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SUPERCONVERGENCE OF THE ITERATED GALERKIN METHODS
FOR HAMMERSTEIN EQUATIONS*
HIDEAKI KANEKOf AND YUESHENG XU

Abstract. In this paper, the well-known iterated Galerkin method and iterated Galerkin-Kantorovich regular-
ization method for approximating the solution of Fredholm integral equations of the second kind are generalized to
Hammerstein equations with smooth and weakly singular kemels. The order of convergence of the Galerkin method
and those of superconvergence of the iterated methods are analyzed. Numerical examples are presented to illustrate
the superconvergence ofthe iterated Galerkin approximation for Hammerstein equations with weakly singular kernels.

Key words, the iterated Galerkin method, the iterated Galerkin-Kantorovich regularization, Hammerstein
equations with weakly singular kernels, superconvergence

AMS subject classifications. 65B05, 45L10

1. Introduction. In this paper, we consider the following Hammerstein equation:

(1.1) x(t) k(t, s)Tr(s, x(s))ds f (t), 0 < <_ 1,

where k, f, and are known functions and x is the function to be determined. Define
kt(s) k(t, s) for t, s 6 [0, 1] to be the section of k. We assume throughout this paper,
unless stated otherwise, the following conditions on k, f, and

1. limtr Ilk, k I1 0, v [0, 1];
2. M supt fo Ik(t, s)lds <
3. f 6 C[0, 1];
4. 7t(s, x) is continuous in s 6 [0, 1] and Lipschitz continuous in x (-cxz, cxz), i.e.,

there exists a constant C1 > 0 for which

I(s, xl) (s, xzz)l Cllxl x2l for all Xl, X2 (--O, (3(3);

5. the partial derivative 1/t (0’1) of 7t with respect to the second variable exists and is
Lipschitz continuous, i.e., there exists a constant C2 > 0 such that

(1.2) I(’x)(t, Xl)- aP(’l)(t, x:z)l < C2lxl-x:zl forallxl, x2 G (-cx,

1. for x 6 C[0, 1], 7t(., x(.)), r(0’l)(., X(.)) G C[0, 1].
Additional assumptions will be given in 2, 3, and 4 when they are needed.

Numerical methods for approximating the solutions of the Hammerstein equations have
been studied extensively in the literature. A variation of Nystr6m’s method was proposed by
Lardy [23]. A new collocation type method was presented by Kumar and Sloan [22] and its
superconvergence properties were obtained by Kumar [21]. Two different discrete collocation
methods were proposed by Kumar [20] and Atkinson and Flores [4]. A degenerate kernel
scheme was introduced by Kaneko and Xu 16] for equations (1.1) with smooth kernels. A
product integration method and a collocation method were used to solve Hammerstein equa-
tions with weakly singular kernels, and certain superconvergence properties ofthe approximate
solutions were discovered by Kaneko, Noren, and Xu 15]. The review paper by Atkinson
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THE ITERATED GALERKIN METHOD FOR HAMMERSTEIN EQUATIONS 1049

[3] is recommended to the readers who require more information on the numerical treatments
of Hammerstein equations. Some theoretical results about Hammerstein equations may be
found in a book by Zeidler [34]. The purpose of this paper is to investigate the superconver-
gence property of the iterated Galerkin method and iterated Galerkin-Kantorovich method
for the solution of the Hammerstein equation (1.1). The iterated method may be viewed as a
nonlinear transformation (iteration) that accelerates the convergence of the approximate so-
lutions obtained from the Galerkin approximation. The general theory of the acceleration of
convergence of a sequence by linear or nonlinear transformations was studied by Wimp [33]
and Delahaye [8] and in the references cited there.

For the Fredholm integral equations of the second kind, the Galerkin and the iterated
Galerkin methods have been investigated by many authors, e.g., see Graham 12]; Graham,
Joe, and Sloan [13]; Sloan [27], [28]; $1oan and Thomee [29]; and Vainikko, Pedas, and Uba
[32]. In those papers that deal with the iterated Galerkin method, it has been shown that
under some suitable conditions the iterated Galerkin method gives a rate of convergence that
is faster than the rate obtainable by the Galerkin method, a phenomenon commonly known as
superconvergence.

The order of convergence for Galerkin approximation for the solutions of Hammerstein
equations with weakly singular kernels can be obtained by a direct extension of the cor-
responding result in the Fredholm case. However, it does not seem to be available in the
literature. Hence, we include the results in 2 for completeness. A substantial number of
proofs of the theorems in 2 will be omitted since they are straightforward and follow from
the work of Vainikko [30] and Atkinson and Potra [6]. In the latter paper, the reader can find
the general theory of the Galerkin and the iterated Galerkin methods for the equation x Kx,
where K is a completely continuous operator of a domain in a Banach space into itself. Our
present approach and results differ from those of Atkinson and Potra [6] in a number of ways.
For instance, we establish an estimate of improvement that we can expect when the iterated
Galerkin scheme is applied to the weakly singular Hammerstein equations. This will be done
in 3. Several related results on superconvergence are also established in 3. In 3, we deal
with equations with weakly singular kernels and "nice" forcing terms, while in 4, we tackle
equations with both singular kernels and singular forcing terms by employing the classical
Kantorovich regularization technique. We extend the results of the iterated Galerkin method
to the iterated Galerkin-Kantorovich regularization method. Numerical examples are given
in 5 to illustrate the theoretical estimates.

