.
In fitting BRTs, we adapted the protocols outlined in

(Leathwick et al. 2006, Elith et al. 2008, Soykan et al.
2014) and the brt.functions package provided by Elith
et al. (2008). Presence–absence models were built with a
binomial (Bernoulli) distribution, whereas total catch
models used a Poisson distribution. Other options for a
count response, such as the Tweedie distribution, have
not yet been implemented. However, BRTs are known to
be more robust to mis-specification than GAMMs
(Leathwick et al. 2006), and the best performing Twee-
die power parameters for this data set were in the range
1.2–1.3, where 1 approximates a Poisson distribution.
We used a tree complexity of 3, a bag fraction of 0.7,
and conducted sensitivity analyses on learning rate
(“shrinkage”) for each model set, aiming for at least
1,000 trees in final model configurations. Each of these
configuration settings is described in detail in Elith et al.
(2008). A random number was included as a predictor
for each set location in each model run, to compare
against the contributions of other variables.
Models were validated and compared using a set of

diagnostic metrics and visualization of dynamic

9 http://oceanmodelling.ucsc.edu
10 https://www.ngdc.noaa.gov/mgg/global/global.html
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predictions. For presence–absence models, we used the
area under the receiver operating curve (AUC) statistic
to assess predictive performance through evaluating the
ratio of true positives (correctly classified presences) to
false positives. A model predicting the observed pres-
ences and absences perfectly would score 1, whereas one
performing no better than chance would score 0.5. We
used leave-one-out cross-validation over the 25 yr of
data, leaving each year in turn out of the model fitting
(“training”) data set and predicting from the model over
the data set from that missing year (“testing”), with
AUC as the validation statistic. In addition, we com-
pared the total proportion of deviance explained by each
of the model sets. For total catch models, we used
proportion of deviance explained, and leave-one-out cross-
validation by year with root mean squared error (compar-
ing predicted to observed catch rates) as diagnostics.

Making dynamic near real-time predictions

We generated a series of daily predictions of the prob-
ability of occurrence and catchability of swordfish over
the CCS domain by predicting from each SDM over a
series of time-matched environmental data fields. For
satellite-based models, the spatial resolution of predic-
tive surfaces was set at the lowest common resolution of
physical data fields (0.25°). For ROMS-based models,
we generated daily predictions at the 0.1° (~10 km) reso-
lution common to all fields.
Uncertainty in our models of swordfish catchability

was estimated using standard errors in spatial predic-
tions. For per-grid cell standard errors in daily predic-
tions, we fitted BRTs using the whole data set 10 times,
with a slow learning rate and bag fraction of 0.6 to
include stochasticity in each model run. We then made
spatial predictions of swordfish catchability over the
study domain from each of these model objects and esti-
mated lower and upper confidence bounds using the
standard error of each set of predictions. To estimate
spatial variability and uncertainty in daily predictions,
we generated monthly summaries of probability of pres-
ence and catchability (total catch) through calculating
the mean and standard deviation of predicted values per
grid cell over 30 days of daily predictive surfaces (1–30
November 2014).

RESULTS

Model performance

Dynamic SDMs based on physical data fields from
satellite remote sensing and ROMS performed compara-
bly well in this context, confirming that data-assimilative
regional ocean models can produce near real-time pre-
dictions of the distributions of migratory marine species
with comparable accuracy to models built using satellite
remote sensing (Table 2). Satellite-based SDMs demon-
strated marginally better performance under the

diagnostic measures we applied, including through leave-
one-out cross-validation by year, yet the slight differ-
ences in model performance that we observed did not
manifest in an appreciable increase in spatial uncertainty
in near real-time predictions. Indeed, the direct compa-
rability in model performance combined with the trade-
offs involved in the selection of physical data on which
to construct marine SDMs (Table 3) lead us to recom-
mend the use of regional ocean models for dynamic
ocean management, where available.
Our findings suggest that modelling count responses,

such as the total catch per set metric used here, can
result in better performing models of the catchability of
highly migratory marine species than simpler presence–
absence models (Table 2).

