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SUPERCONVERGENCE OF THE ITERATED GALERKIN METHODS
FOR HAMMERSTEIN EQUATIONS*

HIDEAKI KANEKO'! AND YUESHENG XU#

Abstract. In this paper, the well-known iterated Galerkin method and iterated Galerkin-Kantorovich regular-
ization method for approximating the solution of Fredholm integral equations of the second kind are generalized to
Hammerstein equations with smooth and weakly singular kernels. The order of convergence of the Galerkin method
and those of superconvergence of the iterated methods are analyzed. Numerical examples are presented to illustrate
the superconvergence of the iterated Galerkin approximation for Hammerstein equations with weakly singular kernels.

Key words. the iterated Galerkin method, the iterated Galerkin-Kantorovich regularization, Hammerstein
equations with weakly singular kernels, superconvergence

AMS subject classifications. 65B05, 45L10

1. Introduction. In this paper, we consider the following Hammerstein equation:

1
(L.1) x(1) — / k(t, )Y (s, x(s))ds = (1), 0<1<1,
0

where k, f, and 1 are known functions and x is the function to be determined. Define
ke(s) = k(t,s) for t,s € [0, 1] to be the ¢ section of k. We assume throughout this paper,
unless stated otherwise, the following conditions on k, f, and y:

lim . ||k, — ki lloo = 0,7 € [0, 11;

M = sup, fol {k(z, s)|ds < oo;

feClo, 1];

¥ (s, x) is continuous in s € [0, 1] and Lipschitz continuous in x € (—o0, ), i.e.,
there exists a constant C; > 0 for which

Ll

[ (s, x1) — P (s, x2)| < C1lx1 — x| forall x1, x2 € (—00, 00);

5. the partial derivative 11 of v with respect to the second variable exists and is
Lipschitz continuous, i.e., there exists a constant C, > 0 such that

(1.2) WOV x1) — OV, )| < Calxy — xa| forall xy, x; € (—00, 00);

1. forx € C[0, 11, v (., x(.)), v OV (., x() € C[0, 1.
Additional assumptions will be given in §§2, 3, and 4 when they are needed.

Numerical methods for approximating the solutions of the Hammerstein equations have
been studied extensively in the literature. A variation of Nystrom’s method was proposed by
Lardy [23]. A new collocation type method was presented by Kumar and Sloan [22] and its
superconvergence properties were obtained by Kumar [21]. Two different discrete collocation
methods were proposed by Kumar [20] and Atkinson and Flores [4]. A degenerate kernel
scheme was introduced by Kaneko and Xu [16] for equations (1.1) with smooth kernels. A
product integration method and a collocation method were used to solve Hammerstein equa-
tions with weakly singular kernels, and certain superconvergence properties of the approximate
solutions were discovered by Kaneko, Noren, and Xu [15]. The review paper by Atkinson
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[3] is recommended to the readers who require more information on the numerical treatments
of Hammerstein equations. Some theoretical results about Hammerstein equations may be
found in a book by Zeidler [34]. The purpose of this paper is to investigate the superconver-
gence property of the iterated Galerkin method and iterated Galerkin-Kantorovich method
for the solution of the Hammerstein equation (1.1). The iterated method may be viewed as a
nonlinear transformation (iteration) that accelerates the convergence of the approximate so-
lutions obtained from the Galerkin approximation. The general theory of the acceleration of
convergence of a sequence by linear or nonlinear transformations was studied by Wimp [33]
and Delahaye [8] and in the references cited there.

For the Fredholm integral equations of the second kind, the Galerkin and the iterated
Galerkin methods have been investigated by many authors, e.g., see Graham [12]; Graham,
Joe, and Sloan [13]; Sloan [27], [28]; Sloan and Thomee [29]; and Vainikko, Pedas, and Uba
[32]. In those papers that deal with the iterated Galerkin method, it has been shown that
under some suitable conditions the iterated Galerkin method gives a rate of convergence that
is faster than the rate obtainable by the Galerkin method, a phenomenon commonly known as
superconvergence.

The order of convergence for Galerkin approximation for the solutions of Hammerstein
equations with weakly singular kernels can be obtained by a direct extension of the cor-
responding result in the Fredholm case. However, it does not seem to be available in the
literature. Hence, we include the results in §2 for completeness. A substantial number of
proofs of the theorems in §2 will be omitted since they are straightforward and follow from
the work of Vainikko [30] and Atkinson and Potra [6]. In the latter paper, the reader can find
the general theory of the Galerkin and the iterated Galerkin methods for the equation x = Kx,
where K is a completely continuous operator of a domain in a Banach space into itself. Our
present approach and results differ from those of Atkinson and Potra [6] in a number of ways.
For instance, we establish an estimate of improvement that we can expect when the iterated
Galerkin scheme is applied to the weakly singular Hammerstein equations. This will be done
in §3. Several related results on superconvergence are also established in §3. In §3, we deal
with equations with weakly singular kernels and “nice” forcing terms, while in §4, we tackle
equations with both singular kernels and singular forcing terms by employing the classical
Kantorovich regularization technique. We extend the results of the iterated Galerkin method
to the iterated Galerkin-Kantorovich regularization method. Numerical examples are given
in §5 to illustrate the theoretical estimates.

2. The Galerkin methods for Hammerstein equations. In this section, we develop the
Galerkin method for Hammerstein equations and establish the order of convergence. Results
concerning the Galerkin approximation using spline functions for the solutions of equation
(1.1) with smooth and weakly singular kernels are presented.

Let n be a positive integer and {X,} be a sequence of finite-dimensional subspaces of
C1O0, 1] such that for any x € C[0, 1] there exists a sequence {x,}, x, € X,, for which

2.1 X — xllc = 0 as n — o0.

Let P,: L,[0, 1] — X,, be an orthogonal projection for each n. We assume that the projection
P, when restricted to C[0, 1] is uniformly bounded, i.e.,

2.2) P :=sup || Pulcpo,nlleo < 0.
n

Then from (2.1) and (2.2) it follows that for each x € C[0, 1],

2.3) [|Ppx — x|loc = O as n — oo.
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Now let

1
(K\IJ)(x)(t)E/0 k@, s)y(s, x(s))ds.

