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Absolute-convective instabilities and their associated wave packets 
in a compressible reacting mixing layer 
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Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia 23529 

C. E. Grosch 
Department of Oceanography and Department of Computer Science, Old Dominion University, Nopfblk, 
Virginia 23529 

(Received 2 April 1992; accepted 17 November 1992) 

In this paper the transition from convective to absolute instability in a reacting compressible 
mixing layer with finite rate chemistry is examined. The reaction is assumed to be one 
step, irreversible, and of Arrhenius type. It is shown that absolute instability can exist for 
moderate heat release without backflow. The effects of the temperature ratio, heat 
release parameter, Zeldovich number, equivalence ratio, direction of propagation of the 
disturbances, and the Mach number on the transition value of the velocity ratio are given. The 
present results are compared to those obtained from the flame sheet model for the 
temperature using the Lock similarity solution for the velocity profile. Finally, the structure 
of the wave packets produced by an impulse in the absolutely unstable flow is examined. 

1. INTRODUCTION 

Understanding the stability characteristics of reacting 
compressible free shear flows is of fundamental importance 
(Jackson’) and may have possible usefulness in the devel- 
opment of the scramjet engine ( Beach2). As discussed by 
Drummond and Mukunda,3 the scramjet combustor flow is 
complex but spatially developing and reacting compress- 
ible mixing layers of fuel and oxidizer provide the simplest 
relevant model. Mixing of the two gases takes place in the 
shear layer and combustion occurs when there is both suf- 
ficient fuel and oxidizer present at the same point. The 
residence time of the fuel and air in the combustion cham- 
ber can be very short; therefore, it is extremely important 
that a high mixing rate of the fuel and oxidizer be achieved 
so that complete combustion is attained before the fuel is 
convected out of the engine. Compounding the problem of 
a very short residence time is that the mixing rates of shear 
layers have been shown experimentally to decrease as the 
Mach number increases from zero (e.g., Brown and 
Roshko;4 Chinzei et a1.;5 Papamoschou and Roshko;b77 and 
Clemens’). As a result, a major theme of current research 
is mixing enhancement techniques. One obvious mixing 
enhancement technique is to force the shear layer at some 
prescribed frequency, usually computed from linear stabil- 
ity analysis. It is essential to determine whether reacting 
flows are convectively or absolutely unstable if one wishes 
to control the downstream evolution of the flow. An abso- 
lutely unstable flow is not sensitive to external disturbances 
and initial conditions; thus, experiments may’not be com- 
pletely reproducible nor may “flow management” tech- 
niques such as forcing be useful. In this paper, we address 
the question of transition from convective to absolute in- 
stability in compressible reacting shear flows and compute 
the associated wave packets to investigate their time evo- 
lution. 

The concept of absolute and convective instabilities 
was introduced by Briggsg in the context of plasma insta- 

bility. The same idea was put forward independently by 
Gaster”“’ within the context of classical hydrodynamic 
stability theory based on the Orr-Sommerfeld equation. A 
flow is said to be absolutely unstable if the respohse to an 
impulse in space and time is unbounded everywhere in 
space for large time. On the other hand, if the response to 
an impulse is a wave packet propagating downstream from 
the source with the waves forming the packet having grow- 
ing amplitudes, the flow is said to be convectively unstable. 
With this type of instability, the response decays to zero 
everywhere in space for large enough time. These concepts 
have been applied to classify the instabilities of both in- 
compressible and compressible flows; see, for example, the 
review article by Huerre and Monkewitz.12 In particular, 
nonreacting subsonic compressible mixing layers (Huerre 
and Monkewitz;13 Pavithran and Redekopp;14 and Jackson 
and Grosch15) have been found to be convectively unstable 
unless there is an appreciable amount of backflow. 

In the course of a comprehensive study of the stability 
of a reacting compressible mixing layer using a hyperbolic 
tangent for the mean velocity profile and a flame sheet 
model to describe the reaction, Jackson and Grosch16 
found that the flow switches from convective to absolute 
instability with a sufficient amount of heat release even 
without any reversed flow. Since piecewise continuous pro- 
files, such as the temperature of the flame sheet model, can 
give spurious results, it is desirable (i) to reexamine the 
question of absolute/convective instability for reacting 
flows with finite rate chemistry and (ii) to compare the 
results with those found using a flame sheet model. 

The ignition and structure of a reacting compressible 
mixing layer using finite rate chemistry has been studied 
recently by Grosch and Jackson.” They solved the partial 
differential equations for the velocity, temperature, and 
mass fractions with appropriate initial and boundary con- 
ditions by, in the first instance, marching downstream 
without making any assumptions as to similarity. They 
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found that the velocity field attained a self-similar form at 
a very small downstream position. This was in the region 
where ignition had not occurred and the temperature and 
mass fractions were determined by chemically frozen dif- 
fusion equations. Because of this, they transformed the 
equations to the self-similar form and used the self-similar 
velocity, temperature, and mass fraction profiles as the ini- 
tial conditions of the problem. Of course the temperature 
and mass fraction profiles evolved further with down- 
stream distance from this initial point and the three re- 
gimes of ignition, deflagration, and a diffusion flame were 
found to occur. The diffusion flame continued to evolve 
farther downstream and very far downstream of the igni- 
tion point the diffusion flame tinally evolved to a flame 
sheet. In this paper we follow Grosch and Jackson and use 
the chemically frozen similarity profiles as the initial con- 
ditions for the downstream marching solution of the mean 
liow equations. 

An important consideration in this, and any other 
study of reacting flow, is the representation of chemistry of 
the reaction. The t-lame sheet is the simplest possible 
model. If the chemistry is assumed to have a finite rate, a 
wide variety of models have been used. These range from a 
detailed representation of the reactions using multiple rate 
equations and including intermediate species3 to a one-step 
irreversible reaction. ” The former model is believed to give 
a very accurate representation of the details of the chem- 
istry but requires extremely expensive and time consuming 
numerical calculations. The latter model is widely used in 
combustion studies and is believed to at least model some 
aspects of the relevant chemistry. It has a nonlinear depen- 
dence on temperature and mass fractions but is simple 
enough that the analysis and numerics are tractable. Be- 
cause our primary interest [items (i) and [ii) above] is to 
find the effect of finite rate chemistry, in comparison to the 
flame sheet, on the convective/absolute transition we chose 
to use the simplest finite rate reaction model: the one-step 
irreversible Arrhenius model. We believe that this model 
will give correct qualitative results but we expect that there 
will be quantitative differences with the results of calcula- 
tions using the more detailed rate equation models. 