Physical drivers of swordfish catchability

We demonstrate clear linkages between the dynamic
physical environment and the catchability of broadbill
swordfish in the CCS. Across all models, each of the
physical predictor variables contributed more to the
total explanation of deviance than would be expected by
chance (random number had lowest relative variable
contribution).
In predicting the relative probability of swordfish pres-

ence over the CCS domain, ROMS-based models identi-
fied isothermal layer depth (ILD) as the most influential
predictor, with elevated probabilities of swordfish catch
in the 20–80 m ILD range (Figs. 2, 3). Water depth was
identified as an important predictor, with an evident
preference for deeper waters offshore of the continental
shelf (>1,500 m) and in small-scale basins of the South-
ern California Bight; Figs. 2, 3). Sea surface temperature
(SST) strongly influenced the probability of swordfish
presence, with both satellite and ROMS-based models
identifying a comparable peak in likelihood in the 15–
20°C range (Fig. 2).
Catchability (total catch per set) responses to physical

predictors were broadly comparable to those of presence–
absence models, except for the higher relative importance
of zonal wind speed from satellites, and SSH from both

TABLE 2. Model performance diagnostics.

Response variable Satellite
Regional Ocean
Modelling System

Presence
AUC 0.856 0.813
KFCV mean AUC 0.782 0.763
Deviance explained (%) 12.2 12.2

Total catch
RMSE (% maximum) 6.3 6.6
KFCV mean RMSE

(% maximum)
9.3 8.9

Deviance explained (%) 24.5 21.4

Note: AUC, area under the receiver operating curve; RMSE,
root mean squared error; KFCV, K-fold cross-validation.
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satellite and ROMS (Figs. 2–4). Isothermal layer depth
(ILD) made an important explanatory contribution to
predicted catchability of swordfish, with comparable
responses in both presence–absence and total catch mod-
els except for a clearer peak in the 30–40 m depth range
in predicting total catch (Figs. 2, 4). Isothermal layer
depth was found to be a more useful predictor of sword-
fish presence than zonal wind speed from satellites
(ILD = 23.2%; zonal wind = 8.7%), although this differ-
ence was less pronounced in modelling a total catch
response (ILD = 11.8%; zonal wind = 14.2%; Figs. 2–4).
ILD and zonal wind are intrinsically related, and could
be used as proxies for the same proximate physical pro-
cesses (e.g., surface mixing resulting from wind stress).
However, the importance of ILD in the predictive capa-
bilities of our models exemplifies the clear advantages of
using three-dimensional data fields available from ROMS
over surface-only, two-dimensional, remotely sensed
fields in predicting distributions of mobile species. Future
work could consider inclusion of other ROMS-derived
physical data such as more accurate wind fields and mea-
sures of conditions at depth, such as vertical velocity, a
proxy for upwelling strength.
Measures of mesoscale variability including SSH,

zonal wind speed, EKE, chlorophyll a concentration,
and the local standard deviation in SST, SSH, and water
depth all had a moderate influence in predicting the rela-
tive catchability of swordfish (Figs. 2–4), and con-
tributed to the spatiotemporal dynamics evident in daily
predictions (see animations in Data S1; Figs. 3, 5, 6).
Swordfish catchability was found to be highest in associ-
ation with positive SSH anomalies, although we did
observe some differences in the shape of responses to
SSH from AVISO satellites to SSH from ROMS.
Low to intermediate chlorophyll a values were the most

likely to be associated with swordfish presence, although
chlorophyll a had a limited influence in both presence–ab-
sence and total catch models (8–9% relative contribution
to total explanatory power; Figs. 2–4). Zonal wind

