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We present the results of a study of the inviscid two-dimensional spatial stability of a parallel
compressible mixing layer in a binary gas. The parameters of this study are the Mach number of the
fast stream, the ratio of the velocity of the slow stream to that of the fast stream, the ratio of the
temperatures, the composition of the gas in the slow stream and in the fast stream, and the frequency
of the disturbance wave. The ratio of the molecular weight of the slow stream to that of the fast
stream is found to be an important quantity and is used as an independent variable in presenting the
stability characteristics of the flow. It is shown that differing molecular weights have a significant
effect on the neutral-mode phase speeds, the phase speeds of the unstable modes, the maximum
growth rates, and the unstable frequency range of the disturbances. The molecular weight ratio is a
reasonable predictor of the stability trends. We have further demonstrated thaorthalized

growth rate as a function of the convective Mach number is relatively insensi@b%) to
changes in the composition of the mixing layer. Thus,ribemalizedgrowth rate is a key element

when considering the stability of compressible mixing layers, since once the basic stability
characteristics for a particular combination of gases is known at zero Mach number, the decrease in
growth rates due to compressibility effects at the larger convective Mach numbers is somewhat
predictable. ©1996 American Institute of Physids$51070-663(96)02907-9

I. INTRODUCTION or bands of frequencies for which there are positive spatial
growth rateqimaginary part of the complex wavenumber is
Inspired by the seminal work of Brown and Roshkmd  negative. These bands are bounded by the neutral modes,
fueled in part by the prospects of high supersonic flight, therevhose existencegand phase speedsan be determined
has since been renewed interest on the stability characterigarough the Lees and Lin regularity condition assuming that
tics of compressible mixing layers, both non-reacting andhe phase speeds are subsonic, and that the local flow is
reacting. All of the analytical investigations of which we are smooth and parallel. Another neutral mode can be found in
aware have concentrated on mixing layers of a single gashe limit of the wavenumber going to zero. It is clear that in
Experimental investigations have shown that both densityhe far downstream limit, the disturbance with the largest
ratio and compressibility have a significant effect on thespatial growth rate will dominate and thus a disturbance with
spreading rate of the mixing lay&F® From experiments it a single frequency and wavelendtieal part of the complex
appears that the normalized spreading rate is relatively insemvavenumber will be seen. However, this scenario neglects
sitive to the density ratio as compared to compressibllity. non-linear effects which would become significant long be-
However, the density effects have never been analyticallyore the far downstream limit would be reached. Therefore, it
quantified. The main thrust of this paper, therefore, is tos the entire spectrum of growing modes that is of interest,
analyze the stability characteristics of mixing layers in bi-and the width of the unstable frequency baadd therefore
nary gases and to make appropriate comparisons to the cagg wavelength bands significant in determining the struc-
of a single gas. ture of the disturbance when nonlinear effects become im-
In investigating the stability of mixing layers, it is typi- portant.
cal to assume that there exists a local parallel flow about The results of previous analytical investigations lead to
which the governing equations are linearized with respect tghe conclusion that the temperature profile, which is signifi-
spatially and temporally varying disturbances. From this lin-cantly affected by external heating or cooling, internal vis-
earization, it is straightforward to calculate either temporalcous heating, or even exothermic chemical reactions, can al-
growth rategassuming fixed spatial wavenumbeos to cal-  ter the regularity condition sufficiently such that an
culate spatial growth rate@ssuming a fixed temporal fre- additional pair of unstable modes exigtg., the review ar-
quency. If a spatial instability exists, there is usually a bandticles by Jackschand Grosch). In the absence of reaction,
viscous heating which is a function of Mach number, signifi-

