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We present the results of a study of the inviscid two-dimensional spatial stability of a parallel
compressible mixing layer in a binary gas. The parameters of this study are the Mach number of the
fast stream, the ratio of the velocity of the slow stream to that of the fast stream, the ratio of the
temperatures, the composition of the gas in the slow stream and in the fast stream, and the frequency
of the disturbance wave. The ratio of the molecular weight of the slow stream to that of the fast
stream is found to be an important quantity and is used as an independent variable in presenting the
stability characteristics of the flow. It is shown that differing molecular weights have a significant
effect on the neutral-mode phase speeds, the phase speeds of the unstable modes, the maximum
growth rates, and the unstable frequency range of the disturbances. The molecular weight ratio is a
reasonable predictor of the stability trends. We have further demonstrated that thenormalized
growth rate as a function of the convective Mach number is relatively insensitive ('25%) to
changes in the composition of the mixing layer. Thus, thenormalizedgrowth rate is a key element
when considering the stability of compressible mixing layers, since once the basic stability
characteristics for a particular combination of gases is known at zero Mach number, the decrease in
growth rates due to compressibility effects at the larger convective Mach numbers is somewhat
predictable. ©1996 American Institute of Physics.@S1070-6631~96!02907-8#

I. INTRODUCTION

Inspired by the seminal work of Brown and Roshko1 and
fueled in part by the prospects of high supersonic flight, there
has since been renewed interest on the stability characteris-
tics of compressible mixing layers, both non-reacting and
reacting. All of the analytical investigations of which we are
aware have concentrated on mixing layers of a single gas.
Experimental investigations have shown that both density
ratio and compressibility have a significant effect on the
spreading rate of the mixing layer.1–3 From experiments it
appears that the normalized spreading rate is relatively insen-
sitive to the density ratio as compared to compressibility.3

However, the density effects have never been analytically
quantified. The main thrust of this paper, therefore, is to
analyze the stability characteristics of mixing layers in bi-
nary gases and to make appropriate comparisons to the case
of a single gas.

In investigating the stability of mixing layers, it is typi-
cal to assume that there exists a local parallel flow about
which the governing equations are linearized with respect to
spatially and temporally varying disturbances. From this lin-
earization, it is straightforward to calculate either temporal
growth rates~assuming fixed spatial wavenumbers! or to cal-
culate spatial growth rates~assuming a fixed temporal fre-
quency!. If a spatial instability exists, there is usually a band

or bands of frequencies for which there are positive spatial
growth rates~imaginary part of the complex wavenumber is
negative!. These bands are bounded by the neutral modes,
whose existence~and phase speeds! can be determined
through the Lees and Lin regularity condition assuming that
the phase speeds are subsonic, and that the local flow is
smooth and parallel. Another neutral mode can be found in
the limit of the wavenumber going to zero. It is clear that in
the far downstream limit, the disturbance with the largest
spatial growth rate will dominate and thus a disturbance with
a single frequency and wavelength~real part of the complex
wavenumber! will be seen. However, this scenario neglects
non-linear effects which would become significant long be-
fore the far downstream limit would be reached. Therefore, it
is the entire spectrum of growing modes that is of interest,
and the width of the unstable frequency band~and therefore
the wavelength band! is significant in determining the struc-
ture of the disturbance when nonlinear effects become im-
portant.

The results of previous analytical investigations lead to
the conclusion that the temperature profile, which is signifi-
cantly affected by external heating or cooling, internal vis-
cous heating, or even exothermic chemical reactions, can al-
ter the regularity condition sufficiently such that an
additional pair of unstable modes exist~e.g., the review ar-
ticles by Jackson4 and Grosch5!. In the absence of reaction,
viscous heating which is a function of Mach number, signifi-
cantly raises the temperature so that at a large enough Mach
number, there are three neutral modes instead of one. Jack-

a!Present address: Department of Mathematics, Hampton University, Hamp-
ton, Virginia 23668.
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son and Grosch6 showed that although these additional
modes lie in a region in which the phase speeds would typi-
cally be supersonic, significant obliqueness of the distur-
bances alters the sonic phase-speed curves such that all three
neutral modes represent a physically realizable subsonic
mode. In the case of a reacting mixing layer, a simple
Fuel1Oxidizer→Product exothermic reaction with
moderate heat release easily may introduce an extra pair of
neutral modes, even at zero Mach number. A ‘‘flame sheet’’
analysis can be used to quickly locate these modes, one of
which has a phase speed equal to the flow velocity at the
flame-sheet location. An extensive study of the spatially
evolving reacting mixing layer with finite reaction rate~Hu
et al.7! showed that the flame-sheet results gave accurate val-
ues of the phase speeds of the neutral modes as long as the
Lees and Lin regularity condition was applied downstream
of the ignition point. Further analysis showed that the slow
mode may undergo a transition from convective to absolute
instability as the heat of reaction increases. Although this
transition is deemed significant, it was found that the back-
wards propagation of the disturbance, which is the hallmark
of an absolute instability, is seen to be~after a wave packet
analysis! exceedingly small.