2. The Galerkin methods for Hammerstein equations. In this section, we develop the
Galerkin method for Hammerstein equations and establish the order of convergence. Results
concerning the Galerkin approximation using spline functions for the solutions of equation
(1.1) with smooth and weakly singular kernels are presented.

Let n be a positive integer and {Xn be a sequence of finite-dimensional subspaces of
C[0, 1] such that for any x 6 C[0, 1] there exists a sequence {Xn}, x,, X,,, for which

(2.1) IIx- x I1 0 as n --+

Let Pn" L2[0, 1] Xn be an orthogonal projection for each n. We assume that the projection
Pn when restricted to C[0, 1] is uniformly bounded, i.e.,

(2.2) P := sup Pn Ic[0,1] I1 < .
n

Then from (2.1) and (2.2) it follows that for each x 6 C[0, 1],

(2.3) Ilenx- x lI
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1050 HIDEAKI KANEKO AND YUESHENG XU

Now let

(Kq)(x)(t) =_ k(t, s)O(s, x(s))ds.

With this notation, equation (1.1) takes the operator form

(2.4) x- Kx f.

In many interesting cases, equation (1.1) allows multiple solutions. Hence it is assumed
for the remainder of this paper that we are treating a solution x0 of equation (1.1) that is
isolated.

Let qgnj }= be a set oflinearly independent functions that spans Xn. The Galerkin method
is to find

Xn bnjnj
j--1

that satisfies

(2.5) X PnKqxn Pnf.

Equivalently one is required to find bnj’s that satisfy the system of nonlinear equations de-
scribed by

(2.6) ( 01bnj gnj, i9ni)
j=l

k(t, s)l]t(s, L bnjq3nj(s))ds’ ni (f, qgni), 1 < < n,
lj--1

where (.,.) denotes the inner product in L2.
We next estimate the error of the Galerkin approximate solutions to the exact solutions.

For notational convenience, we introduce operators T and Tn by letting

(2.7) x f + Kqx

and

(2.8) Tnx =-- Pn f + PKqxn

so that equations (2.4) and (2.5) can be written respectively as x 7x and Xn T,xn. A
proof of the following theorem can be made by directly applying Theorem 2 of Vainikko [30].
The paper of Atkinson and Potra [6] is also useful in this connection.

THEOREM 2.1. Let xo C[0, 1] be an isolated solution ofequation (2.4). Assume that 1
is not an eigenvalue ofthe linear operator (KP)’(xo), where (K)’(xo) denotes the Frchet
derivative ofKq at xo. Then the Galerkin approximation equation (2.5) has a unique solution

xn B(xo, 3):-- {x 6 C[0, 1] IIx- x0[[o < 6}forsome3 > O andfor sufficiently large n.
Moreover, there exists a constant 0 < q < 1, independent ofn, such that

Oln < IlXn XO <(2.9)
l+q 1-q

where an =- I1(I Tn(XO))-l(Tn(xo) i?(x0))ll. Finally,

(2.10) En(xo) < [[Xn- x0ll < CEn(xo),

where C is a constant independent ofn and E,(xo) infux, IIx0 ull.
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THE ITERATED GALERKIN METHOD FOR HAMMERSTEIN EQUATIONS 1051

We denote by W[0, 1], 1 < p < x, the Sobolev space of functions g whose mth
generalized derivative g(m) belongs to Lp[O, 1]. The space Wn[O, 1] is equipped with the
norm

m

Ilgllw IIgkllp.
k=0

We now specify the finite-dimensional subspace Xn For any positive integer n, let

Fin’O=to<tl < < tn-1 <tn=l

be a partition of [0, 1]. Let r and v be nonnegative integers satisfying 0 < v < r. Let Sr (I’In)
denote the space of splines of order r, continuity v, with knots at Fin, that is,

SVr(l-In) {x Cu[O, 1]" x[[ti,ti+l] 79r-1 for each 0, 1 n 1},

where T’r-1 denotes the space ofpolynomials of degree < r 1. We assume that the sequence
of partitions Fin of [0, 1] satisfies the condition that there exists a constant C > 0, independent
of n, with the property

(2.11)
maxl<i<n(ti ti-1)

< C foralln.
minl<i<n(ti ti-1)

It is known from de Boor [7] and Douglas, Dupont, and Wahlbin 11] that condition (2.11)
implies that the Galerkin projections Pn are uniformly bounded. In addition, it is also well
known from Demko [9] and De Vore 10] that if 0 < v < r, 1 < p < x, m > 0, and x W,
then for each n > 1, there exists Un Sr (Fin) such that

(2.12) IIx unllp < Chllxllw;,
where/z min{m, r} and h maxl<i<n(ti ti-1). Using Theorem 2.1 and the inequalities
(2.10) and (2.12), we obtain the following theorem.

THEOREM 2.2. Let xo be an isolated solution ofequation (1.1) and let xn be the solution

ofequation (2.5) in a neighborhood ofxo. Assume that 1 is not an eigenvalue of (Kq)’(xo).
Ifxo wl (0 <_ < r), then

IIx0 Xnll O(h),

where/z min{/, r}. Ifxo Wlp (0 < < r, 1 < p < oo), then

IIx0 xnll O(hV),

where v min{1 1, r}.
We remark that a similar result of Galerkin’s method for Urysohn equations was obtained

by Atkinson and Potra [6]. Hence, Theorem 2.2 may be derived by specializing their result to
Hammerstein equations.