With this notation, equation (1.1) takes the operator form
2.4 x— KW¥x = f.

In many interesting cases, equation (1.1) allows multiple solutions. Hence it is assumed
for the remainder of this paper that we are treating a solution xo of equation (1.1) that is
isolated.

Let {g,;}]_, beaset of linearly independent functions that spans X,. The Galerkin method
is to find

n
Xn = Z bnj(pnj
i=1
that satisfies

2.5) Xy — P,KWx, = P, f.

Equivalently one is required to find b,;’s that satisfy the system of nonlinear equations de-
scribed by

n 1 n
2.6) Y b (pnj> oui) — </0 k(t, s)y (s, anjqonj(S))ds,<pm> ={(fi@n),1<i <n,
j=1 j=1

J

where (., .) denotes the inner product in L.
We next estimate the error of the Galerkin approximate solutions to the exact solutions.
For notational convenience, we introduce operators T and 7,, by letting

@7 Tx=f+K¥x
and
(2.8) Tyxn = P, f + P,KWx,

so that equations (2.4) and (2.5) can be written respectively as x = Tx and Xp = Tux,. A
proof of the following theorem can be made by directly applying Theorem 2 of Vainikko [30].
The paper of Atkinson and Potra [6] is also useful in this connection.

THEOREM 2.1. Let xo € C[0, 1] be an isolated solution of equation (2.4). Assume that 1
is not an eigenvalue of the linear operator (KW)' (xo), where (KW) (xo) denotes the Fréchet
derivative of KWV at xo. Then the Galerkin approximation equation (2.5) has a unique solution
Xn € B(xg,8) :={x € C[0, 1] : ||x — x0llco < 8} for some 8 > O and for sufficiently large n.

Moreover, there exists a constant 0 < q < 1, independent of n, such that

ay Ay
2.9 —< - < —,
2.9 T+q - lxn — xolloo < 1—¢

where a, = ||(I — T/(x0)) ™ (T, (x0) — T (x0))loo- Finally,
(2.10) En(x0) < llxn — xolloo < CEp(x0),

where C is a constant independent of n and E,(xg) = inf,cx, |x0 — ]l 0.
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We denote by W;," [0,1], 1 < p < oo, the Sobolev space of functions g whose mth
generalized derivative g™ belongs to L,[0, 1]. The space W;'[0, 1] is equipped with the
norm

m
lglwy =Y 18®1l,-
k=0

We now specify the finite-dimensional subspace X,. For any positive integer n, let
IMN,: 0= << - <th1<t, =1

be a partition of [0, 1]. Let r and v be nonnegative integers satisfying 0 < v < r. Let S} (I1,,)
denote the space of splines of order r, continuity v, with knots at IT,, that is,

Sy (IT,) = {x € C’[0, 1] : x|,1,,,) € Pr—1 foreachi =0,1,...,n—1},

where P,_; denotes the space of polynomials of degree < r — 1. We assume that the sequence
of partitions IT, of [0, 1] satisfies the condition that there exists a constant C > 0, independent
of n, with the property

maxy<j<p(t — ti—1)
ming<;<,(t; — ti-1)
It is known from de Boor [7] and Douglas, Dupont, and Wahlbin [11] that condition (2.11)
implies that the Galerkin projections P, are uniformly bounded. In addition, it is also well

known from Demko [9] and De Vore [10] thatif0 <v <r,1 < p <oco,m > 0,andx € W,
then for each n > 1, there exists u, € S} (I1,) such that

2.11)

< C foralln.

(2.12) lx — unll, < Ch*lIxllwe,

where u = min{m, r} and h = max;<;<,(# — t;—1). Using Theorem 2.1 and the inequalities
(2.10) and (2.12), we obtain the following theorem.

THEOREM 2.2. Let xq be an isolated solution of equation (1.1) and let x,, be the solution
of equation (2.5) in a neighborhood of xo. Assume that 1 is not an eigenvalue of (K W)’ (xo).
Ifxo e W, (0 <1 <), then

X0 — xnlleo = O (),
where y = min{l, r}. Ifxo € W, (0 <l <r, 1 < p < 00), then
Ixo — Xnllc = O(R"),

where v = min{l — 1, r}.

We remark that a similar result of Galerkin’s method for Urysohn equations was obtained
by Atkinson and Potra [6]. Hence, Theorem 2.2 may be derived by specializing their result to
Hammerstein equations.

In the remaining portion of this section, we investigate the order of convergence of the
Galerkin method for Hammerstein equations with weakly singular kernels. For this purpose,
we define some necessary notation. For any € € R, let [0, 1] = {¢r € [0, 1] : t + € € [0, 1]}.
Let Aj, denote the forward difference operator with step size 2. Fore > 0Oand 1 < p < o0,
we define the Nikol’skii space N o [0, 1] by

(2.13) NeIO, 1] = lx € L,[0, 1] : |x|y,p := sup

2
SUP Thje A3 x L, 0,11 < 00] ,
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where [«] is an integer and 0 < ¢y < 1 are chosen so that ¢ = [a] + «. Clearly, N » [0, 1]
is a Banach space with the norm ||x|ly,, = ||x|l, + |x|s,p. We remark that the function %!
is in N[O, 1] but is not in Nf[O, 1], for any 8 > «, and logt € Nll[O, 1]. It is known from
Graham [12] that

(2.14) NIH[0, 1] € W0, 1] € N[0, 11 € N[0, 1]
forme N,0<e <l,and1 < p < 00, and
(2.15) N;10,11 € NJ[O, 1]

foro >0,1<p<g<oo,and B =a— (1/p—1/q) > 0. We consider Hammerstein
equations with kernels given by

(2.16) k(t,s) = m(t, )kt —s), t,s € [0, 1],

with k € N¢[0, 1] for some 0 < o« < 1 and m € C%([0, 1] x [0, 1]), and ¥ as defined in the
previous section.

Again, we let X, = S’ (I1,). When no further conditions are made on the partition IT,,
other than the one given by (2.11), the next theorem gives the best possible order of convergence
of the Galerkin approximation to the solution of equation (1.1) with a weakly singular kernel
defined by (2.16).