The purpose of this paper is to investigate the stability
characteristics of a mixing layer in a binary gas. In section II
the mean flow is discussed. Also given are three models for
the viscosity, thermal conductivity, mass species diffusion
coefficient, and specific heat. These thermodynamic quanti-
ties must be defined in some manner before a solution can be
obtained. The first two models stated are approximations to
the exact third model, in that standard approximations to the
viscosity are made in the first two models but not in the
third; namely, Chapman’s linear viscosity law and Suther-
land’s viscosity law are employed in the first two models,
respectively, while for the third model the thermodynamic
properties are given by reference values found in tables, or
equivalently, from first-order formulas derived from kinetic
theory for a binary mixture. The first two models are pro-
vided so that comparisons can be made to the exact, yet
computationally intensive, third model. Section III contains
the stability formulation of a binary gas, and results are pre-
sented for both neutral and unstable modes. Conclusions are
given in section IV.

II. MEAN FLOW

As mentioned in the Introduction, all previous investiga-
tions on the stability of mixing layers, either reacting or non-
reacting, have assumed equal molecular weights for the
gases above and below the splitter plate. We present here
results illustrating how a binary gas mixture affects the sta-
bility characteristics. However, since the stability of any flow
depends on the structure of the mean flow, we first present
below several models for the mean flow.

Consider a binary gas mixture in a compressible mixing
layer with zero pressure gradient lying between streams with
different speeds and temperatures. The gases included in this
study are hydrogen (H2), helium (He), neon (Ne), nitrogen
(N2), oxygen (O2), and argon (Ar). The choice of gases
was not arbitrary. Papamoschou and Roshko3 and Hall,

Dimotakis, and Rosemann8 used binary combinations of
He, N2 , andAr in their experiments. In addition, hydrogen
is the fuel for proposed scramjet engines. As discussed in
Kozusko et al.,9 there are three parameters governing the
structure of the mean flow. These are the velocity ratio
bU , defined as the ratio of the velocity in the stream at
2` to the velocity in the stream at1`; the temperature
ratio bT , defined in an analogous manner as the velocity
ratio; and the molecular weight ratioW dependent on the
particular combination of gases chosen, also defined in a
similar manner. Here,bT.0 andbU P @0,1) so that the gas
in the stream at2` is always assumed to be moving slower
relative to the gas at1`. If bT is less than one, the gas in
the slow freestream is relatively cold compared with that in
the fast freestream, and ifbT is greater than one it is rela-
tively hot. Note that we have the following two cases de-
pending on the magnitude ofW:

• W.1 heavier gas resides in the fast freestream at
1` and the lighter gas in the slow freestream at2`; or

• W,1 lighter gas resides in the fast freestream at1`
and the heavier gas in the slow freestream at2`.

For the inert gasesAr and He ~typical gases used in
experiments!, we see thatW can vary between 0.1 for the
Ar-He case, and 9.9 for theHe-Ar case. Throughout this
study we will use the convention that the first gas listed
resides in the slow freestream at2`, while the second gas
listed resides in the fast freestream at1`; i.e., the case
Ar-He implies that the gas in the slow freestream is argon,
while the gas in the fast freestream is helium. The ratio of
molecular weightsW for the different gases considered in
this study are given in Table 1 of Kozuskoet al.9

The non-dimensional thermodynamic quantitiesm, k,
D12, andCP,i , rendered non-dimensional by the respective
values m` , k` , D12,̀ , and CP,2,` in the freestream at
1`, must be defined in some manner before a solution can
be obtained. We state here three models, of increasing com-
plexity, that are used in this study. The first two models
listed below are approximations to the exact third model, in
that standard approximations to the viscosity are made in the
first two models but not in the third; namely, Chapman’s
linear viscosity law and Sutherland’s viscosity law are em-
ployed in the first two models, respectively, while the third
model employs a viscosity law for binary gases. The first two
models are provided so that comparisons can be made to the
exact, yet computationally intensive, third model.

