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a b s t r a c t

Electropermeabilization of cell membranes by micro- and nanosecond-duration stimuli has been studied
extensively, whereas effects of picosecond electric pulses (psEP) remain essentially unexplored. We
utilized whole-cell patch clamp and Di-8-ANEPPS voltage-sensitive dye measurements to characterize
plasma membrane effects of 500 ps stimuli in rat hippocampal neurons (RHN), NG108, and CHO cells.
Even a single 500-ps pulse at 190 kV/cm increased membrane conductance and depolarized cells. These
effects were augmented by applying brief psEP bursts (5–125 pulses), whereas the rate of pulse delivery
(8 Hz–1 kHz) played little role. psEP-treated cells displayed large inward current at negative membrane
potentials but modest or no conductance changes at positive potentials. A 1-kHz burst of 25 pulses
increased the whole-cell conductance in the range (�100)–(�60) mV to 22–26 nS in RHN and NG108
cells (from 3 and 0.7 nS, respectively), but only to 5 nS in CHO (from 0.3 nS). The conductance increase
was reversible within about 2 min. Such pattern of cell permeabilization, with characteristic inward
rectification and slow recovery, was similar to earlier reported effects of 60- and 600-ns pulses, pointing
to the similarity of structural membrane rearrangements in spite of a different membrane charging
mechanism.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Application of high-voltage electric pulses (EP) of micro- or
millisecond duration to living cells is a well-established technique
to increase cell membrane permeability and introduce normally
impermeable substances into cells [1–3]. This process, termed
electroporation or electropermeabilization, has numerous appli-
cations in experimental biology, medicine, and biotechnology.

In parallel with the advancement of pulsed power engineering
during the last decades, electroporation research expanded to
shorter and higher amplitude electric pulses. Early work with
nanosecond EP (nsEP) focused on electroporation of intracellular
membranes, whereas the plasma membrane was thought to stay
unaffected [4–7]. Later theoretical and experimental studies es-
tablished that nsEP cause the formation of long-lived nanopores in
the plasma membrane [8–11]. These nanopores had complex
conductive properties, including voltage and current sensitivity,
inward rectification, and ion selectivity. Interestingly, similar fea-
tures could occasionally be established in cells permeabilized by

ms-range EP or even subjected to hyperpolarization in a low Kþ

solution [12–14]. Nanopores could supposedly be created by “long”
EP either as a fraction of a mixed-size pore population, or by
shrinking of larger electropores. Gd3þ and La3þ ions were effec-
tive at inhibiting or preventing pore conductance regardless of the
exact permeabilization method [10,12,14–16]. Although the data
suggest similar properties of nanopores produced by different
treatments, this conjecture has yet to be tested by direct
experiments.

Furthermore, our recent data on Ca2þ mobilization by picose-
cond-range EP (psEP) [17] could not be easily explained by existing
paradigms of electropore formation. We established that Ca2þ

activation by 500-ps, 190 kV/cm EP is mediated by opening of
voltage-gated calcium channels (VGCC) and therefore does not
occur in CHO cells (which do not express any VGCC). This ob-
servation contrasted numerous findings that 60-ns and longer EP
do not rely on VGCC and efficiently activate Ca2þ in CHO cells [18–
21]. Therefore, findings with psEP could be indicative of a non-
conventional membrane electroporation, with pores so short-lived
that usual methods of pore detection fail. One may also speculate
that the lack of VGCC expression or some unknown differences in
membrane composition made CHO cells less vulnerable to psEP,
although it was not the case for nsEP (CHO cells showed similar
sensitivity to 60- and 600-ns pulses as VGCC-expressing NG108
and GH3 cells [22,23]). Finally, one may think of VGCC activation
by psEP in the absence of electroporation, just by psEP-induced
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depolarization of the plasma membrane, similarly to conventional
electrostimulation. However, 500-ps pulses are too short to
change the membrane potential by Maxwell-Wagner polarization
and have to rely on the dielectric stacking effect instead. As a re-
sult, the relaxation of the psEP-induced membrane potential is
essentially instant and happens roughly 1000 times faster than
movement of the voltage sensor of a VGCC; hence, direct VGCC
activation by psEP not mediated by electroporation is also difficult
to explain [17].

The present work was aimed at further exploring psEP-induced
electroporation by electrophysiological and optical membrane
potential detection techniques. Bioeffects of psEP remain essen-
tially an uncharted territory, with current knowledge limited to a
few isolated reports [17,24–26]. Below we demonstrate that even a
single psEP at 190 kV/cm can permeabilize cell membrane, and
that psEP- and nsEP-porated membranes share similar features. At
the same time, CHO cells proved to be less sensitive to psEP than
other tested cells, which contrasts earlier findings using nsEP
[22,23] but is consistent with the lack of Ca2þ activation by psEP
[17].