THEOREM2.3. Let xq be anisolated solution of equation (1.1) with a kernel given by (2.16).
Assume that 1 is not an eigenvalue of (KW) (xo). If f € Nf *110, 1) for some 0 < B < 1,
then

llxo — Xnlloo = O(RY),

with y = min{c, 8}.
Proof. By Theorem 2.1, we have

2.17 X0 — X <C inf X0 — Ul oo-
@.17) o = Xalloo < € _inf flxo — e

A proof similar to the one given for Theorem 3 (ii) of Graham [12] shows thatif f € N f + [0, 1]
then xo € N™™ #1011 ¢ N2™*P)[0, 1]. In addition, (2.14) implies that f € W[0, 1].
Hence f is equal to an absolutely continuous function almost everywhere. Without loss of
generality, we have f € Wl1 [0,1] N C[0, 1]. It can be shown that xo € C[0, 1]. Thus,
xo € NGO, 11N C[O, 1]. It was proved in Graham [12] that if ¢ € N[0, 1] N C[0, 1] for
some 0 < n < 1, then there exists a spline v € S(I1,) such that ||¢ — v||oc < Ch", where
C is a constant independent of &. The result of this theorem follows immediately from (2.17)
and the above argument. O
Now we consider a special form of (2.16). Namely, we assume

(2.18) k(t,s) =m(t, s)g. (It — s51),
where m € C**1([0, 1] x [0, 1]) and

sl 0<a<,
logs, o=1.

(2.19) 8a(s) = {

With these kernels, certain regularities of the solutions of (1.1) are known. Let S be a finite
set in [0, 1] and define the function wg(t) = inf{|z — 5| : s € S}. A function x is said to be of
Bpe(a, k, S) for —1 < a < O if

Ix® @) < Clos®1**, t ¢S5,
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and for o > O if the above condition holds and x € Lip(«). Kaneko, Noren, and Xu [14]
provedthatif f isof Type(B, u, {0, 1}), thenasolution of equation (1.1) is of Type(y, u, {0, 1}),
where y = min{e, 8}. In order to recover the optimal rate of convergence of numerical so-
lutions, we define a partition IT} of [0, 1] corresponding to the regularity of a solution. The
knots of this partition I} are given by

i =01/2)Qi/n)?, 0<i=<n/2,

(2.20) f=1—1,, nj2<i<n,

where ¢ = L. Let Spy = S'(I1}), withr = landv = Oorr > 2and v € {0, 1}.
The following theorem gives the order of convergence of the Galerkin approximations to the
solution of Hammerstein equations with kernels defined by (2.18) and (2.19). It should be
noted that the technique of approximating a solution of the type described above by elements
from the nonlinear spline space has been used on many occasions when dealing with the
weakly singular Fredholm integral equations. For example, Vainikko and Uba [31] describe
the collocation method, whereas in Vainikko, Pedas, and Uba [32] they describe the Galerkin
method. In addition, Schneider [25] establishes the product-integration method based on the
idea of the nonlinear spline approximation with nonuniform knots. A piecewise continuous
collocation method is studied by Atkinson, Graham, and Sloan [5].

THEOREM 2.4, Let xo be an isolated solution of (1.1) with kernels (2.18) and (2.19)
and let x, be the Galerkin approximation to xo. Let m € C**1([0, 1] x [0, 1]) and f be
of Type(B, 1, {0, 1}). Assume that v € COV([0, 1] x (=00, 00)) for u = 0,1 and ¢ €
C*1(]0, 1] x (—00, 00)) for i > 2. We also assume 1 is not an eigenvalue of (K W)’ (xo).

Then
1
X0 = Xnlloo = O (—) .
n

Proof. This follows from Theorem 2.1, the regularity of the solution xo, and from the
results of Rice [24]. O

3. Theiterated Galerkin method. In thissection, we study the superconvergence of the
iterated Galerkin method for the Hammerstein equation (1.1). Generalizing the linear case,
we first define the iterated scheme. Assume that xg is an isolated solution of (1.1). As in
§2, let P, be the orthogonal projection from L,[0, 1] onto X, with conditions (2.1) and (2.2)
satisfied. Assume that x,, is the unique solution of (2.5) in the sphere B(xo, §) for some § > 0.
Define

3.1 x,=f+ KW¥x,.

Applying P, to both sides of (3.1), we obtain

3.2) P.x, = P,f + P,KVx,.

Comparing (3.2) with (2.5), we see that

(3.3) P,x;, = Xy.

Upon substituting (3.3) into (3.1), we find that the function x;, satisfies the new Hammerstein
equation

3.4) x, = f+ KVP,x,.

By letting S, = f + KV P,,, we may rewrite (3.4) as x;, = S,x,,. We first study the invertibility
of the linear operators I — S, (xo) in the following lemma, which will be used to prove the
main results of this section.
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LEMMA 3.1. Let xg € C[0, 1] be an isolated solution of (1.1). Assume that 1 is not an
eigenvalue of (KWWY (xo). Then for sufficiently large n, the operators I — S, (xo) are invertible
and there exists a constant L > 0 such that

(I = S, (x0)) oo < L for sufficiently large n.

Proof. Recalling the definition of Fréchet derivatives S, (xo) and T'(x0), we have, for
each x € C[0, 1],

17 (x0) (x) — Sl (x0)(¥)lloo < S f lk(t, )| @V (s, xo(s))|dsl|x — Puxlloo

<t<

+C sup M||Pyllcclixllooll X0 — PaXolloo-

0<r<1

By (2.3), the last two terms can be made arbitrarily small as n — oo. This 1mphes that
S, (x0) — T’ (x0) pointwise in C[0, 1], as n — oo. By assumptions 1, 2, and 6, i (xp) isa
compact operator in C[0, 1]. Notice that by assumptions 5 and 6 and condition (2.2), there
exists a constant C > 0 such that

[Y @V (s, Puxo()| < Call Puxo — Xolloo + ¥ >V (., x0(Nlleo < € forall n.

