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STABILITY OF A VISCOELASTIC BURGERS FLOW*

D. GLENN LASSEIGNE? AND W. E. OLMSTEAD:

This paper is dedicated to Edward L. Reiss on the occasion of his 60th birthday.

Abstract. The system of equations proposed by Burgers to model turbulent flow in a channel is extended
to include viscoelastic affects. The stability and bifurcation properties are examined in the neighborhood
of the critical Reynolds number. For highly elastic fluids, the bifurcated state is periodic with a shift in
frequency.

Key words, bifurcation, stability, viscoelastic fluids

AMS(MOS) subject classifications. 35K55, 45KO5

1. Introduction. In some recent work of Olmstead et al. [8], the model problem

(1.1) ut(x, t) f K t, s)uxx(x, s) ds + u(x, t) u3(x, t),
d-

(1.2) u(0, t) u(Tr, t) 0,

was proposed to study the bifurcation and stability properties associated with a
viscoelastic fluid. The interpretation of (1.1), (1.2) is that u(x, t) is the velocity perturba-
tion for a Bnard type flow in a channel (0=<x=< 7r). The viscoelastic force of a
non-Newtonian fluid with memory is modeled by the integral term in (1.1). The constant
R-> 0, which corresponds to the Rayleigh number, becomes the bifurcation parameter
in the analysis of (1.1), (1.2).

The introduction of the model problem (1.1), (1.2) was motivated by the difficulty
of identifying viscoelastic phenomena from the full-fledged Navier-Stokes equations
(e.g., Joseph [6] and Eltayeb [3]). The analysis of [8] was carried out for a Jeffreys
kernel,

(1.3) K(t’s)=l-6exp(--)+266A(t-s), A->0, 0-<6<1,

where A is the relaxation time, 6 is the ratio of a retardation time to the relaxation
time, and _(t-s) is the Dirac delta function. The limiting case in which 6--> 0, A --> 0
is interpreted as a Newtonian fluid.

The results of [8] show that, for fixed 6, the relaxation time A controls the behavior
of the bifurcation parameter R. As R is increased, the first bifurcation is to a steady
state for A sufficiently small and to a periodic state for A sufficiently large. This behavior
is consistent with the linear stability analysis of Sokolov and Tanner [9] for a more
realistic formulation of the B6nard problem.

Our goal here is to extend the (weakly) nonlinear bifurcation and stability analysis
of [8] to a fluid mechanical model which more closely resembles the Navier-Stokes

* Received by the editors June 12, 1989; accepted for publication (in revised form) June 21, 1989. This
research was supported in part by the National Science Foundation under grant DMS-8700962.

f Department of Mathematical Sciences, Old Dominion University, Norfolk, Virginia 23508.
$ Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston,

Illinois 60208.
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A VISCOELASTIC BURGERS FLOW 353

problem. In place of (1.1) we consider the system

(1.4a) U,(t) P U(t)
wR*

u (’, t) d:,

(1.4b) ut(x, t) + 2u(x, t)Ux(X, t) f K(t, S)Ux(X, s) ds + R* U(t)u(x, t).

The Newtonian version of this model, where the integral term in (1.4b) is replaced by
Uxx(X, t), was proposed by Burgers [1] as a model for turbulent flow in a channel
(0 _-< x _<- r). In that model, U(t) denotes a mean velocity driven by the pressure gradient
P, while R* represents the Reynolds number. The integral term in (1.4a) plays the role
of the Reynolds stress which governs energy conversion between the mean flow and
the velocity perturbation u(x, t). Various aspects of the stability and bifurcation
properties for the Newtonian model have been investigated by Stuart [10], Eckhaus
[2], Golia and Abel [4], Horgan and Olmstead [5], and Olmstead and Davis [7].

The analysis here of the viscoelastic Burgers system (1.4) will also be for the
Jeffreys kernel (1.3). It is convenient to define

(1.5) S(x, t)= exp u(x, s) ds,

(1.6) V(t)-R*[P-U(t)]

so that (1.4) can be replaced by the system

(1.7a) u, Sxx + SU,,x + Ru uV-2uu,,

(1.7b) AS, -S+(1-6)u,

(1.7c) Vt=-V+ u2(, i) d,

where R PR* will be the bifurcation parameter.
The corresponding system for (1.1), treated in [8], involves the same linear terms

that appear in (1.7a) and (1.7b). The two nonlinear terms in (1.7a) are replaced by
-u3, and (1.7c) is absent.