velocities from satellites influenced swordfish catch prob-
abilities, with moderate northerly winds (~10 m/s) most
influential in predicting swordfish presence (9% variable
contribution; Fig. 2) and total catch (15% variable contri-
bution; Fig. 4). Lunar phase influenced catch probabili-
ties (6–7% relative variable contribution), with
concurrence in the shape of responses among all models.
Swordfish catchability was found to be highest during the
relative darkness of a new moon (<20% lunar illumina-
tion; Figs. 2, 4) than in the days approaching the full
moon, the illumination from which drives prey deeper
into the water column. Standard deviation in water
depth, a proxy for seafloor rugosity, had a greater contri-
bution to catchability models (8–9%; Fig. 4) than to rela-
tive probability of presence predictions (4–5%; Fig. 2).
Dynamic daily predictions (Fig. 3) of relative sword-

fish catchability in the CCS domain over the 30 d of
November 2014 are presented as animations in Data S1.
Spatiotemporal dynamics in predicted swordfish catcha-
bility are summarized as monthly mean and standard
deviation per grid cell, showing higher uncertainty in
predictions of swordfish catchability in regions of intense
mesoscale variability (Figs. 5, 6). The influence of
mesoscale circulation is most evident in ROMS-based
predictions (Figs. 3, 5, 6; Data S1), yet also somewhat
apparent in lower-resolution satellite-based models,
which included measures of SSH, EKE, and chlorophyll
a concentration (Figs. 3, 5, 6).

DISCUSSION

Using marine eco-informatics for dynamic ocean
management requires a well-informed understanding of
the relative advantages of modelling approaches, and the
predictive capacities of resulting models. SDMs are
becoming a standard tool in marine conservation, yet
there is no off-the-shelf technique for spatially dynamic
management applications. Trade-offs associated with
model construction and the choice of physical data are

TABLE 3. Respective advantages and disadvantages of remotely sensed satellite data and physical data from ROMS for building
dynamic species distribution models with the capability for making near real-time predictions.

Factor Satellite ROMS

Common spatial resolution among physical
data fields

no (standardized at 0.25°) yes (0.1°)

Common temporal frequency among physical
data fields

no (range daily–weekly) yes (daily)

Cloud-affected yes no
Global coverage yes no (CCS domain: 30°–48° N,

115°–134° W)
Continual data coverage yes, dependent on sensor functionality no, dependent on data processing and

storage
Near real-time provision yes, timing dependent on composite

product availability
yes, continual data assimilation

Availability of ocean color, biogeochemistry yes no
Availability of sub-surface physical data no yes
Satellite sensor failure leads to data loss yes no

Note: ROMS, Regional Ocean Modelling Systems; CCS, California Current System.
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often overlooked, affecting the validity of predictions.
Our methodological exploration establishes, for the first
time, that species distribution models for highly migra-
tory species built upon physical data from data-assimila-
tive regional ocean models can perform as well as those
built upon remotely sensed data sets, and have distinct
advantages for operationalizing near real-time ecoinfor-
matics in support of dynamic ocean management.

Swordfish catchability in the California Current System

Our findings establish that swordfish are more likely to
be caught by the California Drift Gillnet (DGN) fishery,
and in greater numbers, in waters in the 14–20°C surface
temperature range in the CCS. In all models, we found rel-
ative probability of occurrence of swordfish to be highest

in deep offshore waters with low to intermediate chloro-
phyll a concentrations, and a relatively deep isothermal
layer. Predictions of highest probability of occurrence are
in the offshore deep pelagic realm, as might be expected
for this ocean-wandering species.
Broadbill swordfish are cosmopolitan, with a circum-

global distribution and broad latitudinal range (50° N–
50° S; Nakamura 1985). Owing to physiological adapta-
tions that regulate blood temperature, swordfish can tol-
erate a broad range of thermal conditions (~2°C to
~32°C; Costa and Sinervo 2004, Evans et al. 2014),
although they are most frequently associated with sur-
face waters in the 16–24°C range. Hence, anywhere in
the global ocean save the extreme polar regions could be
classed as suitable swordfish habitat. Yet, the dynamic
distributions of this commercially valuable species at
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regional scales are known to be structured by responses
to the physical environment (Bigelow et al. 1999,
Morato et al. 2010, Sepulveda et al. 2010).
Water depth was the most important predictor of both