2. Materials and methods

2.1. Cells and media

Chinese hamster ovary cells CHO-K1 and a murine neuro-
blastoma-rat glioma hybrid NG108 were obtained from the
American Type Culture Collection (ATCC, Manassas, VA). They
were propagated at 37 °C with 5% CO2 in air according to the
supplier's recommendations. CHO cells were grown in Ham’s F12K
medium (Mediatech Cellgro, Herdon, VA) supplemented with 10%
fetal bovine serum (FBS), 100 I. U./ml penicillin and 0.1 μg/ml
streptomycin. NG108 cells were cultured in Dulbecco's Modified
Eagle's medium (Caisson Labs, North Logan, UT) without sodium
pyruvate, supplemented with 4 mM L-glutamine, 4.5 g/L glucose,
10% FBS, 0.2 mM hypoxanthine, 400 nM aminopterin, and
0.016 mM thymidine (without antibiotics). The media supple-
ments were from Sigma-Aldrich (St. Louis, MO) except for the
serum (Atlanta Biologicals, Norcross, GA). For the passage im-
mediately preceding experiments, cells were transferred onto
glass coverslips. Cells were used in experiments after 12–24 h of
growing on the coverslips.

Dissociated E18 rat hippocampal neurons (RHN) were pur-
chased from BrainBits LLC (Springfield, IL) and seeded on poly-D-
lysine/laminin coated glass coverslips (Corning, Corning, NY) in
Gibco Neurobasal medium supplemented with 50� B-27 (20 ml/l)
and 100� Glutamax (2.4 ml/l) (all from Thermo Fisher Scientific,
Waltham, MA). One half of the mediumwas replaced every 3 days.
Neurons were used between 1 and 3 weeks in culture.

2.2. Electrophysiology

Whole-cell mode of conventional voltage clamp or current
clamp (at I¼0) were used to quantify psEP-induced changes in the
membrane conductance and resting membrane potential (MP),
respectively. The measurements were performed using Axopatch
200B amplifier, Digidata 1440 A board, and Clampex v. 10.2 soft-
ware (Molecular Devices, Sunnyvale, CA). Coverslips with cells
were placed in a glass-bottomed perfusion chamber (Warner In-
struments, Hamden, CT) mounted on a stage of an IX71 micro-
scope (Olympus America, Center Valley, PA). The extracellular so-
lution contained (mM): 140 NaCl, 5 KCl, 2 CaCl2, 1.5 MgCl2, 10
HEPES, and 10 glucose (pH 7.2). Recording pipettes were manu-
factured by pulling borosilicate glass (BF-150–866–10, Sutter In-
strument, Novato, CA) to a tip resistance of 1–3 MOhm using a

Flaming/Brown P-97 Micropipette puller (Sutter, Novato, CA), and
filled with (mM): 10 NaCl, 130 KCl, 2 CaCl2, 3 MgCl2, 10 HEPES, and
5 K-EGTA (pH of 7.2). All chemicals were purchased from Sigma-
Aldrich (St. Louis, MO).

The membrane conductance measurement protocols and pro-
cedures were similar to described previously [8,9,15,27]. The po-
sitioning of the recording pipette with respect to psEP-delivering
electrodes was the same as illustrated in [23], with the exception
of the fact that the gap between the psEP-delivering electrodes in
the current study was somewhat different. Within 1–2 min after
the whole-cell configuration was established, membrane currents
were measured by applying a voltage-step protocol (80-ms steps
from �100 to 40 mV in 10-mV increments) from the holding
potential of �80 mV. This protocol took about 3 s, and it was
applied at 5 s before psEP exposure and again at 1, 5, 30, and 120 s
after it. The current at each step was measured after the steady-
state level was reached, i. e., at 30–50 ms into the step. Thus, we
generated a series of current-voltage (I-V) curves to compare the
whole-cell currents before psEP exposure and at indicated time
intervals after it. The whole-cell conductance was measured by
linear fitting of the I-V curves in individual cells in the range from
�100 to �60 mV.

The membrane voltages reported in this paper have not been
corrected for the junction potential (which equaled 4.2 mV).

2.3. Optical membrane potential monitoring with Di-8-ANEPPS

To load Di-8-ANEPPS into cell plasma membrane, coverslips
with cells were incubated in the extracellular solution with 20 μM
of the dye for 45 min at 4 °C. The coverslips were transferred into
the glass-bottomed perfusion chamber and the excess dye was
rinsed off.