In any compressible flow calculations it is necessary to 
specify the property variations with temperature and pres- 
sure and the appropriate form of the equation of state. At 
sufficiently high temperature and/or low density it will be 
necessary to use an equation of state incorporating real gas 
effects. ‘* However, in this study the Mach numbers are 
moderate and we will assume that a perfect gas law is valid. 
We have examined the effect of the form of the velocity 
profile, the value of the Prandtl number, and the viscosity- 
temperature relation on the stability characteristics of the 
nonreacting compressible mixing layer. lg It was found that 
the qualitative behavior of the solutions was independent of 
these variations although there were quantitative differ- 
ences in the growth rates and phase speeds. In view of the 
fact that we are using a simplified combustion model in 
these calculations, we can only expect that our results will 
show correct qualitative dependency of the convective/ 
absolute instability transition on the flow parameters. 
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FIG. 1. Schematic showing the reacting mixing layer. 

Therefore we have chosen to use simple property varia- 
tions: the Prandtl number constant and equal to one and a 
linear variation of the viscosity coefficient with tempera- 
ture. 

The finite rate model involves solving the Lock simi- 
larity profile for the velocities, together with the tempera- 
ture and mass fraction equations using a one-step irrevers- 
ible reaction of Arrhenius type. For consistency, the Same 
sheet model must also involve solving the Lock similarity 
profile for the velocities, assuming an infinite rate reaction, 
and using a Crocco relation for the temperature and mass 
fractions on either side of the flame sheet. We have done 
this for the flame sheet calculations reported here. This is 
in contrast to our previous reported results using the flame 
sheet” where we approximated the velocity profile by a 
hyperbolic tangent. 

In Sec. II, a brief review of the formulation of the mean 
flow equations is given for completeness. In Sec. III, the 
inviscid three-dimensional stability equations including the 
effect of finite rate chemistry are derived. Certain results 
pertaining to the linear stability of this Row with finite rate 
chemistry and comparisons to the results obtained with the 
flame sheet model are given in Sec. IV. Section V contains 
results on the transition from convective to absolute insta- 
bility using the finite rate chemistry model, which are then 
compared with those obtained from the flame sheet model. 
The flame sheet model is found to provide excellent pre- 
dictions on the transition values provided one is down- 
stream of ignition and Zeldovich numbers are greater than 
about 10. Therefore, in Sec. VI results of calculations of 
wave packets using the flame sheet model in cases of both 
convective and absolute instability are given. Finally, Sec. 
VII contains our conclusions. 

II. FORMULATION OF THE MEAN FLOW EQUATIONS 

The nondimensional equations governing the steady 
two-dimensional flow of a compressible, reacting mixing 
layer with zero pressure gradient lying between streams of 
fuel and oxidizer with different speeds and temperatures 
(Fig. 1) are given by 

(pm,+ (pO,=O, (14 

l=pT, (lb) 
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p( lJu,+ VU&J = (PUJ, > (ICI 

p(UTX+VT,)=Pr-1(@“,),+(~-l)~2~U~+fi0~ 
(Id) 

p( UF,,,+ VFJ =sC~l(&,y)y-&a j=1329 
(le) 

LX= DpFIF2emWT. (If) 

In these equations, the x axis is along the direction of flow, 
the y axis is normal to the flow, U and V are the velocity 
components in the x and y directions, respectively; p is the 
density; T is the temperature; and F, and F2 are the mass 
fractions of the fuel and oxidizer, respectively. The reac- 
tion is assumed to be one step, irreversible, and of Arrhen- 
ius type. The viscosity p is assumed to be a function of 
temperature. The nondimensional parameters appearing 
above are the Prandtl number Pr, the Schmidt number 
Sci=Pr Lej for species j where Lei is the Lewis number for 
species j, the parameters flj involve stoichiometry of the 
reaction and are taken to be one, the Mach number is 
M=U,/a,, the Zeldovich number is Ze=E/R T, with 
E the dimensional activation energy and R the universal 
gas constant, the Damkijhler number is D defined as the 
ratio of the characteristic diffusion time scale to the char- 
acteristic chemical time scale, p is the heat release per unit 
mass fraction of the fuel, and finally y is the specific-heats 
ratio. The equations have been nondimensionalized by the 
free-stream values T,, pm, U,, F1,, for the temperature, 
density, velocities, and mass fractions, respectively, and 
lengths have been referred to some characteristic length 
scale of the flow. The boundary conditions consistent with 
(1) are 

T= U=F1= 1, F2=0 

at x=0, y>O and x>O, y-00, 

TED=, U=/3u<l, Fl=O, F2~4-l 

(24 

at x=0, y<O and x>O, y-+-03, (2b) 

where q5=Fl,.JF2,-, is the equivalence ratio defined as 
the ratio of the mass fraction F, of the fuel to the mass 
fraction F, of the oxidizer. If 4 = 1, the mixture is stoichio- 
metric; if #> 1, it is fuel rich, while if 4 < 1, it is fuel lean. 