Therefore, || S, (x0)(¥)lloo < MC P||x||oo, and
1S, () (X) (@) — S, (x0)(X) ()| < C Pk — kv ll1[1x ]l oo-

This implies that {5, (xo)} is collectively compact. It follows from the theory of collectively
compact operators in Anselone [1] and Atkinson [2] that (I — S (xo))~! exists for suffi-
ciently large n and there exists a constant L > 0 such that ||(] — S;,(xo))“lll < L for
sufficiently large n. 0

For simplicity, from Lemma 3.1 we assume without loss of generality that I — S (xo) is
invertible for each n > 1 and

L =sup{|l(I — S,(x0)) Moo : n > 1} < 00.

Throughout the rest of this section, we assume without further mention that § > 0 satisfies
LC,M P§ < 1and é is chosen so that C;M§; < 8. The following lemma establishes that x,
defined in (3.1) is a unique solution of (3.4) in some neighborhood of x, and provides an error
bound for x approximating x.

LEMMA 3.2. Letxg € C[0, 1] be an isolated solution of equation (1.1) and x,, be the unique
solution of (2.5) in the ball B(xg, 81). Assume that 1 is not an eigenvalue of (KW)' (xo).
Then for sufficiently large n, x,, defined by the iterated scheme (3.1) is the unique solution of
(3.4) inthe ball B(xo, 8). Moreover, there exists a constant 0 < q < 1, independent of n, such
that

Bn ﬂn
l+q ~

where B, = ||(I = $,(x0)) " [Sx(x0) — T (x0)]lloo. Finally,
llx, — Xolloo < CEn(x0)-

Proof. This follows easily using Lemma 2.1 and Theorem 2 of Vainikko [30]. a
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One way to ensure a superconvergence of the iterated Galerkin method is to assume
(3.5) (KW (x0)(I = Po)lctapilloo >0  asn— oo.
In this case, using the identity (see Theorem 2.3 of Atkinson and Potra [6])

(I — (KW) (x0)) (x;, — x0)
= [I = (KW (x))I = POIKW (xs) — KW (x0) — (KW)' (x0) (x5 — X0)]
—(KWY (x0)(I = Pp)((KW) (x0) — I) (x4 — x0),

we obtain

%, = Xolloo < I = (K¥Y (x0)) " lloo {11 = (KW)' xo)(I — Po)lloo

x Sup I(KW) (x0 + 6 (xn — x0)) — (KW)' (x0) llooll¥0 — Xnlloo

+IK WY (x0)(I — Po) (KWWY (x0) — 1) (xn = x0)lloo } -

This and (3.5) give a superconvergence of x;, to xo. In the next theorem, we establish su-
perconvergence of the iterated Galerkin method in a general setting. In establishing super-
convergence of the iterates of the Fredholm equations, many authors assumed the condition
K — P,)|| — O0asn — oo with K being a compact linear operator (e.g., Theorem 5
of Graham [12] and Theorem 3.1 of Sloan [28]). In our current problem, this is equivalent
to assuming condition (3.5). However, the next theorem is proved without assumption (3.5).
First, we apply the mean-value theorem to (s, y) to conclude

(3.6) Y(s,y) = (s, %) + ¥ OV, y0 + 00 — y0)(» — yo),

where 0 1= 6(s, yo, y) with 0 < 6 < 1. The boundedness of 0 is essential for the proof of the
next theorem, although it may depend on s, yo, and y. Let

g(t, s, yo, y,0) = k(t, )y Vs, yo + 6(y — yo)),
1
(Gux)(t) = / 8(t, s, Pyxo(s), Pux,(s), 0)x(s)ds,
0

and (Gx)(t) = fol g:(8)x(s)ds, where g, (s) = k(z, s)Y OV (s, x0(s)).

THEOREM 3.3. Let xo € C[0, 1] be an isolated solution of equation (1.1) and x,, be the
unique solution of (2.5) in the ball B(xo, 8,). Let x, be defined by the iterated scheme (3.1).
Assume that 1 is not an eigenvalue of (KW) (xo). Then forall 1 < p < oo,

llxo — x)lleo < C [llxo — Puxoll%, + sup inf [lk(z, )Y OV (., x0(.)) — ullyllxo — anonp} ,

0<t<1 ueX,

where 1/p + 1/q = 1 and C is a constant independent of n.
Proof. Note that from equations (1.1) and (3.4) we have

(3.7 xo—x, = K(Wxo— WP,x.) = K(Wxo — WP,x0) + K(VP,xo — WP,x).

After replacing y by P, x, and yo by P,xo in equation (3.6), the last term of (3.7) can be written
as

K (W Pyxo — W Pux,)(1) = (G Py(x0 — x,))(8).
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Equation (3.7) now becomes
3.8) xo — x;, = K(Wxo — W P,x0) + G, Py(x0 — x,,).
By using condition (1.2) and the fact that 0 < 6 < 1, we have, for all x € C[O0, 1],
1
1(Gnx) — (GX)|loo < OSUPI/ k(t, s)lds [|xlloo (| PaXo — Xolloo + | PalloollX;, = Xolloo)-
<t< 0

Consequently, by assumption (2.1) and Lemma 3.2,

IGn = Gllco < M(ll Paxo — Xollso + Pllx; — Xollos) > O as n — oo.

That is, G, — G in the norm of C[0, 1] as n — 00. Moreover, for each x € C[0, 1],

sup |(G Pux) (1) — (Gx)(1)| = sup

0<r<1 0<t<1

1
/ 8()[Prx(s) — x(s)lds| < MM, Prx — Xlco,
0

where

M; = sup [y OV, xo(1))| < +oo.

O<r<l1
It follows that GP, — G pointwise in C[0, 1] as n — oo. Again since P, is uniformly
bounded, we have for each x € C[0, 1],
1GnPux — Gxlloo < IGn — Gllooll PrlloollXlloc + 1G Prx — Gxlleo-

Thus, G, P, — G pointwise in C[0, 1] as n — oo. By assumptions 2, 5, and 6, we see that
there exists a constant C > 0 such that for all n

[ @ (s, Pxo(s)+0(Paxy (5) = Puxo())| < Call Paxo—Xolloo+6Ca Pllx, —Xolloo+ M1 < C.