apresent address: Department of Mathematics, Hampton University, Hamg=antly raises the temperature so that at a large enough Mach
ton, Virginia 23668. number, there are three neutral modes instead of one. Jack-
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son and Grosc¢hshowed that although these additional Dimotakis, and Rosemafinused binary combinations of
modes lie in a region in which the phase speeds would typiHe, N,, andAr in their experiments. In addition, hydrogen
cally be supersonic, significant obligueness of the disturis the fuel for proposed scramjet engines. As discussed in
bances alters the sonic phase-speed curves such that all thikezusko et al.® there are three parameters governing the
neutral modes represent a physically realizable subsonistructure of the mean flow. These are the velocity ratio
mode. In the case of a reacting mixing layer, a simpleg,,, defined as the ratio of the velocity in the stream at
Fuel+Oxidizer—Product exothermic reaction with —co to the velocity in the stream at ; the temperature
moderate heat release easily may introduce an extra pair ¢étio 8, defined in an analogous manner as the velocity
neutral modes, even at zero Mach number. A “flame sheet’ratio; and the molecular weight ratid/ dependent on the
analysis can be used to quickly locate these modes, one phrticular combination of gases chosen, also defined in a
which has a phase speed equal to the flow velocity at thgimilar manner. Herg3:>0 andg, < [0,1) so that the gas
flame-sheet location. An extensive study of the spatiallyin the stream at-« is always assumed to be moving slower
evolving reacting mixing layer with finite reaction rafelu relative to the gas at . If Bt is less than one, the gas in
et al’) showed that the flame-sheet results gave accurate vathe slow freestream is relatively cold compared with that in
ues of the phase speeds of the neutral modes as long as tim fast freestream, and @ is greater than one it is rela-
Lees and Lin regularity condition was applied downstreamively hot. Note that we have the following two cases de-
of the ignition point. Further analysis showed that the slowpending on the magnitude d¥:
mode may undergo a transition from convective to absolute « W>1 heavier gas resides in the fast freestream at
instability as the heat of reaction increases. Although this+ « and the lighter gas in the slow freestream-at; or
transition is deemed significant, it was found that the back-  « w<1 lighter gas resides in the fast freestreamtat
wards propagation of the disturbance, which is the hallmarlandthe heavier gas in the slow freestream-at.
of an absolute instability, is seen to tefter a wave packet For the inert gaseér and He (typical gases used in
analysig exceedingly small. experiments we see thatV can vary between 0.1 for the
The purpose of this paper is to investigate the stabilityar-He case, and 9.9 for thele-Ar case. Throughout this
characteristics of a mixing layer in a binary gas. In section listydy we will use the convention that the first gas listed
the mean flow is discussed. Also given are three models fofesides in the slow freestream ate, while the second gas
the viscosity, thermal conductivity, mass species diffusionjsted resides in the fast freestream -ate; i.e., the case
coefficient, and specific heat. These thermodynamic quantiar-He implies that the gas in the slow freestream is argon,
ties must be defined in some manner before a solution can Rgnije the gas in the fast freestream is helium. The ratio of
obtained. The first two models stated are approximations tenglecular weightsw for the different gases considered in
the exact third model, in that standard approximations to thenis study are given in Table 1 of Kozusleb al®
viscosity are made in the first two models but not in the  The non-dimensional thermodynamic quantities «,
third; namely, Chapman’s linear viscosity law and Suther-Dlz' andCp;, rendered non-dimensional by the respective
land’s viscosity law are employed in the first two models, 5 es L Ko Di,.., and Cp,.. in the freestream at
respectively, while for the third model the thermodynamic+oo, must be defined in some manner before a solution can
properties are given by reference values found in tables, Qg ohtained. We state here three models, of increasing com-
equivalently, from first-order formulas derived from kinetic plexity, that are used in this study. The first two models
theory for a binary mixture. The first two models are pro-jisieq pelow are approximations to the exact third model, in

vided so that comparisons can be made to the exact, Y@liat standard approximations to the viscosity are made in the
computationally intensive, third model. Section Il contains¢.«t two models but not in the third: namely, Chapman’s

the stability formulation of a binary gas, and results are prejinear viscosity law and Sutherland’s viscosity law are em-
sented for both neutral and unstable modes. Conclusions ab?oyed in the first two models, respectively, while the third

given in section IV. model employs a viscosity law for binary gases. The first two
models are provided so that comparisons can be made to the
exact, yet computationally intensive, third model.

As mentioned in the Introduction, all previous investiga-  * Model I: The first model assumes Chapman’s viscosity
tions on the stability of mixing layers, either reacting or non-law pu= constant withu=pD ,= «=1, but allows for dif-
reacting, have assumed equal molecular weights for thé&erent and constant Cp;. Owing to the non-
gases above and below the splitter plate. We present hetémensionalizationCp ,=1, andCp ; is the ratio of the spe-
results illustrating how a binary gas mixture affects the sta<ific heat of the gas at « divided by the specific heat of the
bility characteristics. However, since the stability of any flowgas at+o. Thus, the mixture specific heat is given by
depends on the structure of the mean flow, we first preser@p=Cp ;F;+F,, whereF; is the mass fraction of species
below several models for the mean flow. i such that in the freestream ate we haveF;=0 and

Consider a binary gas mixture in a compressible mixingF,=1, while in the freestream at o« we haveF;=1 and
layer with zero pressure gradient lying between streams witlr,=0. We remark here that the above assumptions lead to
different speeds and temperatures. The gases included in tH?srzLefl:Cp for the Prandtl and Lewis numbers. These
study are hydrogenH,), helium (He), neon (Ne), nitrogen are not constant throughout the mixing layer as is usually
(N,), oxygen ©,), and argon Ar). The choice of gases assumed. The reason for allowing both the Prandtl number
was not arbitrary. Papamoschou and Roshkad Hall, and the Lewis numbers to vary is to take into account differ-