• Model I: The first model assumes Chapman’s viscosity
law rm5 constant withm5rD125k51, but allows for dif-
ferent and constant CP,i . Owing to the non-
dimensionalization,CP,251, andCP,1 is the ratio of the spe-
cific heat of the gas at2` divided by the specific heat of the
gas at1`. Thus, the mixture specific heat is given by
CP5CP,1F11F2 , whereFi is the mass fraction of species
i such that in the freestream at1` we haveF150 and
F251, while in the freestream at2` we haveF151 and
F250. We remark here that the above assumptions lead to
Pr5Lei

215CP for the Prandtl and Lewis numbers. These
are not constant throughout the mixing layer as is usually
assumed. The reason for allowing both the Prandtl number
and the Lewis numbers to vary is to take into account differ-
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ent gases and to capture more of the physics presented in
Model III below. If CP is taken to be a constant, then the
mean flow would be independent of molecular weight. In
this model, the density does not appear explicitly in the mean
flow, and its influence is only felt in the stability calcula-
tions.

• Model II: The second model assumes that the non-
dimensional viscosity is given by Sutherlands viscosity law,

m5
aT3/2

b1T
, a511b, b5

110.4

Tre f
,

whereTre f is a non-dimensional reference temperature, taken
here to beTre f5300. In addition, we takerD125k5m. As
in Model I, we assume constant but differentCP,i , with
CP,251. The comments about non-constant Prandtl and
Lewis numbers apply to this model as well as to Model I.

• Model III: The last model assumes that all of the ther-
modynamic properties are given by experimental values
found in tables, or equivalently, from first-order formulas
derived from kinetic theory for a binary mixture. A complete
description is given in Kozuskoet al.9 We shall refer to this
model as theexactmodel.

For Model III, a complete discussion on the structure of
the mean flow for various combinations of gases has recently
been presented by Kozuskoet al.9 Expressions for the vis-
cosity, thermal conductivity, specific heat, and binary diffu-
sion coefficients of a binary mixture were utilized so that the
Prandtl and Lewis numbers vary across the mixing layer. In
the cases considered, these two quantities can vary by factors
of approximately 3 and 7, respectively, indicating that it is
not quantitatively correct to set these quantities to constants,
as is usually done. These variations will influence the stabil-
ity characteristics, as will be shown below.

III. STABILITY

As is standard in linear stability theory, the flow field is
perturbed by introducing two-dimensional wave disturbances
of the formei (ax2vt) in the velocity, pressure, temperature,
density, and mass fractions with amplitudes that are func-
tions of the similarity variableh. The similarity variable has
been previously defined in Jackson and Grosch.10 Here,v is
the frequency anda is the streamwise wavenumber of the
disturbance. For spatial theory,v is required to be real and
solutions are sought for whicha is complex. For temporal
theory,a is assumed to be real and solutions are sought for
which v is complex. The amplification rates of the distur-
bances are then2a i or v i , respectively. Substitution into
the inviscid compressible equations for a binary gas and lin-
earizing yields the compressible Rayleigh’s equation for the
normal velocity perturbationf,

S f8

j D 8
2Fa21

1

U2c SU8

j D 8Gf50, ~1!

where

j5
1

r2 F12M2~U2c!2r
g`

g G ~2!

and

g21

g
rCPT5

g`21

g`
. ~3!

Here,g is the ratio of specific heats andc is the complex
phase speedc5v/a. Primes indicate differentiation with re-
spect to the similarity variableh. If the molecular weights
are taken to be equal and the thermodynamic quantities are
assumed constant (g5g` , rT51), then~9! reduces to the
classical Rayleigh equation for a single component gas.11

The boundary conditions forf are obtained by consid-
ering the limiting form ash→6`. The solutions are of the
form

f→exp~6V6h!, ~4!

where

V1
2 5a2@12M2~12c!2#,

V2
2 5

a2

br
2 F12M2~bU2c!2S br

bg
D G , ~5!

and

brbTW51, bg5
g2`

g1`
,

definesbr andbg , respectively. The ratiobg for the differ-
ent gases considered in this study are given in Table I. Note
that if V1

2 is positive, then the disturbances decay exponen-
tially ash→1`. If, on the other hand,V1

2 is negative, then
the disturbances oscillate, indicating that acoustic waves are
radiating away from the mixing layer. Similar statements can
be made forV2

2 . We therefore definec6 to be the values of
the phase speed for whichV6

2 vanishes. Thus

c1512
1

M
, c25bU1

1

MAbr /bg

. ~6!

Note thatc1 is the phase speed of a sonic disturbance in the
fast stream andc2 is the phase speed of a sonic disturbance
in the slow stream. At

M5M*[
11Abg /br

12bU
, ~7!

c6 are equal. A ‘‘convective’’ Mach number can now be
defined for a binary gas as

TABLE I. The ratio bg , defined as the ratio of specific heats ath52`
divided by the ratio of specific heats ath51`, for the different gases
considered in this study. The top row corresponds to the gases in the
freestream ath51`, while the first column corresponds to the gases in the
freestream ath52`.