By a proof similar to that for Lemma 3.1, we can show that {G, P, } is collectively compact.
Since G = (KW)'(xo) is compact and (I — G)~! exists, it follows from the theory of collec-
tively compact operators that (I — G, P,)~! exists and is uniformly bounded for sufficiently
large n. By (3.8), we have the following estimate

sup |(xo — x,)(1)| < C sup |K(Wxo — W Pyxo)(?)].

0<r<1 0<t<1

Next, we estimate the function d(¢) = | K (Vxo — ¥ P,x0)(t)|. Using (3.6) withy = P,x¢
and yo = xo, we obtain, for0 < 6 < 1,

1
@) = lfo 8(t, s, x0(s), Puxo(s), 0)(xo(s) — Puxo(s))ds

Note that fol u(s)[xo(s) — P,xo(s)lds =0forallu € X,,. Thus, forall u € X,,,

1
@) = fo[g(t,s,xo(S), Pyxo(s), 0) — u(s))(xo(s) — Puxo(s))ds

1
< fo (1. 5, x0(5), Paxo(s), 8) — g:(s)ldsllxo — Poxollee

1
+ l/o [g:(s) — u(s)](xo(s) — Puxo(s))ds
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Now, by condition (1.2), we have
1 1
/ |g(t, s, x0, Puxo(s),0)—gi(s)lds < C19/ |k(2, s)|ds || xo— Poxolloo < C1M ||xo—Pyxolloo-
0 0

Moreover, for 1/p+1/g =1,

1
/0 [g:(s) — u(s)1[xo(s) — Pnxo(s)lds

< llg: — ullglixo = Paxollp-

Therefore,
d(t) < CiM|ixo — Puxol% + llg: — ull4llxo — Puxoll, forall u € X,.

Hence the desired result follows. a

In the next two theorems, we consider the case X, = S'(I1,), where I1, is an arbitrary
partition of [0, 1] satisfying (2.11). First, we consider the case when both the kernels and the
solutions of equation (1.1) are smooth.

THEOREM 3.4. Let x( € W[lJ (0 < I €r) be an isolated solution of (1.1), x,, be the unique
solution of (2.5) in B(xg, 81), and x,, be defined by the iterated scheme (3.1). Assume that 1 is
not an eigenvalue of (K W) (xo). Assume that for allt € [0, 1], k, ()y OV (., xo()) € w0 <
m <r). Then

X0 — X)lloo = O (R +mintiely,

where u = min{l, r} and v = min{m, r}.
Proof. Since the partition IT, of [0, 1] satisfies condition (2.11), we conclude that

P :=sup || Pylloo < 00.
n

Hence,

Ix0 = Paolly < 130 = Paxolloo < (14 P) _inf o oo < Ch.

In addition,

sup inf [k ()Y @V, x0() —ull, < Ch".
0<t<1 ueS(I,)
The result of this theorem follows from Theorem 3.3 with X, = S} (IT,). ]

We remark that Theorem 3.4 may be obtained from Theorem 5.2 of Atkinson and Potra [6],
Theorem 3.4 being a special case of Atkinson and Potra’s theorem extended to Hammerstein
equations.

In the following theorem, we assume that k(z, s) is a kernel given by (2.19), i.e., k(¢, s) =
m(t, s)k(t —s), with k € N[0, 1] forsome 0 < ¢ < landm € C2([0, 1] x [0, 1]). Also,
we assume that S (I,,) is such that v > 1.

THEOREM 3.5. Let xo be an isolated solution of equation (1.1) with kernels given by
(2.16), x,, be the unique solution of equation (2.5) in B(x¢, 1), and x,, be defined by iterated
scheme (3.1). Assume that 1 is not an eigenvalue of (KW) (xo), f € Nf} +1[0, 1] for some
0<pB<LyOD( x()) e W] forx e W] Then

llxo — X, lloo = O(R*),

with y = min{«, B}.
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Proof. Following the proof of Theorem 3.4, we have

(3.9) llxo — Puxolloo < (1 + P) inf |lxo — u]lco-
ue sy (M,)

n

As stated in the proof of Theorem 2.4, we know that
(3.10) x0 € NX[0, 11N C[0, 11N W

Using (3.9) and an argument similar to the one used in the proof of Theorem 2.4, we obtain
lxo — Puxolloo < ChY. Now, by Theorem 4(i) of Graham [12], we find that there exists
v, € SY(I1,) such that ||k, — v,|l; = O(h*). Since v > 1, it follows that S (I1,) C W}.
Thus, v, € W} From (3.10), xo € W}. This yields that @1 (., xo(.)) € W]. Consequently,
v (YO, x0(.)) € W}. The remark made before Theorem 2.2 implies that there exists
u; € S (I1,,) for which

v POV, x00)) — u (Il = O(h).

Therefore,
1
lgr — uelly = fo Im(t, s)k(t — )y @D (s, x0(s)) — u;(s)|ds
1
< f Im (2, s)k(t — s)¥ @D (s, x0(5)) — v ()P OV (s, x0(5))|ds
0

1
+ / ()9O (s, x0(5)) — uy(s)lds
0

< ke = vl e @D x0(D oo + 10 (OYOPC, x0()) — uells
= 0%+ O(h) = O(h%).

Now, applying Theorem 3.3 with g = 1, p = 00, and X,, = S’ (I1,,), we conclude that

2 .
llxo — x,ll0 < C {llxo — Puxolly, + inf  |lg: — usl1llxo — an0”oo}
ues; (y)

= 0(h*") + O(h?") = O(h™).

The proof is complete. O

Next, we apply Theorem 3.3 to equation (1.1) with kernels given by (2.18) and (2.19) and
use X, = SY(I1)) as approximate spaces, where S”(IT},) of splines with nonuniform knots
are defined as in §2 such that r > 2 and v = 1.