For the analysis that follows, it will be convenient to define the system operator___,
R

Ot Ox2 Ox2

0
-(1-6) A--

Ot

0 0

(1.8) LR

0
--+1
ot

Then (1.7) can be expressed in the form

(1.9) LR

-uV- 2UUx
U

0

2/r u2( t) d:

We will investigate the solution of (1.9), subject to the boundary conditions

(1.10) u(0, t)= u(er, t)= S(0, t)= S(7r, t)=0,
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354 D. G. LASSEIGNE AND W. E. OLMSTEAD

and initial conditions

(.) u(x, o) h(x), S(x, o) o, v(o) o,
where eh(x), 0< e << 1, is the given initial velocity perturbation. The other conditions
in (1.11) correspond to a null history; that is, for all <0 the mean velocity in the
channel is constant (U-= P) with no perturbation (u 0).

2. Linear stability analysis. By linearizing the system (1.7), and introducing normal
modes, we can identify the branch points were bifurcation can occur for the nonlinear
problem. We consider

I,,e("+i’")tsinnxl(2.1) LR ,, e(’’+’’’’’ sin nx O, n 1, 2,...,
n e(, +iw )t

where the or, and o, ate real. It follows that t7, O, n 1, 2,..., while for arbitrary
7 and S there is a characteristic equation which separates into real and imaginary
parts as

2 2(2.2a) A(o’,-Wn)+O’,(1-,R+n26)+n2 R=0,

(2.2b) w,(1 + 2)tr, + ,nZ6 R) =0, n 1, 2. .
Solving (2.2) yields two distinct cases. For branch points corresponding to steady

bifurcations, we set w, 0, or, 0 and find

(2.3) Rs) n 2 n 1 2,...

For branch points corresponding to periodic bifurcations, we set w, # 0, on 0 and find

1 2,(2.4) R(f’=l--+ n28, to. =-[(1-6)n 1]
A

with the stipulation that

1
(2.5) , >,,

(1-6)n 2"

These results suggest that the critical value of R where the null solution loses
stability is given by

(2.6) R= R]p) 1
1

A>A1,

where A1 1/(1-6). The physical implication of (2.6) is that A represents a measure
of how much elasticity the fluid must have for the loss of stability to have an oscillatory
nature.

Since the linearized versions of (1.4) and (1.1) are identical, it is to be expected
that the bifurcation sites given by (2.3) and (2.4) are the same as those found in [8].
However, we can anticipate some differences in the evolutionary nature ofthe nonlinear
problem.

3. Bifurcation analysis for k<k. In view of (2.6), we anticipate the nonlinear
problem (1.7) to exhibit its first bifurcation, as R increases from zero, at R Rs= 1
when A < A1. Moreover, we expect that an initial perturbation of the null solution will
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A VISCOELASTIC BURGERS FLOW 355

evolve slowly to a steady birucated state for R > Rs. To analyze that bifurcation, we
set

(3.1) R R]S) + e2= 1 + e 2,
where e is the same small parameter that scales the initial data in (1.11). We also
introduce the slow time

(3.2) 7. e 2t,
and seek an asymptotic solution of (1.9)-(1.11) through the expansion

U-- 6J+luj(x, t, 7"),
j=0

(3.3) S= Y eJ+lSj(x, t, 7"),
j=0

V= 2 eJ+’ vj( t, 7").
j=0

By introducing (3.1)-(3.3), our problem (1.9)-(1.11) takes the form

-uV-2uux ]U 117 U
(3.4)

L, 2/’n-fi=u2d, -e:z ASv, .,//’
uj=S=0 for j_->0 atx=0,

uo=h, So =Vo=0, uj=Sj=V=O forj->l at t=7"=0.

(3.)

(3.6)

At O(e) it follows from (3.4) that

Iul(3.7) L1 So =0.

Vo
Upon solving (3.7) subject to (3.5) and (3.6), while retaining only the terms that survive
as --> , we find

/1 C0(7") sin x]
(3.8) So Co(7")sin x + O(e-yt)

Vo
for some 3’ > 0. Here

(3.9) Co(7")

where

(3.10a)

Ao(7") ABo(7.)