The mean flow equations ( 1) are frrst transformed into 
the incompressible form by means of the Howarth- 
Dorodnitzyn transformation 

Y= 
I 

yp dy, i’=pv+u ypxdy, 
0 s 0 

(3) 

and then to the similarity variable for the chemically fro- 
zen heat conduction problem, 

,r#l=Y/2& (4) 

Under these transformations, with U=f’(n) and 
?= (qf’ -f)/x, Eq. ( 1) becomes 

f)))+2ff=O, (5a) 

4xf’T,-Pr-’ T”-2fT’-(y-l)M2(f”)2 

=4xj3DF,F,eBWT, (5b) 

4XfFj,x-SC11 Fy--lfFj= -4xDFIF2e-“““, (5c) 

where the primes indicate partial differentiation with re- 
spect to the similarity variable 7, and where the linear 
viscosity law ,u= T has been assumed (for Chapman’s lin- 
ear law p=CT, the constant C can be scaled out by res- 
caling 7 and f appropriately, but must be borne in mind 
when transforming the variables back to their dimensional 
forms). In terms of the transformed variables, the bound- 
ary conditions are 

T=f’=F1= 1, F2=0 

at x=0, n>O and x>O, n-+03, 

T=&-, f’=fiu, F,=O, Fz=$-’ 

(64 

at x=0, q<O and x>O, ‘~~-*--cxJ. (6b) 

In all of the calculations, we have taken O<fiv< 1 as there 
is no solution of (5a) with reversed flow. We also note that 
the Damkiihler number D can be scaled out of the equa- 
tions by a resealing of the x coordinate. However, resealing 
x by the Damkiihler number is not particularly useful since 
D is typically exponentially large and the resealed coordi- 
nate would be exponentially stretched, which is not desir- 
able from a numerical viewpoint. Finally, resealing to elim- 
inate the Damkohler number is only appropriate for the 
boundary-layer equations and is not possible when solving 
the full Navier-Stokes equations (see, for example, 
Ghoniem and Heidarinejad2’). 

In this paper the results of stability calculations carried 
out for the above flow field over a range of downstream 
positions are presented. The mean profiles are found by 
numerically integrating (5) with the initial and boundary 
conditions given by (6). For the comparisons to be made 
between the finite rate model and the flame sheet model, 
the same stability calculations are carried out using the 
Lock similarity solution for the velocity field [Eq. (5a>] 
and the flame sheet model for the temperature and mass 
fraction fields. For completeness, the equations for the 
temperature and mass fractions for the flame sheet approx- 
imation are given below. 

For finite Damkiihler number a thin diffusion flame 
exists within the mixing layer and is characterized by near- 
equilibrium conditions: F, =0 on one side of the flame and 
F,=O on the other. In the limit of infinite Damkiihler 
number this thin diffusion flame reduces to a flame sheet 
described by 

(74 

+Y-1 
,-M2(u--P~)(l-u), 

for V> qp and 

(7b) 
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F,=O, F,=+-‘-(l+4-9 (84 

T=&+ ( 1 -Pr+B> 

Y---l 
+,-M2w-Bo)u-u), (8b) 

for r~ < 17 f, where r] f is the location of the flame sheet given 
by the implicit relation 

1 +BL4 
uf=wrlf)= I+4 . 

Both reactants vanish at rJf, and T 
flame value 

T,=fir+(l-PT+i% 

r-l . 

(9) 

takes the adiabatic 

+,M‘wf--P,)u-uf). (10) 

The implicit relation for the flame location is independent 
of & and M, This is only the case for a linear viscosity law 
where the momentum equation decouples from the energy 
equation. For a more general viscosity law, the implicit 
relation for the flame location depends on & and M as 
well. Independently of the viscosity-temperature relation, 
when using (3) and (4) to transform back to the physical 
coordinates the diffusion flame location depends on all four 
parameters: flu, (p, &, and M. 

III. DERIVATION OF THE STABILITY EQUATIONS 

The derivation of the equations governing the stability 
of the reacting flow is straightforward except for the treat- 
ment of the source term. In a previous study of the stability 
of a reacting compressible mixing layer (Jackson and 
Grosch16), the limit of infinite Damkohler number was 
taken thus reducing the combustion zone to a flame sheet. 
In the flame sheet limit the perturbation does not affect the 
heat release in the sheet, it merely wrinkles the sheet. 
Therefore, the only effect the reaction has on the flow sta- 
bility is through the change in the mean temperature dis- 
tribution from that of the nonreacting flow. With finite rate 
chemistry, the perturbations not only wrinkle the combus- 
tion zone but also change the rate of heat release in the 
reaction. This, in turn, affects the stability of the flow. 

As we are considering the three-dimensional inviscid 
stability problem, the governing equations are 

P=pT, (114 

ptf (pu),+ (pv>,+ (pw)z=O, (lib) 

p(utfuu,+uu,+wu,)+L. Px=O, 
YM 

p(~,+uv,-tvv,+wv,) +A P,=O, 
YM 
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(lle) 
1 

p(w*+Uw,tvWy+WW,)+----i. 
YM 

P==O, 

Y-1 
-y (P,+uP,+vP,+wP,) =m (llf) 

P(Fj,r+uFj,x+vFj~CWFj,=) =-fh j= 19% (lk) 

with fl given by ( lf). The mass fractions Fj can be re- 
placed by the quantities Hi= T +/3Fj, which satisfy equa- 
tions without the source terms. The flow is perturbed with 
wave disturbances of the form 

= 1 u,O,Q l,p,T,H+‘jl cV> 
+E[C,a! COS 02?,22,II,~,F,J??j,;ri,E3j] 
x (y)ei[a(xcos B+zsin fJ-cdt], (12) 

where ~<l, a is the wave number, 8 is the direction of 
propagation in the x-z plane, and w is the frequency. For 
spatial theory, w is required to be real and solutions are 
sought for which a is complex. For temporal theory, a is 
assumed to be real and solutions are sought for which w is 
complex. The amplification rates of the disturbances are 
then given by --c+ or Oh respectively. The disturbances are 
two dimensional for 0=0” and otherwise oblique. 