The MP was measured by ratiometric imaging, which enabled a
more reliable calibration, better signal-to-noise ratio, and reduced
the impact of bleaching. The dye was excited alternately in 5-ms
windows at 440 and 530 nm using fast wavelength switcher
Lambda DG4 (Sutter Instruments, Novato, CA). We utilized a
U-N71006 Di-8-ANEPPS filter set (Chroma Technology, Bellows
Falls, VT) and a PlanApo N 60� /1.42 objective (Olympus). Emis-
sion was measured at 605 nm with an iXon Ultra 897 back-illu-
minated CCD Camera (Andor Technology, Belfast, UK). Dye emis-
sion ratio was calibrated against the membrane potential in vol-
tage-clamped NG108 cells.

MP measurements with the dye typically began 2 s prior to
psEP delivery and continued for 10 s after the exposure, at 100
image pairs/s. The image acquisition and on-line data analysis
were accomplished with Metafluor v.7.5. (Molecular Devices). An
FFT filter utility of Origin 8.0 (OriginLab Corporation, North-
ampton, MA) was employed for offline noise reduction.

2.4. psEP exposure and dosimetry

We utilized the same psEP delivery and measurement techni-
ques as reported recently [17]. In brief, pulses were produced by an
FPG 20–1 PM generator (FID GmbH, Burbach, Germany). They
were triggered externally and synchronized with image acquisi-
tions or voltage step protocols using Digidata 1440 A board. The
exact timing of psEP delivery, pulse rate, and the number of pulses
were all programmed in Clampex software.

The pulses were sent to a 4 GHz, 20 Gs/s TDS7404 oscilloscope
(Tektronix, Beaverton, OR) and to a π-network intended to absorb
reflections from the load. psEP were delivered to cells in the bath
by means of a pair of tungsten rods (100 mm diameter, 170 mm gap)
at the end of a 50-Ω RG316 coaxial cable. The electrode assembly
was driven by an MPC-200 robotic manipulator (Sutter Instru-
ments, Novato, CA), to place the tips of the rods precisely at 50 mm
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above the coverslip surface with the selected cell(s) being in the
middle of the gap between them.

The electric field values at the location of cells were determined
by simulation with a 3D time-domain electromagnetic solver, CST
microwave studio (Framingham, MA). The simulation also estab-
lished broadening of the electric pulse due to the impedance
mismatch, from 320 ps at the generator output to approximately
500 ps at the load (as measured at 50% of the peak amplitude). The
simulation did not include possible electric field distortion by the
exposed cell itself or by the patch clamp pipette.

3. Results and discussion

3.1. Changes in the whole-cell conductance after a burst of 25 EP

(500 ps, 190 kV/cm, 1 kHz)

These treatment parameters were chosen because they caused
consistent, reproducible, and long-lasting but reversible increase
of whole-cell currents in all studied cell types (Fig. 1, A-C). At the
same time, the total energy delivered by such trains was low and
heating by psEP, even under the “worst case scenario” (adiabatic)
conditions did not exceed 1.5 °C [17]. The current-voltage (I-V)
curves measured by a step protocol that was initiated at 1 s after
psEP delivery were distinguished by a strong increase of inward
current at negative transmembrane potentials, but a modest, if
any, increase of the outward current at positive potentials. More-
over, the I-V curves became steeper as the membrane potential
became more negative, reflecting the voltage sensitivity of the
inward conductance. These I-V curve features were remarkably
similar to earlier findings with much longer 60- and 600-ns pulses

Fig. 1. Change in whole-cell currents by a burst of 25, 500-ps pulses (190 kV/cm, 1 kHz). (A-C) Current-voltage curves for NG108, RHN, and CHO cells recorded immediately
prior to psEP (open symbols) and after it (filled symbols; the voltage step protocol started 1 s after psEP and took 3 s). Mean7s.e. for 8–10 cells in each group; for clarity,
error bars are shown in one direction. Note a different vertical scale in panel C (CHO cells). Sham exposures caused no appreciable change in currents (data not shown).
(D) Currents due to the new conductance pathway created by psEP in the same three cell lines. Each curve was obtained by subtracting pre-psEP currents from post-psEP
currents in individual cells, followed by averaging the data across the group. See text for more details.
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[8,9,23,28,29]. The inward rectification along with voltage sensi-
tivity were regarded as electrophysiological hallmarks of nanopore
formation and distinguished them from linear I-V dependence of
larger membrane pores [8,9]. Both the inward rectification and
voltage sensitivity could potentially be explained by a conical,
asymmetric shape of nanopores [8], or by nanopore opening at the
bottom of funnel-shaped membrane invaginations, such as ca-
veoles, but this hypothesis has not been experimentally verified.