Il. MEAN FLOW
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ent gases and to capture more of the physics presented TABLE I. The ratio 8,, defined as the ratio of specific heatsat —
Model 1l below. If Cp is taken to be a constant, then the d|V|d9d by t_he ra}tlo of specific heats at= +, for the different gasgs
fl Id be ind dent of | | iaht. | considered in this study. The top row corresponds to the gases in the

m?an ow wou e Indepenaent of mo ecu ar-welg - Nfreestream ap= +, while the first column corresponds to the gases in the
this model,. th(_e density d_oes not appear exphcn_ly in the meaReestream aty=— .
flow, and its influence is only felt in the stability calcula-
tions. H, He Ne N 0, Ar

* Model Il: The second model assumes that the non- H, 0.995 0.839 0.839 0.999 1.002 0.839

dimensional viscosity is given by Sutherlands viscosity law, He 1.186 1.000 1.000 1.191 1.195 1.000
3 Ne 1.186 1.000 1.000 1.191 1.195 1.000

_aTl _14b b= 110.4 N, 0992 0836 083 099 1000  0.836

K hrTe a= ’ C Tier 0, 0.977 0.824 0.824 0.981 0.985 0.824

Ar 1.186 1.000 1.000 1.191 1.195 1.000
whereT,.s is a non-dimensional reference temperature, takea
here to beT,.+=300. In addition, we tak@D,= k= pu. As
in Model I, we assume constant but differe@p ;, with
Cp,=1. The comments about non-constant Prandtl and
Lewis numbers apply to this model as well as to Model . y—1 CoT= Y"1 3)

* Model Ill: The last model assumes that all of the ther- 0% p-p Voo o
modynamic properties are given by experimental value
found in tables, or equivalently, from first-order formulas
derived from kinetic theory for a binary mixture. A complete
description is given in Kozusket al® We shall refer to this
model as theexactmodel.

For Model Ill, a complete discussion on the structure of
the mean flow for various combinations of gases has recentl
been presented by Kozuslat al® Expressions for the vis- ing the limiting f % Th luti £ th
cosity, thermal conductivity, specific heat, and binary diffu- "9 the limiting form asy— . The solutions are of the

) - . ; . form
sion coefficients of a binary mixture were utilized so that the
Prandtl and Lewis numbers vary across the mixing layer. In  ¢—exp(=Q. 7), (4)
the cases considered, these two quantities can vary by factor
of approximately 3 and 7, respectively, indicating that it isW
not quantitatively correct to set these quantities to constants, ()2 =42[1—-M?%(1—c)?],
as is usually done. These variations will influence the stabil-

?—|ere, v is the ratio of specific heats ardis the complex
phase speed= w/«. Primes indicate differentiation with re-
spect to the similarity variable. If the molecular weights

are taken to be equal and the thermodynamic quantities are
assumed constantyE y.,, pT=1), then(9) reduces to the
classical Rayleigh equation for a single component'gas.

Y The boundary conditions fop are obtained by consid-

ere

ity characteristics, as will be shown below. o? B
02=—|1-M3By—c)? =2||, ©)
B, By
IIl. STABILITY and
As is standard in linear stability theory, the flow field is y_

perturbed by introducing two-dimensional wave disturbances  g,8;W=1, B,= ,

of the forme'(®*~ Y in the velocity, pressure, temperature, Vo

density, and mass fractions with amplitudes that are funcdefinesﬁp andg,,, respectively. The ratig,, for the differ-
tions of the similarity variable;. The similarity variable has ent gases considered in this study are given in Table |. Note
been previously defined in Jackson and Gro¥dHere,w is  that if Q2 is positive, then the disturbances decay exponen-
the frequency andr is the streamwise wavenumber of the tially as — + . If, on the other han(ﬂz+ is negative, then
disturbance. For spatial theory, is required to be real and the disturbances oscillate, indicating that acoustic waves are
solutions are sought for which is complex. For temporal radiating away from the mixing layer. Similar statements can
theory, « is assumed to be real and solutions are sought fope made fo22 . We therefore define.. to be the values of
which o is complex. The amplification rates of the distur- the phase speed for whidh'i vanishes. Thus

bances are ther «; or w;, respectively. Substitution into
the inviscid compressible equations for a binary gas and lin-
earizing yields the compressible Rayleigh’'s equation for the

normal velocity perturbatiorp,
(¢_I) , |42 1 U_l)/ $=0 (1) fast stream and_ is the phase speed of a sonic disturbance
3 3 ’ in the slow stream. At

+_

“« U-c
where _ o =1+ /—57/,3,3
1 2 Y * 1-Bu '

£= 2[1—M2(U—c> p— 2
v c. are equal. A “convective” Mach number can now be

c,=1- (6)

1 1
—, C_=Byt——F———.
M BU M —Bp/ﬂ,y

Note thatc, is the phase speed of a sonic disturbance in the

@)

p
and defined for a binary gas as
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FIG. 1. Plot ofM, versusW for the different binary systems. Also shown FIG. 2. Plot ofc.. versusM_ for the particular cases ¢&) Ar-He and (b)

in this figure as a dashed line is the corresponding value for a single gaf€-Ar, with 8,=0.5 andBr=1.5. These curves divide the—M_ plane

(i.e., W=B,=1). Here,,=0.5 andB;=1.5. into four regions: (1) subsonic; (2) fast supersonic;(3) supersonic-
i supersonic; andiv) slow supersonic.