Ao(7") _2 Uo(X, O, 7") sin x dx,

Ao(0) _2 h(x) sin x dx ho

(3.10b) Bo(7") _2 So(x, O, 7") sin x dx, Bo(0) 0.
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356 D. G. LASSEIGNE AND W. E. OLMSTEAD

At O(e2) it follows from (3.4) that

ul -A Co(z) sin 2x
(3.11) L, S, 0 +O(e-W).

Vl

Upon solving (3.11) subject to (3.5) and (3.6), while retaining only the terms that
survive as t-- o, we find

(3.12) S1 C(r) sin x-1/2AiCg(r) sin 2x +

At O(e 3) it follows from (.3.4) that

//2

(3.13) L S + O(e-),

where

(3.14) G(t, r, x)= {-h,Cg(z)+ Co(r) h3 C3o(Z)[1 ](cos 2x +cos2 x)]

4A C(z) Co(’) cos x} sin x,

Q(t, z, x)= -hCg(z) sin x.(3.15)

For the solution of (3.13), subject to (3.5) and (3.6), to remain bounded in t, we
require the solvability condition,

(3.16) lim 1/o’/o,_ [G(s, z,x)-Q(s, z,x)]sinxdxds=O.

This yields the nonlinear differential equation

(3.17) (A, 1)C;(7) 1,Co(7 43 0,

subject to the initial condition Co(O)= ho/(,-,) from (3.9). It follows that

(3.18) Co(r) x/ ho{E3(A1 A) 4hA] e-2X’/(x’-’x)+4A2h2o}-’/2.1
This, together with (3.8), determines the slow evolution toward the steady bifurcated
state. It follows that as

(3.19) S 1 esinx+O(e2).
V 0

4. Bifurcation analysis for h > k. As suggested by (2.6), when the fluid elasticity
is sufficiently large, i.e., A > A1, the nonlinear problem (1.7) will exhibit its first
bifurcation at R RP)< 1. Moreover, we expect that an initial perturbation of the
null solution will evolve slowly to a periodic bifurcated state for R > Rp. To analyze
that bifurcation, we set

(4.1) R=R]P)+e2=I -- +e

As in 3, we introduce the slow time z= ezt and seek an asymptotic solution of
(1.9)-(1.11) in the form of the expansions (3.3).
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A VISCOELASTIC BURGERS FLOW 357

For this case, our problem (1.9)-(1.11) takes the form (3.4) with L replaced by
L1/(1/,)-(/,,. The boundary conditions (3.5) and initial condition (3.6) again apply.

At O(e) it follows that

(4.2) Ll+(/,)_(/,,) So O.

Vo

Upon solving (4.2) subject to (3.5) and (3.6), while retaining only the terms that survive
as t-+ oo, we find

(4.3)

1 1 [aU0 COS 0) +sin 0) sin 0) 0 o(’r)
/(.o 0)

1
So /lhO.)ll sinwt cos tolt---sintotAwl I[B%r sinx

Vo 0 0

+ O(e-r’).

Considerable simplification of (4.3), as well as other results to follow is obtained
by introducing the polar representation

(4.4a)

(4.4b)

Ao(z) R(-) sin (’)

[1___ sin (z)-cos xI*(r)].Bo(z) 031R (z)
Ato,

Then (4.3) becomes

Uo

(4.5) So sin[w
Vo

At O(e2) it follows that

(4.6) LI+(1/A)_(1/A1) S

vl

sin [o91t + xI*(7")]

it + xI*(7-)]- o, cos [olt + aIY(’r)]

0

R(z) sin x + O(e-r’).

-sin 2x
0

1
R2(-) sin [(t, z)]+ O(e-V’),

where

(4.7) (I)(t, "/’) tO + (’/"

Upon solving (4.6) subject to (3.5) and (3.6), while retaining only the terms that survive
as t-+ oo, we find

(4.8)
’/1 1 F --{a + b cos 2(t, 7")+ c sin 2(t, "r)} sin 2x
S --{a + b cos 2(t, 7") + g sin 2(t, "r)} sin 2x

V1 1 (1 + 4w)-1 cos 2(t, z) 2w(1 + 4w)- sin 2(t, z)

+ O(e-’),
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358 D.G. LASSEIGNE AND W. E. OLMSTEAD

where

(4.9)

(4.10)