In the remaining portion of this section, we investigate the order of convergence of the
Galerkin method for Hammerstein equations with weakly singular kernels. For this purpose,
we define some necessary notation. For any e R, let [0, 1] {t [0, 1] + e [0, 1]}.
Let Ah denote the forward difference operator with step size h. For ot > 0 and 1 < p <
we define the Nikol’skii space N[0, 1] by

(2.13) N[0, 1] x Lp[O, 11" Ixl,p "= sup IlAh2X tl
h#0

IlZpt0,112h < OO
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1052 HIDEAKI KANEKO AND YUESHENG XU

where [ot] is an integer and 0 < c0 < 1 are chosen so that ot [c] + c0. Clearly, N[0, 1]
is a Banach space with the norm Ilxll,p Ilxllp / Ixl,p. We remark that the function a-1

is in N[0, 1] but is not in N[0, 1], for any/5 > or, and log 6 N[0, 1]. It is known from
Graham 12] that

(2.14) N+[0, 1]

___
W[0, 1] c_ N[0, 1]

___
N-[0, 1]

forrn6N, 0<e < 1, andl <p<cx,and

(2.15) N[0, 11 c_C_ Nq[0, 11
for a > 0, 1 < p < q < o, and/ a- (1/p- 1/q) > 0. We consider Hammerstein
equations with kernels given by

(2.16) k(t, s) re(t, s)k(t s), t, s [0, 1],

with k N[0, 1] for some 0 < a < 1 and m C([0, 1] [0, 1]), and p as defined in the
previous section.

Again, we let X Sr (1-In). When no further conditions are made on the partition Fin
other than the one givenby (2.11), the next theorem gives the best possible order ofconvergence
of the Galerkin approximation to the solution of equation (1.1) with a weakly singular kernel
defined by (2.16).

THEOREM 2.3. Letxo be an isolatedsolution ofequation (1.1) with a kernelgiven by (2.16).
Assume that 1 is not an eigenvalue of (Kq)’ (xo). If f NI +1[0, 1] for some 0 < < 1,
then

IIx0 Xn IIo O(he),

with , min{c, fl }.
Proof By Theorem 2.1, we have

(2.17) IIx0-xll _< C inf IIx0-ull.
ueS,n(1-In)

A proofsimilar to the one given for Theorem 3 (ii) ofGraham 12] shows that if f 6 N1+ [0, 1]
thenx0 6 g?in{c+l’fl+l}[0, 1] gmin{c’fl}[0, 1]. In addition, (2.14)impliesthat f Wl1[0, 1].
Hence f is equal to an absolutely continuous function almost everywhere. Without loss of
generality, we have f WI[0, 1] N C[0, 1]. It can be shown that x0 C[0, 1]. Thus,
x0 N[0, 1] f C[0, 1]. It was proved in Graham [12] that if 6 N[0, 1] f3 C[0, 1] for
some 0 < 0 < 1, then there exists a spline v e Sr (I-In) such that I1 vll _< ChO, where
C is a constant independent of h. The result of this theorem follows immediately from (2.17)
and the above argument.

Now we consider a special form of (2.16). Namely, we assume

(2.18) k(t, s) m(t, s)g(]t sl),

where rn C+1([0, 1] [0, 1])and
-1 0<c < 1(2.19) g(s) logs, ot 1.

With these kernels, certain regularities of the solutions of (1.1) are known. Let S be a finite
set in [0, 1] and define the function ws(t) inf{lt s[ s S}. A function x is said to be of
Type(a, k, S) for- 1 < c < 0 if

[x)(t)l _< C[ws(t)]-, S,
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THE ITERATED GALERKIN METHOD FOR HAMMERSTEIN EQUATIONS 1053

and for ot > 0 if the above condition holds and x Lip(c). Kaneko, Noren, and Xu [14]
provedthat if f is of Type(, tz, {0, 1 }), then a solution ofequation (1.1) is of Type(F, lz, {0, 1 }),
where ?, min{ot, 3 }. In order to recover the optimal rate of convergence of numerical so-
lutions, we define a partition I-I of [0, 1] corresponding to the regularity of a solution. The
knots of this partition Fin are given by

ti (1/2)(2i/n)q 0 < < n/2
(2.20)

ti 1- tn-i, n/2 <i < n,

v), vwhereq r. Let S,; Sr(Fln), withr 1 andv 0orr > 2andv {0,1}.
The followin theorem gives the order of convergence of the Galerkin approximations to the
solution of Hammerstein equations with kernels defined by (2.18) and (2.19). It should be
noted that the technique of approximating a solution of the type described above by elements
from the nonlinear spline space has been used on many occasions when dealing with the
weakly singular Fredholm integral equations. For example, Vainikko and Uba [31] describe
the collocation method, whereas in Vainikko, Pedas, and Uba [32] they describe the Galerkin
method. In addition, Schneider [25] establishes the product-integration method based on the
idea of the nonlinear spline approximation with nonuniform knots. A piecewise continuous
collocation method is studied by Atkinson, Graham, and Sloan [5].

THEOREM 2.4. Let xo be an isolated solution of (1.1) with kernels (2.18) and (2.19)
and let Xn be the Galerkin approximation to xo. Let rn C+1([0, 1] x [0, 1]) and f be

of Type(, lz, {0, 1}). Assume that C(’l)([0, 1] x (-o, o)) for tz O, 1 and
C-1([0, 1] (-o, o))for Iz > 2. We also assume 1 is not an eigenvalue of (Kq)’(xo).
Then

Proof. This follows from Theorem 2.1, the regularity of the solution x0, and from the
results of Rice [24]. [3

3. The iterated Galerkin method. In this section, we study the superconvergence ofthe
iterated Galerkin method for the Hammerstein equation (1.1). Generalizing the linear case,
we first define the iterated scheme. Assume that x0 is an isolated solution of (1.1). As in
2, let Pn be the orthogonal projection from L2[0, 1] onto Xn with conditions (2.1) and (2.2)
satisfied. Assume that xn is the unique solution of (2.5) in the sphere B(x0, ) for some > 0.
Define

(3.1) xn f -t- Kqxn.