M M M(1-B8y) U.,-U_. o _ .
M, 1+, a.ta.’ 8 ¢-=1. In the intermediate rangc,, <M<1 both sub-
_ yee _ _ sonic and supersonic instability waves can exist.

whereM, is the Mach number at which the sonic speeds of  |n Figure 1 we ploM, versusw for the different binary
the two streams are equal. With this definition, all distur-systems. In this figure, the region<ON<2 is expanded to
bances are supersonic fivi>1. This definition of the con-  petter show the differences at the lower values\bf Also
vective Mach number is based on the freestream Mach nunshown in this figure as a dashed line is the corresponding
ber in the laboratory frame and is independent of the speegalue for a single gagi.e., W= B,=1). The trend is not
of the large-scale structures and the speed of the most umonotonic due to the variations in the thermodynamic prop-
stable wave. It is interesting to note that the commonly usedrties, even when two molecular weight ratios are very close
heuristic definition of the convective Mach numiist term  to each other. Note that fov>1, M, is greater than the
in (8)] is derivable from linear stability analysiS. corresponding value of a single gas, while o<1, it is

Further understanding of the role of the convective Machsmaller. This figure shows that, in general, the valug\at
number can be gained by notinylc=1 implies that the best indicator for the value ®, . The overall increase
M=M, . This is the largest value of the Mach number forin M, as W increases indicates that the value of the
which any subsonic instability waves can exist. For largeffreestream Mach number above which no subsonic instabil-
values of the Mach number there avely supersonic modes ity waves can exist also increases. Since the valu# of
which radiate |r_1to one or the other strear_n. The Iargest_valughanges by a factor of five for the cases with large or small
of the convective Mach number for whiabnly subsonic  weight ratios and this value is used to define the convective

modes can exist is given by Mach number which characterizes the effects of compress-
M. =min(M, ,M_)/M,, 9) ibility, it i; seen that the proper ac_co_unting of the value of
MIN M, for different gas combinations is important.
whereM, is given by(7) andM , is the value of the Mach The nature of the disturbances and the appropriate

number for whichc,=g8,, andM _ is the value for which boundary conditions can now be illustrated by reference to

Phys. Fluids, Vol. 8, No. 7, July 1996 Kozusko et al. 1957
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Figure 4, where we plot. versusM, for the particular
cases ofAr-He (Flgure 2a and He-Ar (Flgure 2h, with FIG. 4. Plot of the locatiory, as a function of the molecular weight ratio

Bu=0.5 and Br=1.5. When referring to this figure, it w using Model I(asterisks Model Il (triangles, and Model Il (circles
should be kept in mind that the value bdf, for the two  with M=0, 8,=0.5, andB;=1.5.

cases varies by a factor of about five so that the scales in
terms of the actual Mach number are quite different. The
significance of this figure has been discussed previously b
,13,6 ;
Jack_spn and Grogéﬁ. Thug, the key to understandmg the Thus, this classification scheme is valid for all three models
stability characteristics of this flow is the understanding of S
used in this study.

different parameter regions for which various types of insta- To complete the stability problem, the appropriate

bility modes can exist. One can see from Figure 2 that thesBoundary conditions of either spatial or temporal stability,

curves divide the, — M. plane into four regions, wheig is : . .
; for either damped or outgoing waves in the fast and slow
the real part ot. Also shown as dashed lines are the bound .
reestreams are, respectively,

for ¢, ; namely,c, € [By,1]=[0.5,]. If a disturbance exists
with a M, andc, in region 1, thenQ? and Q2 are both _
positive, the disturbance is subsonic at both boundaries, and p—e
we classify it as a subsonic mode. In region 3, hath and

02 are negative and hence the disturbance is supersonic at ¢,_>e*i77\/Tﬁ if c,<c,, (10)
both boundaries, and we classify it as a supersonic-
supersonic mode. In region mi is positive andQ? is
negative, the disturbance is subsonictat and supersonic

at —oo, and we classify it as a fast supersonic mode. Finally,

?ﬁdependent of the detail form of the mean flow profile.