H2 He Ne N2 O2 Ar

H2 0.995 0.839 0.839 0.999 1.002 0.839
He 1.186 1.000 1.000 1.191 1.195 1.000
Ne 1.186 1.000 1.000 1.191 1.195 1.000
N2 0.992 0.836 0.836 0.996 1.000 0.836
O2 0.977 0.824 0.824 0.981 0.985 0.824
Ar 1.186 1.000 1.000 1.191 1.195 1.000
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Mc5
M

M*
[

M ~12bU!

11Abg /br

5
U`2U2`

a`1a2`
, ~8!

whereM* is the Mach number at which the sonic speeds of
the two streams are equal. With this definition, all distur-
bances are supersonic forMc.1. This definition of the con-
vective Mach number is based on the freestream Mach num-
ber in the laboratory frame and is independent of the speed
of the large-scale structures and the speed of the most un-
stable wave. It is interesting to note that the commonly used
heuristic definition of the convective Mach number@last term
in ~8!# is derivable from linear stability analysis.10

Further understanding of the role of the convective Mach
number can be gained by notingMc51 implies that
M5M* . This is the largest value of the Mach number for
which any subsonic instability waves can exist. For larger
values of the Mach number there areonly supersonic modes
which radiate into one or the other stream. The largest value
of the convective Mach number for whichonly subsonic
modes can exist is given by

McMIN
5min~M1 ,M2!/M* , ~9!

whereM* is given by~7! andM1 is the value of the Mach
number for whichc15bu , andM2 is the value for which

c251. In the intermediate rangeMcMIN
,Mc,1 both sub-

sonic and supersonic instability waves can exist.
In Figure 1 we plotM* versusW for the different binary

systems. In this figure, the region 0<W<2 is expanded to
better show the differences at the lower values ofW. Also
shown in this figure as a dashed line is the corresponding
value for a single gas~i.e., W5bg51). The trend is not
monotonic due to the variations in the thermodynamic prop-
erties, even when two molecular weight ratios are very close
to each other. Note that forW.1, M* is greater than the
corresponding value of a single gas, while forW,1, it is
smaller. This figure shows that, in general, the value ofW is
the best indicator for the value ofM* . The overall increase
in M* as W increases indicates that the value of the
freestream Mach number above which no subsonic instabil-
ity waves can exist also increases. Since the value ofM*
changes by a factor of five for the cases with large or small
weight ratios and this value is used to define the convective
Mach number which characterizes the effects of compress-
ibility, it is seen that the proper accounting of the value of
M* for different gas combinations is important.

The nature of the disturbances and the appropriate
boundary conditions can now be illustrated by reference to

FIG. 1. Plot ofM* versusW for the different binary systems. Also shown
in this figure as a dashed line is the corresponding value for a single gas
~i.e.,W5bg51). Here,bU50.5 andbT51.5.

FIG. 2. Plot ofc6 versusMc for the particular cases of~a! Ar-He and~b!
He-Ar, with bU50.5 andbT51.5. These curves divide thecr2Mc plane
into four regions: ~1! subsonic; ~2! fast supersonic;~3! supersonic-
supersonic; and~iv! slow supersonic.
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Figure 4, where we plotc6 versusMc for the particular
cases ofAr-He ~Figure 2a! and He-Ar ~Figure 2b!, with
bU50.5 and bT51.5. When referring to this figure, it
should be kept in mind that the value ofM* for the two
cases varies by a factor of about five so that the scales in
terms of the actual Mach number are quite different. The
significance of this figure has been discussed previously by
Jackson and Grosch.12,13,6Thus, the key to understanding the
stability characteristics of this flow is the understanding of
different parameter regions for which various types of insta-
bility modes can exist. One can see from Figure 2 that these
curves divide thecr2Mc plane into four regions, wherecr is
the real part ofc. Also shown as dashed lines are the bounds
for cr ; namely,cr P @bU,1#[@0.5,1#. If a disturbance exists
with a Mc and cr in region 1, thenV1

2 andV2
2 are both

positive, the disturbance is subsonic at both boundaries, and
we classify it as a subsonic mode. In region 3, bothV1

2 and
V2

2 are negative and hence the disturbance is supersonic at
both boundaries, and we classify it as a supersonic-
supersonic mode. In region 2,V1

2 is positive andV2
2 is

negative, the disturbance is subsonic at1` and supersonic
at2`, and we classify it as a fast supersonic mode. Finally,
in region 4,V1

2 is negative andV2
2 is positive so the distur-

bance is supersonic at1` and subsonic at2`, and we
classify it as a slow supersonic mode.