Notably, psEP increased the conductance to a much greater
extent in RHN and NG108 cells than in CHO cells. Specifically, the
conductance measured by a linear fit of I-V curves in the range
from �100 to �60 mV increased, on average, to 2172.3 nS in
RHN (from 370.34 nS); to 2375.2 nS in NG108 (from 0.7170.24
nS); and to only 4.770.8 nS in CHO cells (from 0.2870.04 nS).
The difference between post- and pre-exposure I-V curves is pre-
sumably the current carried through psEP-opened membrane
pores (Fig. 1(D)). Opening of some endogenous ion channels by
psEP could potentially contribute to this current, although pre-
vious studies with nsEP did not identify any specific channels in-
volved [8–10,30]. Smaller values of “psEP-added current” in CHO
cells could reflect less efficient opening of pores (e. g., because of a
different membrane composition [31–33]) or a lower expression of
an unidentified endogenous ion channel that is activated by psEP).

The fact that in earlier studies [22,23] permeabilization of CHO
cells by 60- and 600-ns EP was no less efficient than of GH3 or
NG108 is an argument against involvement of unidentified ion
channels, although the efficiency criteria used in these studies
were somewhat different and the comparison is not fully valid.

The restoration of the initial membrane conductance was gra-
dual and took minutes (Fig. 2). The time course of membrane re-
covery was similar in different cell types, despite different starting
values (Fig. 2(B)). This time course of resealing was similar to what
was reported in studies with nsEP [8,9,28], once again pointing to
the similarity of pore properties.

3.2. Effects of smaller psEP amplitude and of single pulses

Exposure of living cells to high-amplitude psEP remains a
challenging cutting-edge technology, and currently we do not
have the flexibility to gradually adjust the pulse amplitude with-
out altering pulse shape or duration. Instead, we could use an in-
line fixed attenuator to bring the psEP amplitude down to 76 kV/
cm. However, at this amplitude we could not elicit any psEP ef-
fects, regardless of the number of pulses delivered (data not
shown).

When using a single 190 kV/cm psEP instead of 25-pulse bursts,

Fig. 2. Membrane resealing as reflected by the gradual reduction of membrane conductance with time after exposure to 25 psEP (190 kV/cm, 1 kHz). (A) Current-voltage
curves in NG108 cells before psEP (opens symbols) and at indicated timepoints after it (mean7s.e., n¼8). (B) The time course of the membrane conductance decrease within
2 min after psEP, in 3 different cell types. The conductance was measured by linear fitting of the current-voltage curves in individual cells in the range from �100 to �60 mV
(mean7s.e., n¼8–10). Dashed horizontal lines denote the range of conductance values (mean7s.e.) prior to psEP exposure. Note a different vertical scale for CHO cells. See
Fig. 1 and text for more details.
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we observed a modest but statistically significant conductance
increase at negative MP in NG108 cells (from 0.7370.13 nS to
1.570.17 ns, n¼10, po0.05), but no consistent effect in either
RHN or CHO cells. Within the accuracy of the methods employed,
the value of 190 kV/cm can be considered to be at or near the
threshold of membrane permeabilization by 500-ps EP.

3.3. The loss of the resting MP due to permeabilization by psEP:
comparison of patch clamp and optical MP monitoring

While patch clamp is a powerful method to study cell mem-
brane electropermeabilization, it has to be used with caution due
to the inherent possibility of artifacts due to nsEP or psEP pick-up
by the patch clamp amplifier. In early studies, the recording pip-
ette was kept away from the cell and the whole cell configuration
was not attempted until after the pulse treatment [10,30]. Later on,
we found that already “patched” cells responded to nsEP similarly
to intact cells and corroborated this observation by concurrent
fluorescent dye uptake measurements [9,27,28,34]. Nonetheless,
much higher amplitude of psEP used in this study (compared to
more common 5–15 kV/cm for nsEP) required additional proof of
the method.

Instead of dye uptake, we chose to compare MP values as
measured by current clamp (in I¼0 mode) and by an MP-sensitive
fluorescent dye, Di-8-ANEPPS. The loss of resting MP is a well-
established consequence of cell permeabilization by nsEP [30],
hence a similar impact of permeabilization by psEP was expected.
These experiments were performed in NG108 cells only.