THEOREM 3.6. Let xq be an isolated solution of (1.1) with weakly singular kernels given
by (2.18) and (2.19). Let x, be the unique solution of (2.5) in B(xo, 8,), and x|, be defined
by the iterated scheme (3.1). Assume that 1 is not an eigenvalue of (K\W)'(xo) and that the
hypotheses of Theorem 2.4 are satisfied with i > 1. Also assume that ¥y ©V (., xo(-)) is of
Dype(a, r, {0, 1}) for o > 0 whenever x is of the same type. Then

1
llxo = xleo = O (n+) :

Proof. The proof of this theorem is similar to that of Theorem 3.5. We apply Theorem
33 withg = 1, p = 00, and X,, = SY(IT}). By Rice [24], we have [xo — Pyxolloc = O(:).
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It can be proved that there exists u € S”(I1)) such that ||g, — ul|; = O(nl,,,). From this, the
result of this theorem follows. O

As the last application of Theorem 3.3, we consider equation (1.1) with kernels having
singularity at the four corners of the square [0, 1] x [0, 1], a problem that arises from boundary
integration for the harmonic Dirichlet problem in plane domains with corners (see Kress [19]).
In the following theorem, we assume k(t) = k(t,s) is of Bype(a, u, {0, 1}) for « > 0,
and k;(s) = k(z,s) is of Bpe(a, i, {0, 1)) for « > —1, e.g., k(t,s) = m(t,s)+/t, and
k(t,s) = m(t, s)J—ll-T—;, etc., with m(¢, s) smooth, and assume f is of Bype(B, u, {0, 1}) for
a, B > 0 and a positive integer . It is not difficult to prove that an isolated solution x¢, of
the corresponding equation (1.1), is of Bype(y, u, {0, 1}), where y = min{e, B} if @ > 0
and y = min{e + 1, B} if —1 < a < 0 by modifying the proofs of theorems in Kaneko,
Noren, and Xu [15]. We again let g = ? and define the Galerkin subspaces S (I1},) as in §2
withr = lorv = 0,0or» > 2 and v € {0, 1}, where partition IT}, is defined as in (2.20).
The following theorem describes the order of convergence of the Galerkin approximation x,
and that of superconvergence of the iterated Galerkin approximation x;,. To the best of our
knowledge, this result is not known in the literature even for Fredholm integral equations of
the second kind.

THEOREM 3.7. Let xy be an isolated solution of (1.1) with kernels of the type defined in
the paragraph preceding this theorem. Let x, be the unique solution of (2.5) in B(xy, 81) and
x,, be defined by the iterated scheme (3.1). Assume that 1 is not an eigenvalue of (KW)' (xo)
and that f is of Type(B,r, {0, 1}). Also assume that OV (., xo(-)) is of Type(y, r, {0, 1})
whenever x is of the same type. Then

1
nm—wmw=0(7)
n

, 1
Ixo = Xplleo = O 5 ) -

Proof. We present the proof for the case when o > 0, since the proof for the other case is
similar. The proof of the first estimate is similar to that for Theorem 2.6. Thus, we omit the
details. Since P, in this theorem is defined to be the Galerkin projection from C[0, 1] onto
SY(I1),), where y = min{a, B}, and since xq is of Type(y, r, {0, 1}), we have ||xo — P,xollco =
O(ni,). Meanwhile, since k;(s) = k(z,s) is of Type(w, r, {0, 1}) and ¥y < «, we find that
k;(s) = k(z, s) is also of Type(y, r, {0, 1}). By the assumption on ¥, we conclude that
YO, x0(.)) is of Type(y, r, {0, 1}). Hence, k(t, )y @V (., x0(.)) is of Type(y, r, {0, 1}). It
follows that

and

1
inf MmJWmKJwD—Mh=O(;).

ueS (1) r

Therefore, the result of this theorem follows from Theorem 3.3. 0

4. The iterated Galerkin-Kantorovich method. In thissection, we extend the classical
Kantorovich regularization (see Kantorovich [18]) and the iterated Galerkin-Kantorovich
method for Fredholm integral equations of the second kind to Hammerstein equations. These
extensions will be made on equations with both singular kernels and singular forcing terms.
The superconvergence of the corresponding iterated solution is also investigated.
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In equation (2.4) we put

@.1) z=KWx
so that
“4.2) x=f+z

Upon applying KW on both sides of (4.2), we obtain

4.3) z=K¥(f +72).

Now we define the operators by Wo(x) () = ¥ (¢, x(¢)) and

(4.4) Wi (x) (1) = Wo(f +x) (@) — Wo(S) ().
In addition, define f; by

1
4.5) f1(®) EK‘I’o(f)(t)=fo k(t, s)¥ (s, f(s))ds.

From (4.4), we have KWo(f + 2)(t) = KW, (2)(t) + KWo(f)(t) so that (4.3) becomes
(4.6) z— KV¥1(2) = KW (f) = fi.

Equation (4.6) will be called the “regularized” equation for the original Hammerstein equation
(1.1). It is interesting to note that

(W1 (x) (@) — W1(x2) @) = [Wo(f +x) (1) — Wo(f + x2) (D] < Cilx1(r) — x2(D)].

Thus, W, is also Lipschitz continuous with the same Lipschitz constant C; as Wy. Hence the
solvability of equation (4.6) is guaranteed by the solvability of the original equation (1.1).

The Galerkin method described in §2 is now applied to equation (4.6). Namely, we find
zn € X, that satisfies

4.7) 2 — P KWz, = Py f1.
The Galerkin-Kantorovich regularization solution for (1.1) is now given by
(4.8) xX = f+z.

Note that xX inherits the singularity of f. From equations (4.2) and (4.8), we have x —xX =
z — z,. Since z, z, € C[0, 1], we see that x — xX € C[0, 1], although neither x nor x* may
be in C[0, 1]. Denote T,,z, = P, f1 + P,KWViz, and Tz = f; + KWV;z.

THEOREM 4.1. Let xo be an isolated solution of equation (1.1) such that zo = KWoxo €
C[0, 1]. Assume that 1 is not an eigenvalue of the linear operator (KW,)' (z0). Then equation
(4.7) has a unique solution z,, € B(zy, 8) for some § > 0 and for sufficiently large n. Moreover,

there exists a constant 0 < q < 1, independent of n, such that

a,, K (xn
4.9 — =< - <—,
4.9) o < e = wolles <

where xX = f + z, and

(4.10) @ = 1 = T,(200) ™" (T(20) = T (20)) lloo-
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Finally,

(4.11) E,(20) < llxo — xX lloo < CEn(z0),

where E,(z0) = infycx, |y — zolloo and C is a constant independent of n.
Proof. The inequalities (4.9) follow again from Theorem 2 of Vainikko [30]. It is also
noted that

(4.12) 20 — 2y = Xo — xX.