swordfish presence and catch rates across our models. In
common with our findings, a study in the North Atlantic
using longline data found that bathymetric variables
were the best predictors of swordfish catch (Hsu et al.
2015). Seafloor rugosity was an important predictor of
catch rates in total catch models, consistent with com-
plex seafloor topographies and bathymetric features act-
ing as drivers of swordfish aggregation. Seamounts,
underwater mountain systems that are aggregation sites
for a diverse range of predatory marine vertebrates
(Morato et al. 2010), are known to be areas of increased
catchability of swordfish (Young et al. 2011, Bouchet

et al. 2015, Hsu et al. 2015). Alongside a preference for
deeper offshore areas, the waters overlying complex sea-
floor topographies in the Southern California Bight and
bathymetric features such as Davidson Seamount are
higher-than-average regions of swordfish catchability in
the CCS.
Given that the CCS is known to be an important for-

aging ground for swordfish, distributions are likely tied
to the availability of food resources. Swordfish are
known to feed opportunistically upon a range of mid-
trophic-level pelagic species associated with the deep
scattering layer, with ommastrephid cephalopods such
as the jumbo squid Dosidicus gigas as preferred prey
items (Markaida and Hochberg 2005, Young et al. 2006,
Hsu et al. 2015). These prey are diel migrators, typically
moving into surface waters at night and back to depths
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below the mixed layer during the day, followed by their
predators. It is at night that swordfish are targeted in the
DGN fishery. Their depths, both day and night, are
linked to light levels through the water column, and con-
sequently influenced by lunar phase. Around the full
moon, swordfish occur deeper in the water column and
their depth range expands (Abascal et al. 2010, Dewar
et al. 2011, Abecassis et al. 2012). This shift in vertical
distribution, and potentially an increased ability to see
and avoid fishing gear, reduces catch rates during the full
moon. Although swordfish are as likely to be present in
suitable habitats during the days surrounding the full
moon, they are less likely to be present at the depth
range targeted by the DGN. This illustrates the value of
including both spatial and temporal, dynamic and static
environmental predictors in models of the dynamic dis-
tributions of highly mobile marine species.
Previous work on swordfish habitat preferences in this

region and elsewhere has revealed associations with
mesoscale features such as frontal systems (Podest�a
et al. 1993, Bigelow et al. 1999, Seki et al. 2002, Young
et al. 2011). Despite the lack of availability of environ-
mental data at fine spatial resolutions, the influence of
mesoscale variability is evident in model predictions.
Swordfish were marginally more likely to be caught in
association with positive SSH anomalies, which may
reveal a preference for anticylonic eddies or the warm
side of a thermal front. Eddy kinetic energy and spatial
standard deviation in SST and SSH fields also had a lim-
ited positive influence on catch rates. However, in con-
cordance with Hsu et al. (2015), these measures of
mesoscale activity did not contribute significantly to the
explanation of deviance in our models of catch rates.
The influence of frontal systems on swordfish habitat

selection warrants further investigation, with a derived
metric of frontal activity likely to improve our capacity
to model these associations (Scales et al. 2014, Cott�e
et al. 2015). Making derived frontal products freely
available on the data platforms such as those used here
would rapidly facilitate this process. Similarly, measures
of oxygen concentration through the water column
would likely improve the predictive capacity of SDMs
for highly migratory marine species, although broadbill
swordfish are known to be more tolerant to low oxygen
concentrations than other species (Abascal et al. 2010).

Using ROMS to build marine SDMs

The choice of environmental data upon which SDMs
are based is central to predictive performance. Our find-
ings provide objective validation that ROMS-based
SDMs can perform as well as those built on satellite
models in a fisheries management context.
This is corroborated by the comparison of ROMS-

based SDMs predicting relative densities of cetaceans
with models developed using in situ measures of the con-
temporaneous physical environment presented in Becker
et al. (2016).