As a first step, the dye emission was calibrated against MP as
controlled by voltage clamp (Fig. 3(A)); no psEP were applied. The
dye response was measured as fluorescence ratio at two excitation
wavelengths, as described above in Methods. In different in-
dividual cells, the dye response depended linearly on the mem-
brane voltage, with good reproducibility between different cells of
the same batch (Fig. 3(B)). For different cell batches, the slope
coefficient of the linear equation remained the same but the in-
tercept term varied. Therefore the method could be utilized to
measure MP changes (ΔMP) but not the absolute MP values.

Fig. 4(A) compares optical ΔMP in dye-loaded cells (no patch

clamp) and electrical ΔMP recorded in whole-cell current clamp
mode (no dye added). With the exception of a fast artifact from
psEP pick-up by the patch clamp amplifier, both methods mea-
sured similar ΔMP and similar time course of repolarization. This
result supports the accuracy of patch clamp measurements despite
the inevitable electrical interference from high-voltage psEP
stimuli.

3.4. Effect of psEP number and delivery rate on ΔMP

The convenience and sensitivity of optical ΔMP measurements
make it a method of choice to reveal psEP bioeffects and compare
different psEP treatment protocols. While a single 500-ps EP at
190 kV/cm caused only marginally significant change of mem-
brane conductance, the respective ΔMP response was robust and
reproducible (Fig. 4(A)). Thus far, the membrane depolarization by
psEP can be regarded as the most sensitive biological endpoint.
However, the drawbacks of optical ΔMP measurements are the
lack of information on the initial MP in individual cells and the
expected decrease of sensitivity as the MP approaches zero.

Indeed, increasing the number of 500-ps pulses to 5, 25, and
125 (in 1-kHz bursts) increased the response non-linearly (Fig. 4B-
E). It is difficult to discern if this non-linearity resulted from a
reduced membrane permeabilization effect of those psEP which
were delivered fast after the first psEP in the burst; or from active
physiological correction of the MP by the cell; or just from de-
creasing the sensitivity of the method as the MP approached zero.

Delivering a burst of 25 pulses at 1000, 200, or 40 Hz produced
identical effects (Fig. 4(F)). Moreover, the effect of 8-Hz bursts, by
the time when all 25 pulses were delivered, was the same as of the
other pulse rates. These data are consistent with additive effects of
individual pulses in the burst, concurrently with on-going re-
storation of the resting MP (by either membrane resealing or ac-
tivation of ion pumps). The additive effect of sequential pulses is
yet another psEP feature that matches earlier data for nsEP [35].

Fig. 3. Calibration of Di-8-ANEPPS dye for membrane potential measurements using whole-cell patch clamp. The dye response was characterized by a ratio (R) of emission
intensities when the dye was alternately excited at 530 and 440 nm. (A) Voltage steps imposed by a whole-cell voltage clamp protocol (dotted line, right scale) and respective
changes in R (solid line, left scale) in a representative NG108 cell. (B) A liner dependence of R on the membrane potential in a single batch of dye-loaded cells (mean
values7s.e., n¼5). The linear equation enables calculation of the membrane potential from R values, although the intercept term varies between different cell batches. See
text for more details.
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4. Summary

We found that even a single psEP at 190 kV/cm can cause
lasting cell membrane permeabilization. The effect was enhanced
by delivering multiple pulses but not by varying their frequency.
Cell depolarization was measured similarly by patch clamp and by
an MP-sensitive fluorescent dye, indicating that both methods are
accurate. Finally, psEP-induced conductance possessed the same
features as were reported earlier for nsEP, namely the maximum
increase at negative MP, inward rectification, MP sensitivity, and
gradual recovery over tens of seconds. We therefore infer that the
nature and physical properties of psEP-opened pores are not dif-
ferent from those opened by nsEP, despite qualitative difference in
the membrane charging mechanisms (see [17] for discussion).

The only notable difference from nsEP effects was profoundly
weaker membrane permeabilization in CHO cells as compared to
either NG108 or RHN. While we do not know its cause, this dif-
ference is helpful to explain the lack of Ca2þ mobilization by psEP
in CHO cells [17]. In cells which express VGCC, even a modest
membrane permeabilization led to depolarization, VGCC opening,
and Ca2þ activation. Indeed, blockage of VGCC inhibited psEP-in-
duced Ca2þ activation, proving that Ca2þ entry through electro-
pores at tested psEP parameters was non-detectable. In CHO cells,
the lack of endogenous VGCC expression coupled with 4–5-fold
weaker membrane permeabilization makes a good explanation
why no Ca2þ response was detected. One may expect that psEP
stronger than 190 kV/cm will evoke Ca2þ transients in CHO cells
just as well as relatively low-amplitude nsEP [18,19], but this
conjecture can be tested only when the proper psEP generation

and delivery technology is developed.
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