Qen i ¢,>cy ;

p—e-7 if ¢,<c_;

. 2 .
in region 4,02 is negative and)? is positive so the distur- p—e TS if ¢ >c . (13)
bance is supersonic at~ and subsonic at-c, and we
classify it as a slow supersonic mode. Finally, the above formulation is also valid for a mixing

Note that the above classification scheme only dependayer in a channel with a zero streamwise pressure gradient
upon the values of the mean flow in the freestreams and iwith an appropriate change in the boundary conditions.

1958 Phys. Fluids, Vol. 8, No. 7, July 1996 Kozusko et al.



TABLE II. The location S(7.)=0, as determined from Model Ill, at TABLE Ill. The corresponding neutral phase speegls as determined
M=0, By=0.5, andB;=1.5 for the different gases considered in this from Model Ill, at M=0, By,=0.5, andB;=1.5 for the different gases

study. The top row corresponds to the gases in the freestreays ato, considered in this study. The top row corresponds to the gases in the
while the first column corresponds to the gases in the freestream dteestream apy= -+, while the first column corresponds to the gases in the
n=—o. The notationlNA means not applicable for a binary gas. freestream aty= —. The notationNA means not applicable for a binary
gas.
H, He Ne N 0, Ar
H, He Ne N O, Ar

H, NA 0.096 0.124 0.228 0.208 0.186

He 0.219 NA 0.246 0.373 0.346 0.317 H, NA 0.829 0.896 0.922 0.924 0.926

Ne -0.313 —-0.255 NA 0.379 0.364 0.368 He 0.780 NA 0.892 0.914 0.916 0.919

N, -0.795 —-0.583 —0.057 NA 0.168 0.178 Ne 0.668 0.690 NA 0.851 0.856 0.868

0, -0.814 -0.617 —0.052 0.200 NA 0.200 N, 0.628 0.649 0.757 NA 0.817 0.829

Ar -1.013 -0.769 —0.110 0.153 0.145 NA 0, 0.627 0.646 0.753 0.808 NA 0.826

Ar 0.614 0.631 0.735 0.789 0.794 NA

A. Neutral modes . . .
speed ofcy=0.919, which represents an increase in phase

To illustrate how a binary gas alters the stability characspeed of 2.5% even though the molecular weight ratio is
teristics, we first present below the neutral phase speeds felecreased by only 0.3%. Another example is that of
various combinations of gases. Ar—Ne with W=0.505 and phase speed@f=0.735, and

If a neutral mode exists in region 1 of Figure 2, then theHe— H, with W=0.504 and phase speed of,=0.780,
neutral phase speet), is given bycy=U(7.) provideda  which represents an increase of almost 6% in the neutral
# 0. Here,7. is the zero of the Lees-Lin regularity condition, phase speed even though the molecular weight ratio is de-

S(m)=(p*U’)". (12
The extra factor op is a result of working in the similarity

variable instead of the physical variable. The corresponding 10 N
neutral wavenumber and frequency must be determined nu- * o x % o o o
merically. These modes are called regular subsonic neutral 0.9 * 5 %3 & j N *
modes. If, on the other hand, a neutral mode exists in regions . B
2, 3 or 4, the Lees-Lin regularity condition can not be used o8k ©
and thus the phase speed of the neutral modes must, in gen-_,
eral, be found numerically. These modes are called singular© 4
neutral modes. 0.7 b
Typical plots of S(#) are shown in Figure 3 for the D
binary system of argon and helium using Model 11l with 0.6
M =0, By=0.5, andB;=1.5. In each case there is only one
zero of S, although the location differs depending upon
which gas lies in the fast freestream. In addition, the zeros O~5O ' 4;— ' é ‘ 1'2 ' 1'6 ' 2Jo

are not symmetric about the-axis when changing from the
Ar—He system to theHe—Ar system. This asymmetry is W
due to the asymmetries in the velocity and temperature pro-
files. The difference in location implies that the neutral phase
speedcy in each case will also be different. The location
7. Of the zero ofS for the different binary systems are given
in Table I, and the corresponding neutral phase speeds given 0.9
in Table III.
To better visualize the overall trends, we plot in Figures

4 and 5 the location of the root & 77) and the neutral phase ~ _,
speeds as a function of the molecular weight r&ltiorespec- ©
tively, for Model Il (circles. Also shown in these figures are 0.7F o
the results for Model (asterisksand Model lI(triangles. In
each figure, the regionOW=2 is expanded to better show &

ISk

0.8

* *0OD O
*0D
FP
*
)

(@]

®A
the differences at the lower values\W. These figures indi- *
cate that in general both quantities increase vih or, @Ag
equivalently, decrease with increasidg. The trends are not 0.
monotonic due to the variations in the thermodynamic prop-
erties, even when two molecular weight ratios are very close W
to each other. As an example’ the CaseH%f_ Ne with FIG. 5. Plot of the neutral phase speeaxglsas a function of the molecular