Data-assimilative regional ocean models integrate
data from satellite remote sensing and in situ sampling
from buoys, gliders and ship surveys, for realistic forcing
of physical data fields. Hence, data-assimilative ROMS
such as that used here have the same advantages as satel-
lite remote sensing data for SDMs, yet are not subject to
the same limitations (Table 3), including the varying
spatial resolution and temporal frequency among satel-
lite-borne sensors; time periods of sensor coverage; gap-
piness owing to cloud cover; availability of surface
variables only; obtaining and integrating data sets from
multiple disparate sources; bridging between the same
product from different sensors (e.g., chlorophyll a from
VIIRS/MODIS/SeaWIFS).
The CCS configuration of ROMS does not yet pro-

vide measures of productivity comparable to satellite
chlorophyll a products. Chlorophyll a concentration had
limited influence in our models, but adding available
satellite chlorophyll a to ROMS-based models improved
predictive performance over the use of physical fields
alone. Although surface productivity is not likely to be a
good measure of the distribution of mesopelagic squid
and fish that are the preferred prey of broadbill sword-
fish, the inclusion of biogeochemical variables as proxies
of prey distribution is a natural corollary to this work in
in improving predictive capabilities of marine SDMs for
dynamic ocean management.
Regional ocean models are becoming increasingly

sophisticated, incorporating biogeochemistry (Song et al.
2016) and, in some instances, higher trophic level
responses to biophysical conditions (Fiechter et al. 2016).
Non-assimilative ROMS configurations that incorporate
biogeochemistry, such as nutrient cycling, primary and
secondary production, and pelagic fish distributions have
been developed for this region (Fiechter et al. 2014, Rose
et al. 2015, Kaplan et al. 2016) and others (Gutknecht
et al. 2013, Rousseaux et al. 2013). However, these non-
assimilative models can only be useful in this context
where the important variability is not related to mesoscale
activity (e.g., eddies, fronts may not be in the right place
at the right time). Real-time assimilation of both physical
and biogeochemical data will improve the realism of
nowcasts and hence the applicability of outputs for eco-
informatics in fisheries management.
In contrast to satellite remote sensing, ROMS gener-

ates continuous three-dimensional fields in user-defined
time steps. The availability of sub-surface information is
critical to the comparative value of regional ocean mod-
els for modelling the drivers of distributions of true pela-
gic species that use a large portion of the water column,
such as swordfish. Here, we used daily ROMS outputs
to predict relative probability of occurrence, generating
dynamic predictions that change daily in response to
shifting oceanographic conditions. While some satellite
products are available in daily time steps (e.g., Global
High Resolution SST, GHRSST), many are served as
multi-day composites (e.g., MODIS-Aqua chlorophyll
a), which limits their utility for making predictions at
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finer temporal scales. Using ocean models as a source of
environmental data confers opportunity for improving
temporal resolution: the CCS ROMS configuration gen-
erates continuous output, capturing (sub-)mesoscale
oceanographic conditions that are contemporaneous to
the response data set. Consequently, predictions of prob-
ability of fish presence or catchability could be generated
from marine SDMs based on ROMS in near real time.
However, while Earth Observation satellites generate

freely available, global data sets, regional ocean models
have not been implemented everywhere (but see Penven
et al. 2001, Kon�e et al. 2013, da Rocha Fragoso et al.
2016), and are not widely available as a data-assimilative,
near-real-time product. As a result, techniques presented
here are more applicable to data-rich than data-poor
systems, and may not yet be achievable in developing
countries, where spatially explicit data are often lacking
but fisheries management solutions are most urgently
required (Metcalfe et al. 2016). Satellite data would be
the logical choice of environmental data where regional
ocean models have not yet been developed or are not
operationalized for near-real-time provision.

Predicting catchability of pelagic fish: presence–absence
or total catch?