Note that the above classification scheme only depends
upon the values of the mean flow in the freestreams and is

independent of the detail form of the mean flow profile.
Thus, this classification scheme is valid for all three models
used in this study.

To complete the stability problem, the appropriate
boundary conditions of either spatial or temporal stability,
for either damped or outgoing waves in the fast and slow
freestreams are, respectively,

f→e2V1h if cr.c1 ;

f→e2 ihA2V1
2

if cr,c1 , ~10!

f→eV2h if cr,c2 ;

f→e2 ihA2V2
2

if cr.c2 . ~11!

Finally, the above formulation is also valid for a mixing
layer in a channel with a zero streamwise pressure gradient
with an appropriate change in the boundary conditions.

FIG. 3. Plot ofS(h) for ~a! Ar-He and ~b! He-Ar using Model III with
M50, bU50.5, andbT51.5.

FIG. 4. Plot of the locationhc as a function of the molecular weight ratio
W using Model I ~asterisks!, Model II ~triangles!, and Model III ~circles!
with M50, bU50.5, andbT51.5.
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A. Neutral modes

To illustrate how a binary gas alters the stability charac-
teristics, we first present below the neutral phase speeds for
various combinations of gases.

If a neutral mode exists in region 1 of Figure 2, then the
neutral phase speedcN is given bycN5U(hc) provideda
Þ 0. Here,hc is the zero of the Lees-Lin regularity condition,

S~h!5~r2U8!8. ~12!

The extra factor ofr is a result of working in the similarity
variable instead of the physical variable. The corresponding
neutral wavenumber and frequency must be determined nu-
merically. These modes are called regular subsonic neutral
modes. If, on the other hand, a neutral mode exists in regions
2, 3 or 4, the Lees-Lin regularity condition can not be used
and thus the phase speed of the neutral modes must, in gen-
eral, be found numerically. These modes are called singular
neutral modes.

Typical plots of S(h) are shown in Figure 3 for the
binary system of argon and helium using Model III with
M50, bU50.5, andbT51.5. In each case there is only one
zero of S, although the location differs depending upon
which gas lies in the fast freestream. In addition, the zeros
are not symmetric about theh-axis when changing from the
Ar2He system to theHe2Ar system. This asymmetry is
due to the asymmetries in the velocity and temperature pro-
files. The difference in location implies that the neutral phase
speedcN in each case will also be different. The location
hc of the zero ofS for the different binary systems are given
in Table II, and the corresponding neutral phase speeds given
in Table III.

To better visualize the overall trends, we plot in Figures
4 and 5 the location of the root ofS(h) and the neutral phase
speeds as a function of the molecular weight ratioW, respec-
tively, for Model III ~circles!. Also shown in these figures are
the results for Model I~asterisks! and Model II~triangles!. In
each figure, the region 0<W<2 is expanded to better show
the differences at the lower values ofW. These figures indi-
cate that in general both quantities increase withW, or,
equivalently, decrease with increasingbr . The trends are not
monotonic due to the variations in the thermodynamic prop-
erties, even when two molecular weight ratios are very close
to each other. As an example, the case ofH22Ne with
W510.011 has a neutral phase speed ofcN50.896, while
the case ofHe2Ar with W59.979 has a neutral phase

speed ofcN50.919, which represents an increase in phase
speed of 2.5% even though the molecular weight ratio is
decreased by only 0.3%. Another example is that of
Ar2Ne with W50.505 and phase speed ofcN50.735, and
He2H2 with W50.504 and phase speed ofcN50.780,
which represents an increase of almost 6% in the neutral
phase speed even though the molecular weight ratio is de-

TABLE II. The location S(hc)50, as determined from Model III, at
M50, bU50.5, andbT51.5 for the different gases considered in this
study. The top row corresponds to the gases in the freestream ath51`,
while the first column corresponds to the gases in the freestream at
h52`. The notationNA means not applicable for a binary gas.

H2 He Ne N2 O2 Ar

H2 NA 0.096 0.124 0.228 0.208 0.186
He 0.219 NA 0.246 0.373 0.346 0.317
Ne 20.313 20.255 NA 0.379 0.364 0.368
N2 20.795 20.583 20.057 NA 0.168 0.178
O2 20.814 20.617 20.052 0.200 NA 0.200
Ar 21.013 20.769 20.110 0.153 0.145 NA

TABLE III. The corresponding neutral phase speedscN , as determined
from Model III, at M50, bU50.5, andbT51.5 for the different gases
considered in this study. The top row corresponds to the gases in the
freestream ath51`, while the first column corresponds to the gases in the
freestream ath52`. The notationNA means not applicable for a binary
gas.