Applying Pn to both sides of (3.1), we obtain

(3.2) Pxtn Pn f q- PnKqXn.

Comparing (3.2) with (2.5), we see that

(3.3) Pnx’n Xn.

Upon substituting (3.3) into (3.1), we find that the function Xn satisfies the new Hammerstein
equation

KenX,n.(3.4) x f -t-

By letting S --- f + KqPn, we may rewrite (3.4) as x’ Sx’n. We first study the invertibility
of the linear operators I Sn (xo) in the following lemma, which will be used to prove the
main results of this section.
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1054 HIDEAKI KANEKO AND YUESHENG XU

LEMMA 3.1. Let xo C[0, 1] be an isolated solution of (1.1). Assume that 1 is not an
eigenvalue of(KP)t(xo). Thenfor sufficiently large n, the operators I- Stn (xo) are invertible
and there exists a constant L > 0 such that

II(I S’n(x0))-lll 5 L forsufficiently large n.

Proof. Recalling the definition of Frchet derivatives Sin (xo) and i’(xo), we have, for
each x C[0, 1],

fOll2?’(x0)(x)- S’n(XO)(X)[I < sup ]k(t,s)lT(’X(s, xo(s))ldsllx- e,xll
0<t<l

+C sup MIIPnllollxllollxo- Px011.
0<t<l

By (2.3), the last two terms can be made arbitrarily small as n o. This implies that
S’,(xo) ’(xo) pointwise in C[0, 1], as n --+ o. By assumptions 1, 2, and 6, 7’(x0) is a

compact operator in C[0, 1]. Notice that by assumptions 5 and 6 and condition (2.2), there
exists a constant C > 0 such that

I(’l(s, Pnxo(s))l C211PnXO- X011 + II(0’X(., X0(.))II C for all n.

Therefore, IIS’(xo)(x)ll MfPIIxllo, and

IS’(xo)(x)(t)- S’n(XO)(X)(t’)l Cellkt- kt, lllllxllo.

This implies that S’n (x0)} is collectively compact. It follows from the theory of collectively
compact operators in Anselone [1] and Atkinson [2] that (I S,(x0)) -1 exists for suffi-
ciently large n and there exists a constant L > 0 such that (I S’n(XO)) -111 <_ L for
sufficiently large n. [q

For simplicity, from Lemma 3.1 we assume without loss of generality that I -Stn (xo) is
invertible for each n > 1 and

L sup{ll(l- S’n(XO))-II n > 1} <

Throughout the rest of this section, we assume without further mention that 3 > 0 satisfies
LC2MP3 < 1 and 31 is chosen so that C1M31 < 3. The following lemma establishes that x
defined in (3.1) is a unique solution of (3.4) in some neighborhood of x0 and provides an error

approximating x0.bound for x,
LEMMA 3.2. Letxo C[0, 1] be an isolatedsolution ofequation (1.1) andxn be the unique

solution of (2.5) in the ball B(xo, 31). Assume that 1 is not an eigenvalue of (Kq)’(xo).
Thenfor sufficiently large n, x’ defined by the iterated scheme (3.1) is the unique solution of
(3.4) in the ball B(xo, 3). Moreover, there exists a constant 0 < q < 1, independent ofn, such
that

" IIX’n- X011 /n
l+q 1--q

where/, II(I Stn(XO))-l[Sn(xo) (x0)]ll. Finally,

[[Xn X0l]o < CE,(xo).

Proof This follows easily using Lemma 2.1 and Theorem 2 of Vainikko [30].
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THE ITERATED GALERKIN METHOD FOR HAMMERSTEIN EQUATIONS 1055

One way to ensure a superconvergence of the iterated Galerkin method is to assume

(3.5) II(Kq)’(xo)(I- Pn)lf[a,b][Ic "- 0 as n c.

In this case, using the identity (see Theorem 2.3 of Atkinson and Potra [6])

(I (Kq)’(xo))(x’n xo)
[I (KqC)’(xo)(l Pn)][K(xn) Kq(xo) (K)’(xo)(Xn x0)]

-(Kq)’(xo)(I- Pn)((KqY)’(xo)- I)(xn --Xo),

we obtain

IIX’n X011 < I1(I (g)’(x0))-lllc {11I (Kq)’(xo)(I en)ll
sup II(Kq)’(x0 / O(xn Xo)) (KI’)’(xo)llllxo xnll
0<0<1

+ll(g)’(xo)(I Pn)((Kq)’(xo) I)(Xn --x0)ll }.