Upon carrying out the transformations from y to Y and 
then to 71, it is straightforward to show that 

f+flkj=fij=y-l TlLM2a2co~~~;(U4~ (13) 
Y 

where primes indicate differentiation with respect to v, a 
and w have been resealed by 6, and c=w/a cos 8 is the 
complex phase speed. The source term a, expanded to 
order E is 

‘aa A an ,. an eL 
=~(F,,F,,T) +E =g- F,+= F,+z T (14) 

1 2 

Using ( 13) and the relation 

n’+iyM2a2 coil O( U-c)+=0 (15) 

found from ( 1 Id), the order E term for the quantity /3fi 
becomes 

Y---l __ T(QI+Qz)IJ- 
Q,Hi + Q&i II’ 

Y yMza2 cos2 0( U-c)’ 

+(SQrQrQdf, (16) 

with 

an a0 an 
Q~=-jp Q2=%, Q~=E. (17) 

The equation for the pressure perturbation, found by uti- 
lizing (lla)-(llc), (Ile), (llf), and (16), is 
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nI” - ( g&+(&q) f ) rl’ 
(18) 

where 

K1=J,/J,, K,=y-(y-l)(J,/J,) (19) 

and 

J -l+i (PQ3--Ql-QdT 
1- a cos t9( U-c) ’ 

J,=l-i 
(QI+Q~)T 

a cos f3( U-c) ’ (21) 

J =l--i (Q&+Q2G)T 
3 a cos eT’( U-c) * (22) 

The appropriate boundary conditions for Il are obtained 
by considering the limiting form of ( 18) as q-+ f CO which 
gives that 

IJ+exp( *A,q), (23) 

where 

A%=a2[1-M2cos2e(1-c)“], 

A? =a2&[&-M2 cos2 8(fiu--c)“]. (24) 

The values of the phase speed for which A; vanishes are 

1 
c+=l------- & 

m0s 8’ 
c- =&+------ 

m0s 8’ 

where c+ is the phase speed of a sonic disturbance in the 
fast stream and c- is the phase speed of a sonic disturbance 
in the slow stream. When 

1+&T 
MC~S e=M,=------ 

l-&7 ’ 
(26) 

ch are equal. 
The nature of the disturbances and the appropriate 

boundary conditions are illustrated by reference to Fig. 1 
of Jackson and Grosch,” which is a plot of c, vs M for a 
typical value of & and pv, the nondimensional tempera- 
ture and speed at - 03, respectively, and for 0 = 0”. These 
curves divide the phase-speed-Mach-number plane into 
four regions. If a neutral disturbance exists with a Mach 
number and phase speed in region 1, it is subsonic at both 
boundaries, and is classified as a subsonic neutral mode. In 
region 3, the neutral disturbance is supersonic at both 
boundaries, and is classified as a supersonic-supersonic 
neutral mode. In region 2, the neutral disturbance is sub- 
sonic in the fast stream and supersonic in the slow stream, 
and is classified as a fast neutral mode. Finally, in region 4, 
the neutral disturbance is supersonic in the fast stream and 
subsonic in the slow stream, and is classified as a slow 
neutral mode. For oblique modes (e#O”) the four regions 
still exist and only the boundaries, as defined by the c, 
curves in the phase-speed-Mach-number plane, are 
changed from those of the two-dimensional modes. Finally, 

it is important to note that the sonic speeds are indepen- 
dent of the reaction since the far field is chemically frozen. 
Thus the classification scheme does not depend on the re- 
action model used. 

In all of the stability calculations reported below, we 
take D=ez” as is suggested by the asymptotics of Grosch 
and Jackson. I7 In addition, we take Y= 1.4, Pr = 1, SCj= 1 
with varied fi, q5, Ze, pv, &, and M. Unless otherwise 
stated, stability calculations were performed at the down- 
stream locations x=3 and 10. 

IV. LINEAR STABlLlTY RESULTS 

A comprehensive study of the stability of the reacting 
compressible mixing layer using the hyperbolic tangent for 
the velocity profile and the flame sheet approximation for 
the temperature and mass fraction profiles has been carried 
out by Jackson and .Grosch.r6 Since then, Planche and 
Reynolds22 have also carried out stability calculations for 
the flame sheet model using the compressible boundary- 
layer equations to calculate the velocity profile. Addition- 
ally, Shin and Ferziger23*24 reexamined the stability prob- 
lem using a model of finite rate chemistry. In all of these 
studies it was found that the reaction had important and 
complex effects on the flow stability but only Jackson and 
Grosch reported the presence of an absolute instability due 
to the reaction. Because these authors used different mod- 
els for the mean velocity and temperature ‘profiles, a quan- 
titative comparison of the stability results between the 
flame sheet model and the finite rate chemistry model is 
not possible. 

Our primary interest is in the transition from convec- 
tive ‘to absolute instability in reacting flows and the com- 
parison of the results for the finite rate model to those of 
the flame sheet model. Therefore, we will not present an 
exhaustive comparison of the stability results using the fi- 
nite rate chemistry model as opposed to the flame sheet 
model, but rather highlight some of the differences in the 
stability of the flow owing to the use of the two models 
through comparison of the phase speeds of the neutral 
modes for both models. In this section we consider only 
two-dimensional disturbances, thus setting 0=0”. 

The phase speeds of the subsonic neutral modes with 
nonzero wave numbers in region 1 can be found by using 
the regularity condition (Lees and Lin2’). Let S(v) be 
defined by 

d 
s(q)=& (27) 

Then if a neutral mode exists with a#0 in region 1, the 
phase speed will be given by cN= U( r],), where qC is a root 
of S. The corresponding neutral wave number, (rN, must be 
determined numerically. In addition to the neutral modes 
with aN#O there may exist neutral modes having zero 
wave number. The phase speed of such modes does not 
satisfy (27) but can be found by an asymptotic analysis of 
( 18) in the limit a -+O. The result of this analysis is, for 
M=&=O, 
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In the nonreactive case (8=0> (28) reduces to 

(28) 

(29) 

which shows that the neutral phase speed is complex for 
a,=o. 

Figures 2(a) and 2(b) are plots of S vs 7 for various 
values of the heat release parameter, B, using the finite rate 
model. The slow stream has a speed pu=O and tempera- 
ture&=0.5. The equivalence ratio c$= 1, with Ze=20 and 
M=O. The results shown in Fig. 2(a) were obtained using 
the temperature distribution at x=3, while those of Fig. 
2(b) were obtained using the temperature distribution at 
x= 10. As one can see from examination of these figures, 
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the rate of heat release has a significant effect not only on 
the number of roots of S, but also on their values. When 
the heat release parameter is small (/?=O. 1 >, there is a 
single root of S with ~7~ close to zero at both x=3 and 10. 
With /3~ 1.5 there are three roots of S at x=3. One root is 
located near qC= - 1.5, while the other two are a double 
root with 7, just greater than zero. A further increase in p 
to 2 results in a shift of the first root to more negative 
values of q and a splitting of the double root into two 
distinct roots, one close to zero and the other near v= 1. 
Qualitatively similar behavior is shown in Fig. 2(b) at 
x= 10. 