1 -a(1 + 4A 2w2) 6Wl(1 + 4A 2to2)
b= c=

3 + Ato’ O2+ 36w c2 + 36to2
1-6 /= b 2AtOlC g= 2Awlb+c

3+ AtOl AI(1 + 4A2tOl)’ AI(1 + 4A:to])

a =(l+4A2to) 3
A1

At O(e3) it follows that

Ll+(/x)-(1/a,) $2 Q + O(e-Vt),
v o

where

G {-R’ sin @ + R(sin @-’ cos @)

R3[1/2- 2(a + b cos 2@+ c sin 2@)(cos 2x +cos2 x)] sin @

(4.11) R+-- (1 + 4OZl)-l(cos 2 + 2Wl sin 2)]} sin x

Q {-R’(sin Atol cos ) R’(cos + Aw sin )} sin x.

For the solution of (4.10), subject to (3.5) and (3.6), to remain bounded in t, we
require the solvability conditions (see [8])

G(s, z, x) cos (s, z)+[Q(s, z, x)-G(s, z, x)]

(s, )} sin x dx ds 0,sin

(4.12)
G(s, , x) sin (s, r)+[Q(s, , x)-G(s, , x)]

1

cos (s, z)} sin x ds ds 0.

These solvability conditions yield the nonlinear differential equations

(4.a) 2g’() ()-(),

(4.13b) ,(r)=_( 1 )R’() fi
L, g( +-’

where

(4.14)

+ a b c (A 2)--+ >0,u,
2 4 4htOl 4A (1 + 4Wl)

4A 1 +4to2

The initial conditions for (4.13) follow from (4.4) and (3.10) as

(4.15) hoR(O)
(’01%//1’ XI)’(O) tan (Awl).
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A VISCOELASTIC BURGERS FLOW 359

Solving (4.13) subject to (4.15) yields

(4.16a) R(z)= R(O){tzR2(O)+[1-txR2(O)] e-}-1/2

(4.16b) (z) (0) + (/3 1) R(’r)
Ao, o R(0) +-- "

This determines the slow evolution towards the bifurcated state which is periodic in
t. It follows that as z ,
(4.17)

sin (a3t +)
E

sin (o3t +) wl cos (o3t +) sin x + O(e ),
v0

where

(4.18) 0. (.01"- 2 (/31)--e *=*(0)- log (R(0)v).

We note that the bifurcated state is periodic with a frequency 03 that contains a shift
away from the frequency w given by the linear analysis.

5. Discussion. We have examined the (weakly) nonlinear stability properties of
the null state for a viscoelastic version of the Burgers system. This analysis represents
an extension of the work in [8] to a model which more closely resembles the Navier-
Stokes problem.

We find that for a non-Newtonian fluid of relatively small elasticity (A < A) the
first instability is encountered at R R= 1, where there is a bifurcation to a steady
state. This is in accord with the results for the Burgers model with a Newtonian fluid
(A - 0, - 0), as seen in [7]. On the other hand, for a fluid of sufficiently large elasticity
(A > A), the first instability is encountered at R Rp) 1 where there is a bifurcation
to a periodic state. These results are qualitatively consistent with the linear stability
analysis of [9] for a Navier-Stokes problem and with the (weakly) nonlinear analysis
of [8] for the model equation (1.1).

Our results do reveal an interesting feature not suggested by previous investigations.
For a fluid of sufficiently large elasticity (A > A), the evolution to the periodic bifurcated
state is accompanied by a frequency shift. As seen in (4.17), (4.18), this shift Aw is
given by

(5.1) Ato =fl 2

where/3 and/x are given by (4.14).
The ratio /3//x can be expressed in terms of only A and 6, which are the two

viscoelastic parameters of the Jettreys kernel (1.3). Figure 1 provides a graphical
illustration of the dependence of fl/ix on these parameters. The fact that fl/tz-as A A should be ignored since the analysis leading to (5.1) is not valid in this limit.
It is significant that for sufficiently small, the frequency shift is (essentially) always
positive; whereas for 6 sufficiently large, the shift is always negative.

Since these results were obtained from the Burgers model, the quantitative value
of the frequency shift cannot be regarded as significant. Nevertheless, the fact that
there is a frequency shift may provide some insight into future investigations of the
full-fledged Navier-Stokes model.
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