W=10.011 has a neutral phase speeccp¥ 0.896, while weight ratioW using Model I(asterisky Model Il (triangles, and Model 11l
the case ofHe—Ar with W=9.979 has a neutral phase (circles with M=0, 8,=0.5, andB;=1.5.
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creased by only 0.2%. Qualitatively, the results for all theThere are three distinct real roots tdr>M cr. One of these
models are similar, however, there are quantitative differis the phase speed of the constant speed supersonic-
ences. For example, neither Models | nor 1l faithfully repro- supersonic neutral mode while the other two roots must be
duce the neutral phase speeds of Model Il for the entirdound numerically from13). We note that all three of these
range ofW considered, although the locatiopp for Models  neutral modes lie in region 3.
Il and lll are close forW>4. These results indicate that
although Models | and Il may be simpler to solve numeri-
cally than Model 111, they do not yield satisfactory agreement
over the whole range oN. The Rayleigh equation must be solved numerically in

In addition to the neutral modes withy # O, there may order to compute the growth rates. Our experience has shown
exist neutral modes having zero wavenumber. The phastat it is computationally easier to solve a Riccati type equa-
speed of such modes do not satisfy the Lees-Lin regularityion, which is a first order, nonlinear, non-homogenous equa-
condition but are found by an asymptotic analysigDfin  tion with non-zero boundary conditions, rather then solving a
the limit «— 0 (Groschet al%. In this case an expansion of second order, linear, homogeneous equation with zero
the solution in powers of, along the lines previously used boundary conditions. To this end, we first begin with the
by Drazin and Howart? and Blumen, Drazin, and Billing§  equivalent perturbation equation for the pressure amplitude
in related studies, yields an eigenvalue relation which is anatl, given by
lytically tractable. Below, we shall describe the extension of oU’
these results for binary gases. I"— ——1I1' — a?¢11 =0, (18)

The leading order term in am-expansion is independent U-c
of the detailed form of the mean profile, and only depends oRvhich is transformed to an equivalent Riccati equation
the basic flow characteristics at infinity. This is to be ex- , ,
pected from physical arguments because the wavelength of &/ ,7G2— ZL_ T_
the instability in the limita—0 is much larger than the U-c T
length scale over which the undisturbed flow is non-uniform.by use of the transformation
For the supersonic-supersonic case, setting the leading order ,
term in the expansion to zero yields an equationdgr G I (20)

= ot
M2(By—cn)?B,B, 1 —1](1—cy)?
[MA(Bu=cn)"B, B, I v Appropriate boundary conditions can be derived in a

=,8,§[M2(1— cn)?—1](Bu—cn)*. (13)  straightforward manner. Further details can be found in Jack-
. son and Groscl’ The stability problem is thus to solve the
If the molgcular Wellghts are taken to be equal and the thergjccati equation, together with appropriate boundary condi-
modynamic quantities are assumed constant={..,  tjons, for a given real frequency and Mach numbeM,
pT= %7) then equation(13) reduces to equatiof5.38 of \yith the mean profile defined for a particular binary gas. The
Miles™* expressed in the notation used here. In general, th'éigenvalue is the wavenumber We integrate the Riccati
si>.<th—order polynor_nial must be solved ngmerically to deter'equation along the contoup=—L to »=0 and =L to
mine cy as a function oM. For the special case @,=1, ;-0 using a fourth order Runge-Kutta scheme. The value of
we see that N . L varied from mixture to mixture, and was chosen large
(1) A single positive real root of13) exists for enough so that in each case the boundary conditions were
_ —1/2y10q _ satisfied. We choose an initiak and then iterate using
M=M,=(1+8, 791 Bu), (149 Muller's method® until the boundary conditions were satis-

B. Growth rates

_t

T (19

with phase speed fied and the differences in all calculated quantities;atO
" 5 was less than IC. All calculations were done in 64 bit
cn=(But B, )(1+B,™). (15  precision. Because this equation has a singularity at

This is classified tant d . U=cy, the neutral modes could not be determined.
IS 1S classilied as a constant Speed SUpersonic-supersonic rpq spatial growth rates for selected binary mixtures as a

neutral mode lying in region 3 of the,—M plane. Itis ¢ tion of frequency are shown in Figures 68 for Models
independent of Mach number and corresponds to the phage, and Il respectively. In all case$fl =0, B,=0.5, and

speed at which the sonic speeds in the two streams are quglf=l.5. In each figure, the labeled curves correspond to

In this regime there is also a pair of complex conjugate E'binary gases with increasing molecular weight ratioFrom
genvalues correspond to one unstable and one stable eig Rose figures several remarks can be made. For a given

mode. The associated instability disappears as the Ma odel, there is a general decrease in the maximum growth

numl;e:r:jcreslses. fi rate as the molecular weight ratio increases. This is consis-
2 ouble root first appears at tent with the limited experimental evidence that the growth