The corresponding neutral phase speeds (cN) (indi- 
cated by boxes) obtained from the roots of S are shown in 
Figs. 2(c) at x=3 and 2(d) at x=10 for &=0.5 (the 
slow stream is cool), and Figs. 2(e) at x=3 and 2(f) at 
x= 10 for &= 1 (both streams are at the same tempera- 
ture). These are shown as functions of the heat release 
parameter fl with the values of the other parameters given 
above. The real part of the neutral phase speeds for the 
a,=0 mode, found from (28), is shown in these figures by 
inverted triangles. The flame sheet model results, shown as 
dashed lines in these figures, use the Lock velocity profile 
as required for consistency in comparison with the results 
using the finite rate chemistry model; thus, they are slightly 
different from those reported by Jackson and Grosch”j 
where a hyperbolic tangent velocity profile was used. 

In the nonreactive case (fi=O), there are two neutral 
modes with different phase speeds which coincide at 
&=0.577 53 (Jackson and Groschlg). With&=0.5 these 
neutral modes of the nonreacting flow are slow modes since 
they have phase speeds less than 0.5 [see Figs. 2(c) and 
2(d)]. One of these neutral modes has a phase speed de- 
termined by a root of S given by ~~-0.391 344, and the 
other member of this pair has a phase speed determined by 
(29) with the value cN= (1 +ifl)/3. With fir= 1, these 
neutral modes are fast modes since they have phase speeds 
greater than 0.5 [see Figs. 2(e) and 2(f)]. Again, one of 
these has a phase speed determined by a root of S which is 
~~=0.587 270, and the other member of this pair has a 
phase speed determined by (29) with the value 
cN= ( i +i)/2. 

When heat release is included (p>O) and the flame 
sheet model is used [denoted by the dashed lines of Figs. 
2(c)-2(f), there are, in general, four neutral modes: two 
are found from the Lees and Lin condition (27), called 
modes 1 and 2; one is found from the zero wave-number 
asymptotics (29), called mode 3; and the remaining one, 
mode 4, is a mode with phase speed cN= U(vf). The cor- 
responding wave number for this last case needs to be de- 
termined in the numerical limit as one approaches the neu- 
tral mode through the unstable modes. Of the two neutral 
modes found from (27)) only one (mode 1) exists at fl= 0. 
Mode 1 is a slow mode for &co.577 53 and its phase 
speed is a decreasing function of fi [Figs. 2(c) and 2(d)] 
while for & > 0.577 53, mode 1 is a fast mode whose phase 
speed is an increasing function of/j’ [Figs. 2(e) and 2(f)]. 
Mode 2 only exists for P > 0 and shows the opposite be- 
havior of mode 1. The third neutral mode, that with 



a,v=0, exists at /3=0 and has a phase speed which is con- 
stant for all values of the heat release parameter, fl. Finally, 
the fourth neutral mode appears at the same value of/j as 
the second mode, has a phase speed which is equal to 
U(qf), and is independent of 8. When both streams have 
the same temperature, &-= 1, the phase speeds of the third 
and fourth modes are equal. These neutral curves separate 
stable from unstable regions with an unstable region lying 
between modes 1 and 3 (called the slow branch) and an- 
other between modes 2 and 4 (called the fast branch). 

As with the flame sheet model, there are also four 
neutral modes when using the finite rate chemistry model. 
The phase speeds of modes 1,2, and 4 are determined from 
the Lees and Lin condition (27), and the third neutra1 
mode is again the zero wave-number mode with phase 
speed determined from (28). The reason the fourth mode 
of the flame sheet model is not determined from (27) is 
that the Lees and Lin condition fails to hold because S is 
discontinuous and the derivatives of the eigenfunctions be- 
come discontinuous at the flame sheet position. For the 
finite rate chemistry model, the phase speed of the fourth 
neutral mode approaches that given by mode 4 of the flame 
sheet model, i.e., cN= U(qf), as x increases. The phase 
speeds of the neutral modes 1, 2, and 4 are indicated by 
boxes in Figs. 2(c)-2(e), and the phase speed’of the third 
neutral mode is indicated by inverted triangles. Unlike the 
flame sheet model, the neutral phase speeds for modes 3 
and 4 are functions of the heat release parameter fi and the 
downstream position X. 

The value of the phase speeds of all four neutral modes 
will depend critically on whether the x location is upstream 
or downstream of ignition. In the region of ignition, the 
temperature and mass fraction fields vary rapidly with po- 
sition and consequently the parallel flow approximation no 
longer holds. If x is sufticiently downstream of the ignition 
point, neutral modes 2 and 4 are present. At x = 3 and with 
&.=0.5 [Fig. 2(c)] the phase speeds of neutral mode 3 
show large variations between 0.5 <fi < 2. This is to be 
expected because ignition occurs in this region and the 
parallel flow assumption fails. As /3 is increased past 2, the 
phase speeds of all four neutral modes approach the phase 
speeds predicted by the flame sheet model. Similar behav- 
ior is shown in Fig. 2(d) at x= 10. The variations in the 
real part of the phase speeds of the aN=O neutral mode 
appear smaller than at x= 3 which is consistent with (5b) 
since the source term is proportional to x fi and thus at 
larger x the ignition region extends over a smaller range of 
p. All of the phase speeds which were determined from 
(27) and (28) have been confirmed by full numerical sta- 
bility calculations. 