This and (3.5) give a superconvergence of xn to x0. In the next theorem, we establish su-
perconvergence of the iterated Galerkin method in a general setting. In establishing super-
convergence of the iterates of the Fredholm equations, many authors assumed the condition
K(I Pn)II 0 as n --+ cxz with K being a compact linear operator (e.g., Theorem 5

of Graham 12] and Theorem 3.1 of Sloan [28]). In our current problem, this is equivalent
to assuming condition (3.5). However, the next theorem is proved without assumption (3.5).
First, we apply the mean-value theorem to (s, y) to conclude

(3.6) p(s, y) O(s, y0) + O(’l)(s, yo -4-O(y yo))(y yo),

where 0 := O(s, y0, y) with 0 < 0 < 1. The boundedness of 0 is essential for the proof of the
next theorem, although it may depend on s, y0, and y. Let

g(t, s, Yo, Y, O) k(t, S)I/t (0’1) (S, Yo + O(y Yo)),

(Gnx)(t) g(t, s, PnXO(S), Pnxn (s), O)x(s)ds,

and (Gx)(t) f gt(s)x(s)ds, where gt(s) k(t, s)r(’l)(s, xo(s)).
THEOREM 3.3. Let xo C[0, 1] be an isolated solution ofequation (1.1) and Xn be the

unique solution of(2.5) in the ball B(xo, 3x). Let x’ be defined by the iterated scheme (3.1).
Assume that 1 is not an eigenvalue of(Kq)’(xo). Thenfor all 1 < p < cxz,

!
{ xo Pnxo 2 +IIx0 xn I1
/

/
sup inf Ilk(t, .)l/r(0’l)(., X0(.)) ullqllxo Pnxollp },
0<t<l uXn /

where 1/p + 1/q I and C is a constant independent ofn.
Proof Note that from equations (1.1) and (3.4) we have

(3.7) xo- X’n K(’xo- *PnX’n) K(*xo- ’PnXO) + K(*Pnxo ’Pnx’n).

After replacing y by Pnx’, and y0 by PnXO in equation (3.6), the last term of (3.7) can be written
as

K(qC Pnxo q Pnx’n)(t) (GnPn(xo Xn))(t).
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1056 HIDEAKI KANEKO AND YUESHENG XU

Equation (3.7) now becomes

(3.8) x0 xn K(qxo PPnxo) + G,P(xo x’).

By using condition (1.2) and the fact that 0 < 6) < 1, we have, for all x C[0, 1],

II(ax) (ax)ll <_ sup Ik(t, s)ldsllxllo(llPnxo x0llo / IlPnlloollx’ x0llo).
0<t<l

Consequently, by assumption (2.1) and Lemma 3.2,

G G o M(ll enxo xo + P x’ x0 o) 0 as n --+

That is, Gn --+ G in the norm of C[0, 1] as n --+ o. Moreover, for each x 6 C[0, 1],

sup I(GP,x)(t) (Gx)(t)[ sup
0<t<l 0<t<l

gt(s)[Px(s) x(s)]ds <_ MMlllenx x]]o,

where

sup I(’(t, xo(t))l
0<t<l

It follows that GPn G pointwise in C[0, 1] as n xz. Again since P is uniformly
bounded, we have for each x 6 C[0, 1],

IlGnPnx Gxl]o IIGn GIIollellollxllo + IIGPx GxlI.

Thus, GPn -- G pointwise in C[0, 1] as n --+ x. By assumptions 2, 5, and 6, we see that
there exists a constant C > 0 such that for all n

I<’l(s, Pnxo(s)/O(Pnx’(s)-Pxo(s)))l C2llenxo-xollc/OC2Pllx’n-XOllo/M1 C.

By a proof similar to that for Lemma 3.1, we can show that {G P, is collectively compact.
Since G (KP)’(xo) is compact and (I G)-1 exists, it follows from the theory of collec-
tively compact operators that (I G pn)-I exists and is uniformly bounded for sufficiently
large n. By (3.8), we have the following estimate

sup I(x0- x’)(t)l _< C sup IK(qx0- qenxo)(t)l.
0<t<l 0<t<l

Next, we estimate the function d(t) IK(qx0- q Pnxo)(t)l. Using (3.6) with y Pnxo
and y0 x0, we obtain, for 0 < 0 < 1,

01d(t) g(t, s, xo(s), P,xo(s), O)(xo(s) Pxo(s))ds

Note that f u(s)[xo(s) Pxo(s)lds 0 for all u X. Thus, for all u X,,

d(t) [g(t, s, xo(s), P,xo(s), O) u(s)](xo(s) P,xo(s))ds

< Ig(t, s, xo(s), enxo(s), O) gt(s)ldsllxo Px01lo

+ [gt(s) u(s)l(xo(s) Pnxo(s))ds
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THE ITERATED GALERKIN METHOD FOR HAMMERSTEIN EQUATIONS 1057

Now, by condition (1.2), we have

f0 f01Ig(t, s, xo, Pnxo(s), O)-gt(s)lds < CxO Ik(t, s)ldsllxo-Pnxoll < CIMIIxo-PnxoII.

Moreover, for 1 /p + 1/q 1,

ol[gt(S)
U(S)][Xo(S) enXO(S)]ds Ilgt ullqllxo PnXOIIp.

Therefore,

d(t) < C1Mllxo- PnXOII 2 + Ilgt ull IIx0- PnxoIIp for all u 6 Xnoo q

Hence the desired result follows. [3

In the next two theorems, we consider the case Xn Sr (1-In), where Fin is an arbitrary
partition of [0, satisfying (2.11). First, we consider the case when both the kernels and the
solutions of equation (1.1) are smooth.