Mcr=(1+ 8, 1/3)3/2/(1—/3u)- (16) rate is smaller when the hea}vier gas is on the high-speed _side
and greater when the heavier gas is on the low-speed’side;
with phase speed as we shall see below, this statement is not strictly true for all
of the gas combinations studied here. The largest growth rate
en=(Bu+B,"I(1+5,"7). (17 for Model | (which corresponds to the smallest valueVif

1960 Phys. Fluids, Vol. 8, No. 7, July 1996 Kozusko et al.



-0.18 —0.09 1. Ny—He

1 2. Ar—Ne

-0.16 —0.08 3. 0,—Ne

-0.14 —0.07 4. Ar—N,

-0.12 —0.06 5. NQ—AF

6. Ne—Ar

_—0.10 _—0.05 - He—Ne

-0.08 -0.04 8. He—N,
—-0.06 —-0.03
—0.04 -0.02
—-0.02 —0.01
0.00 0.00

0.0 0.0 0.8

FIG. 6. The spatial growth rates for selected binary mixtures as a function of |G- 8. The spatial growth rates for selected binary mixtures as a functlon of
frequency for Model | withM =0, 8,=0.5, andB;=1.5. In each figure, frequency for Model 11l withM =0, ,BU‘: 0.5, and,8T=‘1.5_. In eagh figure,

the labeled curves correspond to binary gases with increasing molecula“:'e. Iabeleq curves corregpond to blna}ry gases with increasing molecular
weight ratioW, with 1 being the combination with the smallest value of weight ratioW, with 1 being the combination with the smallest value of
W. W.

speeds as seen in Figure 5 which are predictive of the real
shown in Figure Bis more than twice the largest growth rate phase speeds of the unstable wave packet.
shown for the other two models. As the valuéfincreases, A more direct comparison of the maximum growth rates
the maximum growth rate decreases to the point where thBetween the three models for a given binary system can be
numerical error, due to the presence of the critical layer, is ofound in Table IV. Here, the maximum growth rates for
the same order as the growth rates, and thus the procedugenty-four combinations are listed. The maximum growth
can not be continued for the largest values\bfe.g., see the rate for a single species gas using Sutherlands viscosity law
curve labeled 7 in Figure)6Note also that the largest range
of frequency shown in Model | is more than three times
larger than the frequency ranges shown for the other twgABLE IV. The maximum spatial growth rates for various binary systems

dels. This i ticularly sianifi t si Model | Id and for the three models used in the study. The gases are listed in increasing
models. IS 1S particularly signincant since Model | would \y, - aiso shown are the relative errors between Models | and Il with Model

imply a much larger range of unstable wavelengths than isi. The relative error is defined as the maximum growth rate of Model 1|
actually present. The range of unstable wavelengths coulghinus the maximum growth rate of Model | or II, divided by the maximum
ultimately determine the turbulent structures that might degrowth rate of Model Ill. NA implies not available. HereM=0,
velop. Of further note, is the differences in the neutral phasév =095 andsr=15.

Fi F, Modell Modelll Modellll ERRLIN% ERRILII)%

Ar H, -—0.2672 —0.0558 —0.0652 —309 14

1 Na—He 0, H, -0.2332 —0.0562 —0.0670  —248 16

-0.08 T2 N, H, -—0.2317 —0.0587 —0.0704 —229 16

’ 2. He—H, Ar He -0.2225 —0.0697 —0.0818 —172 14

—0.07 3. N,~0, Ne H, —0.1448 —00593 —00619  —133 4
—0.08 4. Hy—He O, He -0.1876 —0.0687 —0.0809 —131 15

N, He -0.1799 —-0.0697 —0.0846 —-112 17

~0.05 5. He—Ne Ne He —01229 —00676 —0.0700  —75 3

- 6. He—Ar He H, -—-0.0744 —0.0612 -0.0550 —-35 —-11

x —0.04 Ar Ne -0.0754 —0.0599 -0.0709 -6 15
O, Ne —0.0626 —0.0540 —0.0647 3 16

—0.03 Ar N, -00626 —0.0561 —0.0557  —12 0
—0.02 N, Ne -—0.0578 —0.0519 -0.0652 11 20