H2 He Ne N2 O2 Ar

H2 NA 0.829 0.896 0.922 0.924 0.926
He 0.780 NA 0.892 0.914 0.916 0.919
Ne 0.668 0.690 NA 0.851 0.856 0.868
N2 0.628 0.649 0.757 NA 0.817 0.829
O2 0.627 0.646 0.753 0.808 NA 0.826
Ar 0.614 0.631 0.735 0.789 0.794 NA

FIG. 5. Plot of the neutral phase speedscN as a function of the molecular
weight ratioW using Model I~asterisks!, Model II ~triangles!, and Model III
~circles! with M50, bU50.5, andbT51.5.
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creased by only 0.2%. Qualitatively, the results for all the
models are similar, however, there are quantitative differ-
ences. For example, neither Models I nor II faithfully repro-
duce the neutral phase speeds of Model III for the entire
range ofW considered, although the locationhc for Models
II and III are close forW.4. These results indicate that
although Models I and II may be simpler to solve numeri-
cally than Model III, they do not yield satisfactory agreement
over the whole range ofW.

In addition to the neutral modes withaN Þ 0, there may
exist neutral modes having zero wavenumber. The phase
speed of such modes do not satisfy the Lees-Lin regularity
condition but are found by an asymptotic analysis of~1! in
the limit a→0 ~Groschet al.14!. In this case an expansion of
the solution in powers ofa, along the lines previously used
by Drazin and Howard15 and Blumen, Drazin, and Billings16

in related studies, yields an eigenvalue relation which is ana-
lytically tractable. Below, we shall describe the extension of
these results for binary gases.

The leading order term in ana-expansion is independent
of the detailed form of the mean profile, and only depends on
the basic flow characteristics at infinity. This is to be ex-
pected from physical arguments because the wavelength of
the instability in the limita→0 is much larger than the
length scale over which the undisturbed flow is non-uniform.
For the supersonic-supersonic case, setting the leading order
term in the expansion to zero yields an equation forcN :

@M2~bU2cN!2brbg
2121#~12cN!4

5br
2@M2~12cN!221#~bU2cN!4. ~13!

If the molecular weights are taken to be equal and the ther-
modynamic quantities are assumed constant (g5g` ,
rT51), then equation~13! reduces to equation~5.3a! of
Miles17 expressed in the notation used here. In general, this
sixth-order polynomial must be solved numerically to deter-
mine cN as a function ofM . For the special case ofbg51,
we see that

~1! A single positive real root of~13! exists for

M>M*[~11br
21/2!/~12bU!, ~14!

with phase speed

cN5~bU1br
21/2!/~11br

21/2!. ~15!

This is classified as a constant speed supersonic-supersonic
neutral mode lying in region 3 of thecr2M plane. It is
independent of Mach number and corresponds to the phase
speed at which the sonic speeds in the two streams are equal.
In this regime there is also a pair of complex conjugate ei-
genvalues correspond to one unstable and one stable eigen-
mode. The associated instability disappears as the Mach
number increases.

~2! A double root first appears at

MCR5~11br
21/3!3/2/~12bU!, ~16!

with phase speed

cN5~bU1br
21/3!/~11br

21/3!. ~17!

There are three distinct real roots forM.MCR . One of these
is the phase speed of the constant speed supersonic-
supersonic neutral mode while the other two roots must be
found numerically from~13!. We note that all three of these
neutral modes lie in region 3.

B. Growth rates

The Rayleigh equation must be solved numerically in
order to compute the growth rates. Our experience has shown
that it is computationally easier to solve a Riccati type equa-
tion, which is a first order, nonlinear, non-homogenous equa-
tion with non-zero boundary conditions, rather then solving a
second order, linear, homogeneous equation with zero
boundary conditions. To this end, we first begin with the
equivalent perturbation equation for the pressure amplitude
P, given by

P92
2U8

U2c
P82a2jP50, ~18!

which is transformed to an equivalent Riccati equation

G81aTG22F 2U8

U2c
2
T8

T GG5
aj

T
~19!

by use of the transformation

G5
P8

aTP
. ~20!

Appropriate boundary conditions can be derived in a
straightforward manner. Further details can be found in Jack-
son and Grosch.10 The stability problem is thus to solve the
Riccati equation, together with appropriate boundary condi-
tions, for a given real frequencyv and Mach numberM ,
with the mean profile defined for a particular binary gas. The
eigenvalue is the wavenumbera. We integrate the Riccati
equation along the contourh52L to h50 andh5L to
h50 using a fourth order Runge-Kutta scheme. The value of
L varied from mixture to mixture, and was chosen large
enough so that in each case the boundary conditions were
satisfied. We choose an initiala and then iterate using
Muller’s method,18 until the boundary conditions were satis-
fied and the differences in all calculated quantities ath50
was less than 1026. All calculations were done in 64 bit
precision. Because this equation has a singularity at
U5cN , the neutral modes could not be determined.