THEOREM 3.4. Let xo Wlp (0 < < r) be an isolatedsolution of(1.1), xn be the unique
solution of(2.5) in B(xo, 1), and x’ be defined by the iterated scheme (3.1). Assume that 1 is
notan eigenvalue of(Kq)’(xo). Assume thatfor all [0, 1], kt(.)(,x)(., x0(.)) Wn(0 <

m <r). Then

IIx0 X’n I1 O(hl+min{z’v}),

where tx rain{l, r} and v rain{m, r}.
Proof Since the partition lqn of [0, 1 satisfies condition (2.11), we conclude that

P sup Pn < .
Hence,

IIx0- ex011 IIx0- ex011 (1 + P) inf IIx0- ull Ch.
ueSr(nn)

In addition,

sup inf Ilkt(.)(’)(., x0(.)) Ullq Ch.
0<t<l u6S(FIn)

The result of this theorem follows from Theorem 3.3 with Xn Sr (Fin). Fq

We remarkthat Theorem 3.4 may be obtained from Theorem 5.2 ofAtkinson and Potra [6],
Theorem 3.4 being a special case of Atkinson and Potra’s theorem extended to Hammerstein
equations.

In the following theorem, we assume that k(t, s) is a kernel given by (2.19), i.e., k(t, s)
m(t, s)k(t s), with k N[0, 1] for some 0 < ot < 1 and rn C2([0, 1] x [0, 1]). Also,
we assume that Sr" (Fin) is such that v > 1.

THEOREM 3.5. Let xo be an isolated solution of equation (1.1) with kernels given by
(2.16), Xn be the unique solution ofequation (2.5) in B(xo, 1), and x’ be defined by iterated
scheme (3.1). Assume that 1 is not an eigenvalue of (Kq)’(xo), f N+I[0, 1]for some
0 </3 < 1, l/r(O’l)(., X(.)) Wfor x W. Then

O(h2’),IIx0 x I1

with 9/- min{c,/3 }.
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1058 HIDEAKI KANEKO AND YUESHENG XU

Proof. Following the proof of Theorem 3.4, we have

(3.9) IIx0- enxoll (1 + P) inf IIx0-ull.
us(rl,)

As stated in the proof of Theorem 2.4, we know that

xo N[0, 11 C[0, 11 f"l W1.

Using (3.9) and an argument similar to the one used in the proof of Theorem 2.4, we obtain

IIx0 Px011 _< ChW. Now, by Theorem 4(i) of Graham [12], we find that there exists
U E SVr(I-In) such that [[kt vtll O(ha). Since v > 1, it follows that Sr(l-In) C W.
Thus, vt W. From (3.10), xo W11. This yields that ap(,l(., x0(.)) 6 W1. Consequently,
V/ (.) lr (0’ l) (. X0(.)) Wl1. The remark made before Theorem 2.2 implies that there exists

ut S(FIn) for which

IIp,(.)’l)(., x0(.)) ut(.)lll O(h).

Therefore,

Ilgt utlll Im(t, s)k(t s)(’l)(s, xo(s)) ut(s)lds

fO< [m(t, s)k(t s)l/f(’l)(s, xo(s)) l)t(s)lr(’l)(s, xo(s))lds

01"+- IVt(S)lp(O’l)(s, Xo(S)) ut(s)lds

<_ Ilkt vtlIIIP(’I(., xo(.))II / Ilvt(.)aP(’l)(., x0(.)) -utl]l

O(h) + O(h) O(h’).

Now, applying Theorem 3.3 with q 1, p oo, and Xn S(I’In) we conclude that

O(h+) + O(h2’) O(h2’).

The proof is complete.
Next, we apply Theorem 3.3 to equation (1.1) with kernels given by (2.18) and (2.19) and

use Xn Sr (1-I) as approximate spaces, where Sr (Fin) of splines with nonuniform knots
are defined as in 2 such that r > 2 and v 1.

THEOREM 3.6. Let xo be an isolated solution of(1.1) with weakly singular kernels given
by (2.18) and (2.19). Let xn be the unique solution of (2.5) in B(xo, 31), and x’n be defined
by the iterated scheme (3.1). Assume that 1 is not an eigenvalue of (KP)’ (xo) and that the
hypotheses of Theorem 2.4 are satisfied with Iz > 1. Also assume that (0,1)(., x0(.)) is of
Type(u, r, {0, 1 })for ot > 0 whenever xo is ofthe same type. Then

IIx0 x. I1

Proof The proof of this theorem is similar to that of Theorem 3.5. We apply Theorem
3.3 with q 1, p ocz, and Xn SrV(I-In). By Rice [24], we have IIx0 PnXOIl 0(-).
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THE ITERATED GALERKIN METHOD FOR HAMMERSTEIN EQUATIONS 1059

It can be proved that there exists u Sr(I’ln) such that Ilgt ull O(). From this, the
result of this theorem follows. [3

As the last application of Theorem 3.3, we consider equation (1.1) with kernels having
singularity at the four comers of the square [0, 1] x [0, 1], a problem that arises from boundary
integration for the harmonic Dirichlet problem in plane domains with comers (see Kress 19]).
In the following theorem, we assume ks(t) k(t,s) is of Type(a, tz, {0, 1}) for ot > 0,
and kt(s) k(t, s) is of Type(u, tx, {0, 1}) for c > -1, e.g., k(t, s) m(t, s)/[, and
k(t s) m(t, s), etc., with m(t, s) smooth, and assume f is of Type(fl, lz, {0, }) for
or,/3 > 0 and a positive integer/z. It is not difficult to prove that an isolated solution x0, of
the corresponding equation (1.1), is of Type(y, tz, {0, 1 }), where 9/ min{c, fl} if ot > 0
and 9/ min{c + 1,/3} if -1 < c < 0 by modifying the proofs of theorems in Kaneko,
Noren, and Xu [15]. We again let q and define the Galerkin subspaces Sr (I’I) as in 2
with r 1 or v 0, or r > 2 and v {0, 1 }, where partition I-In is defined as in (2.20).
The following theorem describes the order of convergence of the Galerkin approximation xn

’. To the best of ourand that of superconvergence of the iterated Galerkin approximation xn
knowledge, this result is not known in the literature even for Fredholm integral equations of
the second kind.