Ar O, -—0.0521 —-0.0538 —0.0550 5 2

—~0.01 O, N, —0.0521 —0.0498 -—0.0500 —4 0

N, O, —0.0437 —0.0448 —0.0486 10 7

6.00 O, Ar —0.0390 —0.0409 -0.0437 10 6

0.0 Ne N, —0.0396 —0.0430 —0.0395 0 -8

w N, Ar —0.0355 —0.0385 —0.0430 17 10

Ne O, —0.0357 —0.0403 —0.0381 6 -5

FIG. 7. The spatial growth rates for selected binary mixtures as a function ofNe  Ar —0.0279 —0.0337 -0.0333 16 -1
frequency for Model Il withM =0, 8,=0.5, andB;=1.5. In each figure, H, He -—-0.0274 —0.0321 —0.0434 36 26
the labeled curves correspond to binary gases with increasing moleculanHe Ne —0.0100 —0.0173 —0.0238 57 27
weight ratioW, with 1 being the combination with the smallest value of He N, NA —0.0140 -0.0178 NA 21

W.
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with Pr=0.7 is aj max= —0.047541. Note that the maxi- 006« Ar—N2
mum growth rates for any of the three models is not a strictly '
decreasing function oW. There is some variation of the

general rule when specific combinations of gases are used —0-05
owing to the difference in the actual physical parameters.

Also shown in the table are the relative errors between Mod- —-0.04
els | and Il with Model Ill. From this table one can see that

Model | over predicts the maximum growth rates of Model & —0.03
[ll considerably for small values oV (the first nine binary
gases listedand under predicts for large values ¥f (the

last four or six binary gases listedrhis trend is observed for —0.02
Model Il, but is less severe than for Model I.
The above results indicate that the stability results for —0.01
Models | and Il are a poor approximation to the stability
results for Model 111, 0.00 n u
The spatial growth rates for various values of the con- 0.0 0.2 0.4 0.6 0.8
vective Mach numbeM,, as defined by8), are shown in W

Figure 9 for Model IlI for the gases nitrogen and argon. In all
cases,By=0.5 andBr=1.5. In each case, the maximum
growth rate, the corresponding frequency at which the maxi-
mum is attained, and the range of frequencies over the entire

unstable spectrum decreases as the convective Mach number —0.06 NZ—Ar
increases. Once the growth-ratefrequency curve is found
for M.=0, theM >0 curves appear to be nested in a pre- 005+
dictable manner. To further explore this, consider the nor-
malized growth rate, defined as
—0.04
r= —ZtmalMo) @) .-

— @i max0) S —0.03}
The normalized growth rates for the gas combinatigms
N, (circle), N,-Ar (plus), N,-He (diamond, and O,-H, —0.02
(bullet) are shown in Figure 10. Also showsolid curve in
this figure is the corresponding results for a single gas using —0.01 |-
Sutherlands viscosity law witRPr=0.7. We note here that
for the cases oAr-N, andN,-Ar, both the Lewis number 0.00 ! | ;
and the Prandtl number are nearly constant across the shear 0.0 0.2 0.4 0.6 0.8

layer (see figures 1 and 4 of Kozusled al®). For the case of
N,-He the Lewis number varies by a factor of 8 across the
mixing layer (see Elgure 3_ of KOZUSk_@t al'g) while the FIG. 9. Plot of the spatial growth rates for various values of the convective
Prandtl number varies consideraltee figure 6 of Kozusko  mach numbem,, as defined by8), using Model lil for (top) Ar-N, and

et al®). Finally, for the case ofD,-H, the Lewis number (bottom) N,-Ar. Here,3,=0.5 andS;=1.5.

varies by a factor of 6 across the mixing laysee figure 2 of

Kozuskoet al®) while the Prandtl number again varies con-

siderably(see figure 5 of Kozusket al®). At M,=1.0, there density ratios Knowing the maximum growth rate at

is a spread in the normalized growth rates between the variy, ~0, one could easily estimate an approximate value of

. . . Cc
ous gas combinations of about 25%. The consistent shape ﬂ{e growth rate wheM, # O using a single gas and any of
the curves in Figure 10 indicate that there is almost 3he various models forcthe mean fldire., Chapman’s Law
similarity-like behavior when determining the decrease in theg therland's Law. or even a hyperb<,)Iic tangent prbnfiie
growth rate owing to an incr_eas_e in convective_ Mach NUMpgvever, we have shown that the maximum growth rates
ber. I_ndeed,_other gas combinations produce similar rggsult%,md corresponding frequency ranges and wavelength ranges
This is consistent with the results of Jackson and Grosch giger sypstantially aM =0 and that the simplified models
where it was determined that for a single g#5 1) With  5qe| | and Model 1) are poor predictors of these values.
M. <1, the actual mean flow velocity and temperature pro-
files did not matter when determining the normalized growthlv CONCLUSION
rate as a function of the convective Mach number. Thus, as™
previously suspected, this analysis shows that the decrease in The two-dimensional inviscid spatial stability character-
growth rates with increasing Mach number is due to comistics of a compressible mixing layer with a binary combina-
pressibility effects and is only somewhat modified by con-tion of gases is presented. From the analysis above, we con-
sidering specific combinations of gadesid thus varying the clude that differing molecular weights has a significant effect
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