V. ABSOLUTE-CONVECTIVE INSTABILITY 

In the stability problem, the eigenvalue is a zero of the 
characteristic equation relating the wave number a and the 
frequency w at fixed Mach number. Since a(w) has a 
square root branch point singularity at a zero of the com- 
plex group velocity dw/da (Gaster”), transition from 
convective to absolute instability occurs when the zero lies 
on the real w axis. We therefore choose w to be real, a to 
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be complex, and carry out a numerical search for a zero of 
do/da. In these calculations, we take y=1.4, Pr=l, 
Scj= 1, and vary p,$, Ze, /?“, &, and M. Unless otherwise 
stated, Ze=20, M=O, and 4 = 1 in all of the calculations 
reported below. Finally, we note that for spatial stability it 
was shown by Jackson and Groschi6 that the fast branch is 
convectively unstable for all /3, while the slow branch un- 
dergoes a transition from convective to absolute instability. 
Hence, all results shown in this section are for the slow 
branch. We first present results for two-dimensional dis- 
turbances (0=00> and then for oblique waves. 

A plot of ai vs a, at x= 10 as the real frequency w 
varies continuously is shown in Fig. 3 with /?=2, &-=0.5, 
8=0”, and various values of pr,. There is a saddle point for 
the speed of the slow stream, flu, between 0.014 and 0.016 
which is the same qualitative behavior as first observed 
with the flame sheet model16 and shows the presence of a 
square root branch point singularity due to a transition 
from convective to absolute instability. For the flame sheet 
model, this transition from convective to absolute instabil- 
ity occurs at a fixed Da independent of x. For the finite rate 
chemistry model, the transition value of PO is dependent on 
the downstream position x, and its variation is shown in 
Fig. 4 for 8=2 and &=0.5. The region below the curve 
designates conditions in which the flow is absolutely un- 
stable and the region above the curve designates conditions 
where the flow is convectively unstable. For all non- 
negative fiu, the flow is convectively unstable up to xz 1.9, 
which is just beyond the ignition point. Once ignition has 
occurred, there is a range of non-negative flu in which the 
flow is absolutely unstable. As the flow field evolves down- 
stream, the range of PO in which there is an absolute in- 
stability decreases and asymptotes to that predicted by the 
flame sheet model given by the dashed line. For the param- 
eters of this calculation, the flow will always exhibit an 
absolute instability if O<fiu<0.015 and even up to about 
0.038 near the ignition point. The slow moving stream 
must be nearly stationary if the flow is to be absolutely 
unstable. This is broadly consistent with previous studies 
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where an absolute instability was only found if the streams 
were moving in opposite directions. 

The boundary between regions of convective and ab- 
solute instability in the parameter space is mapped out by 
a systematic set of calculations at two fixed locations: x = 3 
and 10. These results are presented in Figs. 5-10 for two- 
dimensional disturbances with 8=0”. For the results 
shown in Figs. 5-8 the Mach number is zero. The Mach 
number is varied for the results shown in Figs. 9 and 10. 
The results presented in Figs. 11 and 12 show the bound- 
ary of the region of absolute instability in the 
firMach-number plane for oblique waves with 6#0”. 

In Fig. 5 we show the locus of the branch point posi- 
tion in the fir,-/3 plane for &=0.5. The region to the left of 
each curve is that of convective instability and that to the 
right the region of absolute instability. At x=3 the flow 
can become absolutely unstable for the heat release param- 
eter /3> 1.55 if the speed of the slow stream fiU is sufficiently 
small. On the other hand, at x= 10 the transition from 
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convective to absolute instability llrst occurs at BS 1.3 with 
pU=O. For @> 1.3 the flow can be absolutely unstable for 
some range of positive fir,. Also at x= 10, the flame sheet 
model results (dashed) are in excellent agreement with 
those obtained using the iinite rate chemistry model. Even 
at x=3, the finite rate chemistry model results asymptote 
to the flame sheet model results as fi is increased. In Fig. 6, 
the eiTect of the temperature ratio & on the transition 
value of the speed at - CO, fir,, at a value of the heat release 
parameter of 8=2 is shown. The region below each curve 
is that of absolute instability. At this value of /3 the flow is 
always convectively unstable for fir-> 0.62. At both x=3 
and 10 there is a range of cooling of the stream at - 03 for 
which the flow becomes absolutely unstable provided that 
flu is sufficiently close to zero. .The range of & for which 
absolute instability can occur is smaller at x=3 than at 
x= 10. Figure 7 is a plot of the transition value of pv versus 
the Zeldovich number at p=2 and &=0.5. Decreasing 
values of Ze result in a decrease in the transition value of 

0.05 

0.04 

0.03 

d 

0.02 

0.01 

0.00 

-- -_ ----- 

Convective 

x=3 

---&;‘-::--- 

.---..-,A.--.-- -L----J -“-._ ..L- I 
0 5 10 15 20 25 30 35 

Ze 

908 Phys. Fluids A, Vol. 5, No. 4, April 1993 Hu et a/. 908 



0.4 0.8 1.2 1.6 2.0 
F 

FIG. 8. Transition value of pv from absolute to convective instability as 
a function of C) for /3=2, &=0.5, Ze=20, and M=O at x=3 and 10. 
Here - - - denotes the value given by the flame sheet model. The distur- 
bances are two dimensional with 8=0”. 

pV At x=3 the transition from convective td absolute 
instability does not occur for values of Ze less than about 4. 
Also at the same x there is a substantial difference between 
the finite rate chemistry model results and that of the flame 
sheet model (dashed) even at large Ze. On the other hand, 
at x= 10 it is apparent that for Ze larger than about 10 
there is essentially no effect of increasing Ze on the transi- 
tion value which is nearly the same as that calculated from 
the flame sheet model. Figure 8 is a plot of the transition 
value of pv versus the equivalence ratio at 8=2 and 
&=OS. For fuel lean mixtures (i.e., C$ < 1) the region of 
absolute instability is slightly enhanced. For fuel rich mix- 
tures there is a substantial decrease in the transition value 
of flu, and beyond #J=: 1.7, the flow is always convectively 
unstable. 