Whether models seek to predict a presence–absence or
count response influences predictive performance and
the usefulness of predictions for spatial management.
Predictions of our presence–absence and catchability
models for swordfish in the CCS were broadly compara-
ble, with the offshore region dominating the highest
probabilities for both. However, areas of highest pre-
dicted swordfish catchability were not always co-located
with highest relative probability of occurrence, and
catchability models showed better predictive perfor-
mance than presence–absence responses. The differences
in responses to environmental conditions that we
observed among models indicates that we can begin to
separate the drivers of distribution and aggregation for
swordfish in the CCS, but understanding these mecha-
nisms with confidence would require further fisheries-
independent data for model validation.
The environmental drivers of fish densities may be more

nuanced than those of distributions (Hazen et al. 2013a),
and yet understanding these nuances is critical to fisheries
management. Correlative approaches such as those pre-
sented here are useful for identifying physical drivers of
regional distributions, but cannot capture the complex
mechanisms that drive habitat preference for animals that
are known to respond to a range of intrinsic (e.g., ontoge-
netic changes, breeding cycles) and extrinsic (i.e., environ-
mental conditions) motivations. Identifying these
mechanisms using correlative SDMs and fishery-
dependent data is particularly difficult for cosmopolitan
species, especially where response data sets cover a limited
geographical extent. Moving forward, eco-informatics
approaches to fisheries management may need to extend

the approaches exemplified here to encompass mechanis-
tic modelling of animal-environment interactions at finer
scales, and towards joint species distribution models (Pol-
lock et al. 2014).
We have modelled relative densities of swordfish

caught in drift gillnets over the CCS domain with rea-
sonable predictive performance. However, fisheries are
primarily concerned with profitability and therefore size
of catch, rather than overall distribution. Modelling
absolute densities would be highly desirable for the opti-
mization of fisheries management, yet is more complex,
data-intensive, and potentially error-ridden. Moreover,
we do not have all the information necessary for a com-
plete understanding of the spatial dynamics of the DGN
fishery as observer coverage rates are only ~15% (Martin
et al. 2015) and choice of fishing location is depen-
dent on factors other than just fish distribution (Soykan
et al. 2014). Modelling absolute densities of target and
non-target species remains a major challenge for eco-
informatics solutions to fisheries management.

Eco-informatics for dynamic ocean management

While marine resource management solutions are
urgently required, particularly for fisheries targeting
commercially valuable yet highly migratory species such
as tuna and billfish, dynamic ocean management is cur-
rently in its infancy. Here, we demonstrate the potential
for marine eco-informatics to contribute to fisheries
management. We establish the utility of data-assimilative
regional ocean models for building dynamic species dis-
tribution models for pelagic species. ROMS-based
SDMs can provide accurate, high-resolution, high fre-
quency, gap-free predictions of the catchability of pelagic
fish in near real-time. Techniques presented here could
be applied across a wide range of marine resource man-
agement contexts, and in modelling the dynamic distri-
butions of other migratory marine vertebrates, including
bycatch-sensitive and protected species.
Ecological forecasting, the capacity to predict future

ecosystem responses to environmental change, is likely to
become critical to decision making in fisheries manage-
ment as marine systems respond to climate change (Luo
et al. 2011). Seasonal forecasts based on broad-scale
indices such as temperature are being developed (Kaplan
et al. 2016, Siedlecki et al. 2016) and used to inform fish-
eries management (Hobday et al. 2011). However, extrap-
olation of species distribution models across space and
time can lead to poor predictive performance (Torres
et al. 2015, Sequeira et al. 2016). Where ecoinformatics is
based on near-real-time data assimilation, including the
capacity for refinement and refitting of predictive models
as new data are acquired, now-cast predictions will
respond directly and continually to changing environmen-
tal conditions (Kaplan et al. 2016). The capacity to fore-
cast future distribution shifts as climate change impinges
upon the marine environment (Hazen et al. 2013b, Bost
et al. 2015) would be a boon for dynamic ocean
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management, particularly where the spatial and temporal
scales of prediction can be aligned with those required for
management strategy evaluation.
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