THEOREM 3.7. Let xo be an isolated solution of (1.1) with kernels of the type defined in
the paragraph preceding this theorem. Let x be the unique solution of(2.5) in B(xo, 31) and
x’n be defined by the iterated scheme (3.1). Assume that 1 is not an eigenvalue of (Kq)’(xo)
and that f is of Type(fl, r, {0, 1}). Also assume that (,1)(., x0(.)) is of Type(?,, r, {0, 1})
whenever xo is ofthe same type. Then

IIxO--XnlI= 0()
and

IIx0 xnll

Proof We present the proof for the case when c > 0, since the proof for the other case is
similar. The proof of the first estimate is similar to that for Theorem 2.6. Thus, we omit the
details. Since P in this theorem is defined to be the Galerkin projection from C[0, 1] onto

Sr (Fln), where ?, min{ot, /3 }, and since x0 is of Type(y, r, {0, 1 }), we have IIx0 enxoll
O(). Meanwhile, since kt(s) k(t,s) is of Type(or, r, {0, 1}) and 9/ < or, we find that
kt(s) k(t, s) is also of Type(?’, r, {0, 1}). By the assumption on 7/(,1), we conclude that
ap(,a)(., x0(.)) is of Type(v, r, {0, 1}). Hence, k(t, .)p’l(., x0(.)) is of Type(?’, r, {0, 1}). It
follows that

Ilk(t, .)(’l(.,xo(.)) Ulll

Therefore, the result of this theorem follows from Theorem 3.3.

4. The iterated Galerkin-Kantorovich method. In this section, we extend the classical
Kantorovich regularization (see Kantorovich [18]) and the iterated Galerkin-Kantorovich
method for Fredholm integral equations of the second kind to Hammerstein equations. These
extensions will be made on equations with both singular kernels and singular forcing terms.
The superconvergence of the corresponding iterated solution is also investigated.
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1060 HIDEAKI KANEKO AND YUESHENG XU

In equation (2.4) we put

(4.1) z Kqx

so that

(4.2) x f + z.

Upon applying Kq on both sides of (4.2), we obtain

(4.3) z Kq(f -t- z).

Now we define the operators by qo(x)(t) ap(t, x(t)) and

(4.4) ql(X)(t) -= q0(f + x)(t) qo(f)(t).

In addition, define fl by

(4.5) f(t) K*o(f)(t) k(t, s)O(s, f(s))ds.

From (4.4), we have go(f + z)(t) g(z)(t) + go(f)(t) so that (4.3) becomes

(4.6) z- Kl(Z) Ko(f) fx.

Equation (4.6) will be called the "regularized" equation for the original Hammerstein equation
(1.1). It is interesting to note that

Iql(Xl)(t) ql(X2)(t)l--Iq0(f + Xl)(t) 0(f -+-x2)(t)l _< Cllxl(t) -x2(t)l.

Thus, kI/1 is also Lipschitz continuous with the same Lipschitz constant C1 as *0. Hence the
solvability of equation (4.6) is guaranteed by the solvability of the original equation (1.1).

The Galerkin method described in 2 is now applied to equation (4.6). Namely, we find

Zn Xn that satisfies

(4.7) Zn PnKlZn enfl.

The Galerkin-Kantorovich regularization solution for (1.1) is now given by

(4.8) Xn
r f + Zn.

Note that Xnr inherits the singularity of f. From equations (4.2) and (4.8), we have x Xnr
k mayz Zn. Since z, Zn C[0, 1], we see that x Xnr C[0, 1], although neither x nor xn

be in C[0, 1]. Denote Tnzn =- Pnfl + englzn and Tz =-- fl + KqllZ.
THEOREM 4.1. Let xo be an isolated solution ofequation (1.1) such that zo Kqoxo

C[0, 1]. Assume that 1 is not an eigenvalue ofthe linear operator Kql)’(zo). Then equation
(4.7) has a unique solution Zn B(Zo, )forsome > O andfor sufficiently large n. Moreover,
there exists a constant 0 < q < 1, independent ofn, such that

Oln Oln< IIx x011 <(4.9)
l+q 1-q

where Xnr f + Zn and

(4.10) Cgn --I1(I- T’n(ZO))-X(Zn(zo)- Z(z0))ll.
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THE ITERATED GALERKIN METHOD FOR HAMMERSTEIN EQUATIONS 1061

Finally,

(4.11) En (Z0) IIx0 x IIo CE(z0),

where En(zo) infyx, Ily z011o and C is a constant independent ofn.
Proof The inequalities (4.9) follow again from Theorem 2 of Vainikko [30]. It is also

noted that

(4.12) zo Zn XO XnK.