The effect of increasing the Mach number on the tran- 
sition value of flu with a fixed heat release, 0~2, equiva- 
lence ratio, $=l, and temperature at - CO, &-=OS, is 
shown in Fig. 9. Increasing the Mach number decreases the 
region of absolute instability until it completely disappears 
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FIG. 10. Transition value offlU from absolute to convective instability for 
the flame sheet model as a function of Mwith += 1. Results are shown for 
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at MzO.8. At any Mach number less than 0.8 the range of 
Bv over which the flow is absolutely unstable decreases 
with increasing downstream distance. The effect of varying 
the temperature at - 00, &, and the heat release parame- 
ter fl, on the boundary between the regions of convective 
and absolute instability in the firrM plane is shown in Fig. 
10. With p fixed, decreasing &, that is, cooling the flow at 
- CO, results in an increase in the range of flu for which the 
flow is absolutely unstable. Similarly, increasing the heat 
release parameter, B, with fixed temperature at - 00 also 
increases the range of pU over which the flow is absolutely 
unstable. Although the range of pv over which the flow is 
absolutely unstable is largest for subsonic flow, sufficient 
cooling at - 03 and/or heat release can cause an absolute 
instability for supersonic mixing layers. 

Finally, in Figs. 11 and 12 we show how having ob- 
liquely traveling disturbances affects the convective/ 
absolute instability transition. The results presented in Fig. 
11 show that increasing the angle of propagation with re- 
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spect to the mean flow direction, 8, increases the range of 
fir,, over which the reacting flow is absolutely unstable, at 
least over the parameter ranges examined in this study. 
This effect seems to be a purely kinematic one in that the 
wave propagating at an oblique angle relative to the mean 
flow direction “sees” a flow with a lower Mach number. 
This is evident from Fig. 12 where the data of Fig. 11 are 
plotted versus an effective Mach number, M cos 8, for the 
oblique disturbances. This resealing collapses all of the 
curves of Fig. 11 onto essentially a single curve, corre- 
sponding that for 0=0”. 

The results presented in Figs. 4-12 give a rather com- 
plex picture of the convective/absolute instability transi- 
tion in the reacting mixing layer. The complexity is in part 
due to the fact that the reacting mean flow is governed by 
a large number of parameters. However, despite this, a 
overall interpretation of these results can be suggested 
which leads to a better understanding of the convective/ 
absolute transition in both reacting and nonreacting flows. 

Previous studies of the convective/absolute instability 
transition in nonreacting subsonic compressible mixing 
layers’3-” have shown them to be convectively unstable 
unless there was an appreciable backflow. Thus the veloc- 
ity shear must be sufficiently large for the mixing layer to 
be absolutely unstable. With the Mach number less than 
one, the temperature gradient within the layer does not 
appear to have a major effect on the transition to absolute 
instability of a nonreacting compressible mixing layer. In 
the case of a reacting mixing layer the magnitude of the 
required velocity shear is reduced so that the flow with a 
non-negative Bcr can be absolutely unstable. This suggests 
that the increased temperature gradient within the layer 
due to the reaction can trigger an absolute instability with- 
out backflow, i.e., with a non-negative critical value of pV 
All of the results presented in Figs. 5-12 are consistent 
with this conclusion which is explored in more detail be- 
low. 

Because of the approximations used in this study the 
velocity profile (thus the shear across the layer) is depen- 

dent on only one parameter, /3U (This is an advantage of 
using the simple property variations as discussed above; 
the velocity and temperature gradients can be varied inde- 
pendently which is not possible for more complex thermo- 
dynamic models of the fluid). As mentioned above, fio>O 
because solutions to (5a) for the velocity field do not exist 
with backflow at - CO. The results presented here show 
that the flow upstream of ignition is always convectively 
unstable. We could have carried out stability calculations 
within the ignition region but the results would be of rather 
dubious validity because the large streamwise variation in 
temperature which occurs within a small distance in the 
ignition region violates the quasiparallel flow assumption. 
However, just downstream of ignition our results show 
that the flow can be absolutely unstable over a range of 
non-negative flu, at least for some range of Mach numbers. 
Thus the temperature and mass fraction distributions 
across the reacting layer must have a major effect on the 
convective/absolute instability transition. In particular, the 
presence of a large temperature gradient due to the reac- 
tion in the mixing layer appears to cause a convective/ 
absolute transition. We further note that the combustion 
zone evolves to a flame sheet with increasing distance 
downstream of ignition” and that the results of Figs. 5-12 
indicate that the trends in the convective/absolute transi- 
tion as the flow parameters are varied are reasonably well 
predicted using the flame sheet model. This suggests that 
the results of the flame sheet model [described by Eqs. 
(7)-( lo)] are not spurious results owing to the disconti- 
nuity of derivatives at the flame sheet, but are real effects of 
a concentrated addition of heat. The agreement of the finite 
rate and flame sheet results indicates that we can use the 
flame sheet model to investigate the trends. 

The results of Figs. 9-12 show that, whatever the val- 
ues of the other parameters, this flow will be convectively, 
rather than absolutely, unstable at sufficiently large Mach 
number. From Eqs. (7b) and (8b) it is clear that, for any 
fl and 4, if M is large enough the temperature distribution 
in the layer will be approximated by that of a nonreacting 
flow which requires a negative fir, for an absolute instabil- 
ity. Thus large Mach numbers cause the flow to be con- 
vectively, rather than absolutely, unstable. From Figs. 5 
and 10 in particular, cooling the slow stream (decreasing 
&) and increasing the heat release (increasing 8) both 
cause an increase in the range of PO and Mach number 
over which an absoIute instability exists. An increase in fi 
increases the magnitude of the temperature gradient in 
v < vf and decreases it in 7 > vp However, the magnitude 
of the temperature gradient on both sides of the flame is 
increased by a decrease in & This suggests that it is the 
magnitude of the temperature gradient induced by the 
flame which must be large for the absolute instability to 
occur. 

Finally, one can see why a very rich or very lean mix- 
ture inhibits absolute instability. If the flow is very fuel 
rich, 4~1, Eq. (9) yields Uf-fir, so qf + - CO and from 
Eq. ( 10) Tf -fly On the other hand if the flow is very fuel 
lean, 4-0, Eq. (9) shows Uf =: 1 and ~~4 + CO. This 
gives, from Eq. ( lo), Tf _ - 1 +/?. In both cases there is a 

910 Phys. Fluids A, Vol. 5, No. 4, April 1993 Hu et al. 910 



distinct flame (the flame sheet) but it occurs far away from 
the center of the mixing layer. Since dT/dg is proportional 
to aU/aq, which is very small outside of center of the 
layer, the temperature gradient due to the flame is very 
small; thus absolute instability is not present. These con- 
siderations suggest that a slightly lean mixture will en- 
hance absolute instability while a very lean or very rich 
mixture will inhibit absolute instability as is shown in Fig. 
8. 