The spatial growth rates for selected binary mixtures as a
function of frequency are shown in Figures 6–8 for Models
I, II and III, respectively. In all cases,M50, bU50.5, and
bT51.5. In each figure, the labeled curves correspond to
binary gases with increasing molecular weight ratioW. From
these figures several remarks can be made. For a given
model, there is a general decrease in the maximum growth
rate as the molecular weight ratio increases. This is consis-
tent with the limited experimental evidence that the growth
rate is smaller when the heavier gas is on the high-speed side
and greater when the heavier gas is on the low-speed side;3

as we shall see below, this statement is not strictly true for all
of the gas combinations studied here. The largest growth rate
for Model I ~which corresponds to the smallest value ofW
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shown in Figure 6! is more than twice the largest growth rate
shown for the other two models. As the value ofW increases,
the maximum growth rate decreases to the point where the
numerical error, due to the presence of the critical layer, is of
the same order as the growth rates, and thus the procedure
can not be continued for the largest values ofW ~e.g., see the
curve labeled 7 in Figure 6!. Note also that the largest range
of frequency shown in Model I is more than three times
larger than the frequency ranges shown for the other two
models. This is particularly significant since Model I would
imply a much larger range of unstable wavelengths than is
actually present. The range of unstable wavelengths could
ultimately determine the turbulent structures that might de-
velop. Of further note, is the differences in the neutral phase

speeds as seen in Figure 5 which are predictive of the real
phase speeds of the unstable wave packet.

A more direct comparison of the maximum growth rates
between the three models for a given binary system can be
found in Table IV. Here, the maximum growth rates for
twenty-four combinations are listed. The maximum growth
rate for a single species gas using Sutherlands viscosity law

FIG. 6. The spatial growth rates for selected binary mixtures as a function of
frequency for Model I withM50, bU50.5, andbT51.5. In each figure,
the labeled curves correspond to binary gases with increasing molecular
weight ratioW, with 1 being the combination with the smallest value of
W.

FIG. 7. The spatial growth rates for selected binary mixtures as a function of
frequency for Model II withM50, bU50.5, andbT51.5. In each figure,
the labeled curves correspond to binary gases with increasing molecular
weight ratioW, with 1 being the combination with the smallest value of
W.

FIG. 8. The spatial growth rates for selected binary mixtures as a function of
frequency for Model III withM50, bU50.5, andbT51.5. In each figure,
the labeled curves correspond to binary gases with increasing molecular
weight ratioW, with 1 being the combination with the smallest value of
W.

TABLE IV. The maximum spatial growth rates for various binary systems
and for the three models used in the study. The gases are listed in increasing
W. Also shown are the relative errors between Models I and II with Model
III. The relative error is defined as the maximum growth rate of Model III
minus the maximum growth rate of Model I or II, divided by the maximum
growth rate of Model III. NA implies not available. Here,M50,
bU50.5, andbT51.5.

F1 F2 Model I Model II Model III ERR~I,III !% ERR~II,III !%

Ar H2 20.2672 20.0558 20.0652 2309 14
O2 H2 20.2332 20.0562 20.0670 2248 16
N2 H2 20.2317 20.0587 20.0704 2229 16
Ar He 20.2225 20.0697 20.0818 2172 14
Ne H2 20.1448 20.0593 20.0619 2133 4
O2 He 20.1876 20.0687 20.0809 2131 15
N2 He 20.1799 20.0697 20.0846 2112 17
Ne He 20.1229 20.0676 20.0700 275 3
He H2 20.0744 20.0612 20.0550 235 211
Ar Ne 20.0754 20.0599 20.0709 26 15
O2 Ne 20.0626 20.0540 20.0647 3 16
Ar N2 20.0626 20.0561 20.0557 212 0
N2 Ne 20.0578 20.0519 20.0652 11 20
Ar O2 20.0521 20.0538 20.0550 5 2
O2 N2 20.0521 20.0498 20.0500 24 0
N2 O2 20.0437 20.0448 20.0486 10 7
O2 Ar 20.0390 20.0409 20.0437 10 6
Ne N2 20.0396 20.0430 20.0395 0 28
N2 Ar 20.0355 20.0385 20.0430 17 10
Ne O2 20.0357 20.0403 20.0381 6 25
Ne Ar 20.0279 20.0337 20.0333 16 21
H2 He 20.0274 20.0321 20.0434 36 26
He Ne 20.0100 20.0173 20.0238 57 27
He N2 NA 20.0140 20.0178 NA 21
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with Pr50.7 is a i ,max520.047541. Note that the maxi-
mum growth rates for any of the three models is not a strictly
decreasing function ofW. There is some variation of the
general rule when specific combinations of gases are used
owing to the difference in the actual physical parameters.
Also shown in the table are the relative errors between Mod-
els I and II with Model III. From this table one can see that
Model I over predicts the maximum growth rates of Model
III considerably for small values ofW ~the first nine binary
gases listed! and under predicts for large values ofW ~the
last four or six binary gases listed!. This trend is observed for
Model II, but is less severe than for Model I.