Since z, € X,, (4.10) holds and E,(20) < llz0 — Znllec = llX0 — xX lloo. This gives the first
inequality in (4.11). Since T,,(z0) — T (z0) = P,(f1 — KW¥120) — 20 = P,20 — 20, We find

I = T, z0) "Mool T 20) = T0)lloo _ 1 = T (20) ™" lloo

llzn = 20lle0 < I—¢ = 1—q 1 Pnz0 = Zolloo-
Also for u € X,,,

llzo = Puzoll = llzo — u — Pu(zo — w)ll < (1 + [|PulDllzo — ull.
Therefore, we have |xo — xX|| < CE,(zo), where C is a constant independent of n. d

‘We next consider the iterated Galerkin-Kantorovich method and investigate its supercon-
vergence property. Assume that z, is an isolated solution of (4.6) and z, is the unique solution
of (4.7) in B(zg, 8) for some § > 0. Define

(4.13) 7, = K¥(z,) + f1

and xX' = f + 7. The element x X" is called the iterated Galerkin-Kantorovich approximate
solution of equation (1.1). Applying P, to both sides of (4.13) gives

4.14) P,z, = P,KY¥(z,) + P, f1.

Again, by using (4.7), we have P,z, = z,. Upon substituting this equation into (4.13), we
find that z, satisfies the following new Hammerstein equation z, = KW, P,z, + fi. In view
of the fact that W, is Lipschitz continuous with the same Lipschitz constant as Wy, the same
proofs given for Theorems 3.1, 3.2, and 3.3 can be applied to S, = KW P, + f1 to obtain
the following theorem. Here §; is chosen as in §3. As in Theorem 3.3, the assumption that
I(E¥) (x0)(I — Py)lloc = 0asn — oo is no longer needed.

THEOREM 4.2. Let xo be an isolated solution of equation (1.1) such that zo = KWxo €
CI0, 1]. Let z,, be the unique solution of equation (4.7) in B(zg, 81). Let xf " be the correspond-
ing iterated Galerkin—Kantorovich approximate solution. Assume that 1 is not an eigenvalue
of (KW1) (z0). Then, foralll < p < oo,

lxo —x, Il < € [IIZO — Paollpo + sup inf [1k(t 291" 20(9) — ullylz0 = P,,zOnp} ,
<t<]14E%n

where % +1-1 O

Results paralle] to Theorems 3.4-3.7, for smooth and weakly singular kernels can be
obtained also by using Theorem 4.2 for the iterated Kantorovich method. The iterated Kan-
torovich regularization method for the Fredholm equations of the second kind was investigated
by Sloan [26].
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5. Numerical examples. In this section, some numerical examples are given to illustrate
the theory established in the previous sections.
Example 1. Consider

1 x2(s)
o /It —sl

where f is selected so that x(¢) = +/7 is the solution. The splines of orders 1 (¢ = 2) and
2 (g = 4) with knots defined by equation (2.23) in terms of g, are used in computations. To
establish the Galerkin matrix, we must compute the integral of the form

5.D x(@) —

ds = f(1), 0<t<l,

Y gi(8)ei (D)
(5.2) /t . f;, v =r i dtds,

where ¢|s are respective B-splines of the above mentioned spline space. It can be proved that
@i (s) ftf’_ . j—ﬁ('_—-_)s'dt belongs to Type(%, k,{ti—1,t}). Consequently, we employ the recently
developed Gauss-type quadrature formula of Kaneko and Xu [17] to approximate integrals
(5.2). This brings to our attention the problem of the discrete Galerkin method for Hammerstein
equations with weakly singular kernels. This will be dealt with in a future paper. In the ensuing
data, e, = ||x — Xulloo and €}, = ||x — x, ||oo Were approximated, respectively, by

() = ()

max [

:i=0,1,...,100}

and

Datal. g =2.

n en decay exp. e,

16 1.60D —2 3.01D -3
32 7.26D -3 1.14 9.10D — 4 1.73
64 3.34D -3 1.12 2.88D — 4 1.66

128 1.64D -3 1.03 9.50D -5 1.60

decay exp.

Data2. g =4.

n en decay exp. e,

16 4.01D-3 8.04D — 4

32 993D -4 2.01 1.30D — 4 2.61

64 246D —4 2.01 2.28D -5 2.51
128 6.06D —5 2.02 3.90D -6 2.55

decay exp.

It can be seen clearly that the iterated Galerkin approximation has superconvergence by
an order %
Example 2. To illustrate the use of Theorem 3.7, we consider
1 x2( s )

5.3) x(t) -—/O 7 ds = f(1), 0<tr<1,
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where f is selected so that x(t) = /7 is the solution of equation (5.3). As in the first example,
the splines of orders 1 and 2 are used. Since the solution is of Type( % k, {0, 1}) for any positive
integer k, the partition is formed according to o = 2

5
Datal. g =2.

n en decay exp. e, decay exp.

16 112D -2 2.10D -3

32 515D -3 1.12 521D -4 2.01
64 222D -3 1.21 130D — 4 2.00
128 1.08D -3 1.04 325D -5 2.00

Data 2. g = 4.

n ey decay exp. A

16 3.12D-3 5.12D -4

32 753D-4 2.05 3.05D -5 4.07

64 174D —4 2.11 1.85D -6 4.04
128 426D -5 2.03 1.14D -7 4.02

decay exp.

The iteration process doubles the rate of convergence.

Acknowledgments. The authors would like to thank Professor K. Atkinson and the ref-
eree, who made many useful suggestions that improved this paper.