Since Zn E Sn, (4.10) holds and En(Zo) < IIz0 znllo IIx0 xngllo. This gives the first
inequality in (4.11). Since Tn(zo) T(Zo) Pn(fl KqlZ0) z0 PnZo zo, we find

IlZn Z011o
I1(I- Z’n(ZO))-lllollZn(ZO)- Z(z0)llo I1(I- Zn(Z0))-lllo

Ilenzo- z0]lo.
1 -q 1 -q

Also for u Xn,

IIz0- PnZOII IIz0- U Pn(ZO- u)ll (1 + IIPnll)llzo- ull.

Therefore, we have Ilx0 Xn CEn (z0), where C is a constant independent of n. [3

We next consider the iterated Galerkin-Kantorovich method and investigate its supercon-
vergence property. Assume that z0 is an isolated solution of (4.6) and Zn is the unique solution
of (4.7) in B(zo, 3) for some 3 > 0. Define

(4.13) z’n gkIIl(Zn)-]- fl
gand xnK’ f + zn: The element x is called the iterated Galerkin-Kantorovich approximate

solution of equation (1.1). Applying Pn to both sides of (4.13) gives

(4.14) pnZtn PngttIIl(Zn)-- enfl.

Again, by using (4.7), we have Pnz’n Zn. Upon substituting this equation into (4.13), we
Kqsatisfies the following new Hammerstein equation z 1Pz + fl. In viewfind that z

of the fact that kI/1 is Lipschitz continuous with the same Lipschitz constant as q0, the same
proofs given for Theorems 3.1, 3.2, and 3.3 can be applied to S KkII1Pn - fl to obtain
the following theorem. Here 1 is chosen as in 3. As in Theorem 3.3, the assumption that
I](K)’(xo)(1- en)ll 0 as n is no longer needed.

THEOREM 4.2. Let xo be an isolated solution ofequation (1.1) such that zo Koxo
KC[0, 1]. Letzn be the unique solution ofequation (4.7) in B(zo, 31). Letxn be the correspond-

ing iterated Galerkin-Kantorovich approximate solution. Assume that 1 is not an eigenvalue
of (Kl)’(zo). Then, for all 1 p ,
IIx0- Xn C IIz0- PnZOII + sup inf Ilk(t, ") r0’ l) (" Z0(’))- ullqllzo- enzollp

0<t<l u6Xn

where 1 + 1 1. [3
p q

Results parallel to Theorems 3.4-3.7, for smooth and weakly singular kernels can be
obtained also by using Theorem 4.2 for the iterated Kantorovich method. The iterated Kan-
torovich regularization methodfor the Fredholm equations ofthe second kind was investigated
by Sloan [26].

D
ow

nl
oa

de
d 

10
/0

5/
17

 to
 1

28
.8

2.
25

2.
15

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1062 HIDEAKI KANEKO AND YUESHENG XU

5. Numerical examples. In this section, some numerical examples are given to illustrate
the theory established in the previous sections.

Example 1. Consider

x2(S) ds f(t), 0 < < 1(5.1) x(t)
/It sl

where f is selected so that x(t) is the solution. The splines of orders 1 (q 2) and
2 (q 4) with knots defined by equation (2.23) in terms of q, are used in computations. To
establish the Galerkin matrix, we must compute the integral of the form

ti

ftj
tj i (S)(t9j (t)

dtds,(5.2)
-1 /It sl

where os are respective B-splines of the above mentioned spline space. It can be proved that

(19i(S) ftjtJ_l[t%/q-s[qgj(t)dt belongs to Type(g, k, {tj_l, tj }). Consequently, we employ the recently

developed Gauss-type quadrature formula of Kaneko and Xu 17] to approximate integrals
(5.2). This brings to our attention the problem ofthe discrete GalerkinmethodforHammerstein
equations with weakly singular kernels. This will be dealt with in a future paper. In the ensuing
data, en =- IIx Xn IIo and e IIx Xn IIo were approximated, respectively, by

max{ =0,1 100}
and

max{ ( ) (1-0)X X "i =0,1 100}.
Data 1. q 2.

decay exp.n en decay exp. e

16

32

64

128

1.60D 2 3.01D 3

7.26D 3 1.14 9.10D 4 1.73

3.34D 3 1.12 2.88D 4 1.66

1.64D- 3 1.03 9.50D- 5 1.60

Data 2. q 4.

decay exp.n en decay exp. e

16 4.01D- 3 8.04D-4
32 9.93D- 4 2.01 1.30D- 4 2.61
64 2.46D 4 2.01 2.28D 5 2.51
128 6.06D 5 2.02 3.90D 6 2.55

It can be seen clearly that the iterated Galerkin approximation has superconvergence by
an order 3"

Example 2. To illustrate the use of Theorem 3.7, we consider

X2(S)
ds f(t), 0 < < 1(5.3) x(t) .D
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where f is selected so that x(t) C7 is the solution of equation (5.3). As in the first example,
the splines of orders 1 and 2 are used. Since the solution is of Type(, k, {0, 1 }) for any positive
integer k, the partition is formed according to ot .

Data 1. q 2.

decay exp.n en decay exp. e

16

32

64

128

1.12D- 2 2.10D 3

5.15D 3 1.12 5.21D 4 2.01

2.22D 3 1.21 1.30D 4 2.00

1.08D 3 1.04 3.25D 5 2.00

Data 2. q 4.

decay exp.n en decay exp. e

16 3.12D- 3 5.12D-4
32 7.53D 4 2.05 3.05D 5 4.07
64 1.74D 4 2.11 1.85D 6 4.04
128 4.26D 5 2.03 1.14D 7 4.02

The iteration process doubles the rate of convergence.

Acknowledgments. The authors would like to thank Professor K. Atkinson and the ref-
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