The above results indicate that the stability results for
Models I and II are a poor approximation to the stability
results for Model III.

The spatial growth rates for various values of the con-
vective Mach numberMc , as defined by~8!, are shown in
Figure 9 for Model III for the gases nitrogen and argon. In all
cases,bU50.5 andbT51.5. In each case, the maximum
growth rate, the corresponding frequency at which the maxi-
mum is attained, and the range of frequencies over the entire
unstable spectrum decreases as the convective Mach number
increases. Once the growth-ratevs frequency curve is found
for Mc50, theMc.0 curves appear to be nested in a pre-
dictable manner. To further explore this, consider the nor-
malized growth rate, defined as

R5
2a i ,max~Mc!

2a i ,max~0!
. ~21!

The normalized growth rates for the gas combinationsAr-
N2 ~circle!, N2-Ar ~plus!, N2-He ~diamond!, and O2-H2

~bullet! are shown in Figure 10. Also shown~solid curve! in
this figure is the corresponding results for a single gas using
Sutherlands viscosity law withPr50.7. We note here that
for the cases ofAr-N2 andN2-Ar, both the Lewis number
and the Prandtl number are nearly constant across the shear
layer ~see figures 1 and 4 of Kozuskoet al.9!. For the case of
N2-He the Lewis number varies by a factor of 8 across the
mixing layer ~see Figure 3 of Kozuskoet al.9! while the
Prandtl number varies considerably~see figure 6 of Kozusko
et al.9!. Finally, for the case ofO2-H2 the Lewis number
varies by a factor of 6 across the mixing layer~see figure 2 of
Kozuskoet al.9! while the Prandtl number again varies con-
siderably~see figure 5 of Kozuskoet al.9!. At Mc51.0, there
is a spread in the normalized growth rates between the vari-
ous gas combinations of about 25%. The consistent shape of
the curves in Figure 10 indicate that there is almost a
similarity-like behavior when determining the decrease in the
growth rate owing to an increase in convective Mach num-
ber. Indeed, other gas combinations produce similar results.
This is consistent with the results of Jackson and Grosch10

where it was determined that for a single gas (bg51) with
Mc,1, the actual mean flow velocity and temperature pro-
files did not matter when determining the normalized growth
rate as a function of the convective Mach number. Thus, as
previously suspected, this analysis shows that the decrease in
growth rates with increasing Mach number is due to com-
pressibility effects and is only somewhat modified by con-
sidering specific combinations of gases~and thus varying the

density ratios!. Knowing the maximum growth rate at
Mc50, one could easily estimate an approximate value of
the growth rate whenMc Þ 0 using a single gas and any of
the various models for the mean flow~i.e., Chapman’s Law,
Sutherland’s Law, or even a hyperbolic tangent profile!.
However, we have shown that the maximum growth rates
~and corresponding frequency ranges and wavelength ranges!
differ substantially atMc50 and that the simplified models
~Model I and Model II! are poor predictors of these values.

IV. CONCLUSION

The two-dimensional inviscid spatial stability character-
istics of a compressible mixing layer with a binary combina-
tion of gases is presented. From the analysis above, we con-
clude that differing molecular weights has a significant effect

FIG. 9. Plot of the spatial growth rates for various values of the convective
Mach numberMc , as defined by~8!, using Model III for ~top! Ar-N2 and
~bottom! N2-Ar. Here,bU50.5 andbT51.5.
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on the neutral-mode phase speeds, the phase speeds of the
unstable modes, the maximum growth rates, and the unstable
frequency range of the disturbances. The molecular weight
ratio is a reasonable~if not perfect! predictor of the trends. It
was also determined that the various models that have been
previously used are valid in predicting the general trends, but
are poor choices if quantitative information is needed. We
have further demonstrated that the relative insensitivity
('25%) of thenormalizedgrowth rate as a function of the
convective Mach number is a key element when considering
compressible mixing layers. Once the basic stability charac-
teristics for a particular combination of gases is known at
zero Mach number, the decrease in growth rates due to com-
pressibility effects at the larger convective Mach numbers is
predictable.
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