REFERENCES

[1] P.M. ANSELONE, Collectively Compact Operator Approximation Theory and Applications to Integral Equations,
Prentice-Hall, Englewood Cliffs, NJ, 1971.
[2] K.E. ATKINSON, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second
Kind, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976.
[3] K. E. ATKINSON, A survey of numerical methods for solving nonlinear integral equations, J. Integral Equations
Appl., 4 (1992), pp. 15-46.
[4] K. E. ATKINSON AND J. FLORES, The discrete collocation method for nonlinear integral equations, IMA J.
Numer. Anal., 13 (1993), pp. 195-213.
[5] K.E. ATKINSON, I. GRAHAM, AND L. SLOAN, Piecewise continuous collocation for integral equations, SIAM J.
Numer. Anal., 20 (1983), pp. 172-186.
[6] K. E. ATKINSON AND F. POTRA, Projection and iterated projection methods for nonlinear integral equations,
SIAM J. Numer. Anal., 24 (1987), pp. 1352-1373.
[7]1 C. DE BOOR, A bound on the L, norm of L,-approximation by splines in terms of a global mesh radio, Math.
Comp., 30 (1976), pp. 765-771.
[8]1 J. P. DELAHAYE, Sequence Transformations, Springer-Verlag, Berlin Heidelberg, 1988.
[9] S.DeMKo, Splines approximation in Banach function spaces, in Theory of Approximation with Applications,
A. G. Law and B. N. Sahney, eds., New York, Academic Press, 1976, pp. 146-154.
[10] R. A. DE VORE, Degree of approximation, in Approximation Theory II, G. G. Lorentz, C. K. Chui, and L. L.
Schumaker, eds., New York, Academic Press, 1976, pp. 117-161.
[11] J.DoucLAs, T.DUPONT, AND L. WAHLBIN, Optimal L, error estimates for Galerkin approximations to solutions
of two point boundary value problems, Math. Comp., 29 (1975), pp. 475-483.
[12] 1. GRAHAM, Galerkin methods for second kind integral equations with singularities, Math. Comp., 39 (1982),
pp. 519-533.
[13] I. GrRAHAM, S. JOE, AND I. SLOAN, lterated Galerkin versus iterated collocation for integral equations of the
second kind, IMA J. Numer. Anal., 5 (1985), pp. 355-369.
[14] H. KaNExo, R. NOREN, AND YUESHENG XU, Regularity of the solution of Hammerstein equations with weakly
singular kernels, Integral Equations Operator Theory, 13 (1990), pp. 660-670.
[15] H. KANEKO, R. NOREN AND YUESHENG XU, Numerical solutions for weakly singular Hammerstein equations
and their superconvergence, J. Integral Equations Appl., 4 (1992), pp. 391-407.



Downloaded 10/05/17 to 128.82.252.150. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1064 HIDEAKI KANEKO AND YUESHENG XU

[16] H. KANEKO AND YUESHENG XU, Degenerate kernel method for Hammerstein equations, Math. Comp.,
56 (1991), pp. 141-148.

[17] H.KANEKO AND YUESHENG XU, Gauss-type quadratures for weakly singular integrals and their application to
Fredholm integral equations of the second kind, Math. Comp., 62 (1994), pp. 739-753.

[18] L. V. KANTOROVICH, Functional analysis and applied mathematics, Usp. Mat. Mauk., 3 (1948), pp. 89-185.
English translation, N. B. S. report 1509, 1952.

[19] R. KRrESs, A Nystrém method for boundary integral equations in domains with corners, Numer. Math.,
58 (1990), pp. 145-161.

[20] S. KUMAR, A discrete collocation-type method for Hammerstein equation, SIAM J. Numer. Anal., 25 (1988),
pp. 328-341.

[21] S. KUMAR, Superconvergence of a collocation-type method for Hammerstein equations, IMA J. Numer. Anal.,
7 (1987), pp. 313-325.

[22] S. KuMAR aND L. H. SLOAN, A new collocation-type method for Hammerstein equations, Math. Comp.,
48 (1987), pp. 585-593.

[23] L. J. LARDY, A variation of Nystrom’s method for Hammerstein equations, J. Integral Equations, 3 (1981),
pp. 43-60.

[24] J. RICE, On the degree of convergence of nonlinear spline approximation, in Approximation with Special
Emphasis on Spline Functions, I. J. Schoenberg, ed., Academic Press, New York, 1969, pp. 349-365.

[25] C.SCHEIDER, Product integration for weakly singular integral equations, Math. Comp., 36 (1981), pp. 207-213.

[26] 1. H. SLOAN, Four variants of the Galerkin methods for integral equations of the second kind, IMA J. Numer.
Anal., 4 (1984), pp. 9-17.

[27] L H. SLOAN, Improvement by iteration for compact operator equations, Math. Comp., 30 (1976), pp. 758-764.

[28] I. H. SLOAN, Superconvergence, in Numerical Solution of integral equations, M. A. Golberg, ed., Plenum Press,
New York, 1990, pp. 35-70.

[29] I H. SLOAN AND V. THOMEE, Superconvergence of the Galerkin iterates for integral equations of the second
kind, J. Internat. Eq., 9 (1985), pp. 1-23; 22 (1981), pp. 431-438.

[30] G. VAINIKKO, Perturbed Galerkin method and general theory of approximate methods for nonlinear equations,
Zh. Vychisl. Mat. Fiz., 7 (1967), pp. 723-751, English translation, U.S.S.R. Comp. Math. Math. Phys., 7
(1967), pp. 1-41.

[31] G. VAINIKKO AND P. UBA, A piecewise polynomial approximation to the solution of an integral equation with
weakly singular kernel, J. Austral. Math. Soc., Ser. B, 22 (1981), pp. 431-438.

[32] G. VAINIKKO, A. PEDAS, AND P. UBA, Methods of Solving Weakly Singular Integral Equations, Tartu University,
1984. In Russian.

[33] J. WimP, Sequence Transformations and their Applications, Academic Press, New York, 1981.

[34] E. ZEIDLER, Nonlinear Functional Analysis and its Applications 11/B, Springer-Verlag, New York, 1990.



	Old Dominion University
	ODU Digital Commons
	1996

	Superconvergence of the Iterated Galerkin Methods for Hammerstein Equations
	Hideaki Kaneko
	Yuesheng Xu
	Repository Citation
	Original Publication Citation


	Superconvergence of the Iterated Galerkin Methods for Hammerstein Equations | SIAM Journal on Numerical Analysis | Vol. 33, No. 3 | Society for Industrial and Applied Mathematics