VI. WAVE PACKETS 

In the previous section we found that the flame sheet 
model can provide excellent predictions on the transition 
values provided one is downstream of ignition and Zeldov- 
ich numbers are greater than about 10. Therefore, in cal- 
culating the wave packets we use the flame sheet model 
described in Sec. II. The equation governing the stability of 
this flow is (18) with K, =K,= 1, valid on either side of 
the flame sheet. To illustrate the dynamics of the instabil- 
ity, contrasting the cases of convective instability and ab- 
solute instability, we present selected results for fiU=O, 
&=0.5, and 4= 1 and vary fi and M. We take 8=0” in this 
section and thus consider only two-dimensional wave pack- 
ets. 

Figures 2(c) and 2(d) show the variation of the phase 
speeds of the neutral modes as a function of fl. As dis- 
cussed in Sec. IV there can be both fast and slow neutral 
branches and hence both fast and slow unstable modes. 
The fast branch is convectively unstable for all /3, while the 
slow branch may undergo a transition from convective to 
absolute instability. This behavior is illustrated in Fig. 13 
where we plot the spatial growth rates of both the fast and 
slow branches as a function of o for several values of fi. 
The fast branch shows regular behavior as /3 increases, 
with the maximum value of the growth rate first increasing 
and then decreasing slightly. In addition, the range of un- 
stable frequencies increases with increasing j3. On the other 
hand, for the slow branch the spatial growth rate forms a 
cusp as p approaches 1.38, indicating the transition from 
convective to absolute instability. This transition can also 
occur at fixed p as one of the other parameters is varied; for 
example, Fig. 3 shows the saddle point in the complex Q 
plane which occurs as flu is varied with p=2. For temporal 
stability, the growth rates of both the fast and slow 
branches, shown in Fig. 14, have regular behavior as B is 
increased and therefore do not indicate a transition from 
convective to absolute instability even though such a tran- 
sition occurs at the same value of 0. This difference in the 
behavior of spatial stability as opposed to temporal stabil- 
ity was first noted by Gaster.” 

A complementary approach to investigate the transi- 
tion from convective to absolute instability is to examine 
the response, I(x,t), of the flow to an impulse in space and 
time (see Huerre and Monkewitz” and the references cited 
therein). The impulse gives rise to a wave packet in the 
(XJ) plane. The real part of I is the wave packet and its 
absolute value is the envelope. An asymptotic expansion of 
the impulse response for large time can be determined by 
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FIG. 13. Plot of the growth rates of the spatial stability problem for the 
fast and slow modes of the flame sheet model as a function of w for 
various values of /3. Here M=O, &=0.5, fi,=O, and q%= 1. The distur- 
bances are two dimensional with 8=0”. 
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the method of steepest descent. The details of this analysis 
are given by Gaster*‘Z26 and for what follows we use the 
leading term in his expansion, 

where 

Z=i a*:--o(a*) 
( ) 

. (31) 

The value of a* is found from the requirement that the 
rays in the wave packet have constant real values of the 
group velocity, C, Thus, 

cg= 2 
( ) a=a* 

+ (32) 

The set of {a*,o(a*) } pairs which satisfy (32) are found 
by choosing a (real) value of x/t and then carrying out an 
iterative search in the complex a and w spaces for an a* 
which satisfies (32) and also permits the solution of ( 18) 
with the appropriate boundary conditions. 

There are two, generally distinct, wave packets: the 
first is made up of the unstable’modes of the slow branch, 
which are absolutely unstable in certain parameter ranges, 
and the second is made up of the unstable modes of the fast 
branch which are always convectively unstable. The real 
part of 8, the temporal growth rate along the rays, is plot- 
ted in Fig. 15 for both the fast and slow unstable branches 
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FIG. 16. Plot of the real part of P as a function of x/T for various Mach 
numbers. Here p=4, &=O.S, fiU=O, and 4= 1. The disturbances are two 
dimensional with 0=0”. 

at M=O for various values of /3. As fi increases, the max- 
imum of the real part of Z for the slow branch decreases 
and the range of x/t for which the real part of B is positive 
decreases. For the fast branch, the maximum growth rate 
increases by a small amount, and the range of unstable 
frequencies increases. Figure 15(b) is an enlargement of 
Fig. 15(a) near x/t=O. The real part of Z goes to zero at 
x/t slightly above 0.03 for p=O.5. For p= 1.38, it is zero at 
x/t=O, and for 8=4, it is zero at x/t= -0.035. The fact 
that the real part of Z is positive for a range of negative 
values of x/t shows that the wave packet is traveling both 
upstream and downstream and therefore that the flow is 
absolutely unstable. It is important to note that the growth 
rates in the region of x/t<0 are small compared to the 
maximum growth rate. This shows that the upstream prop- 
agating portion of the wave packet grows slowly compared 
to the downstream propagating part. The effect of increas- 
ing the Mach number on the temporal growth rate along 
the rays is shown in Fig. 16 where the variation of B with 
x/t for fi=4 and various Mach numbers is shown. The 
temporal growth rates for the fast branch are only slightly 
affected by the change in M from 0 to 0.8 with a small 
decrease in the maximum and the range of x/t over which 
it is positive. There is a much greater effect on the slow 
branch. The peak value decreases by more than a factor of 
2 as M increases to 0.8 and the range of x/t over which this 
branch is unstable decreases. For M=0.8 the slow branch 
only has a positive growth rate for x/t > 0 indicating that 
there is no absolute instability at this Mach number. 

The wave packets resulting from the impulse with 
M=O andfl=4 are shown at (a) t= 100 and (b) t=500 in 
Fig. 17. In each figure there is a pair of wave packets: one 
is a fast packet containing the unstable modes of the fast 
branch and the other a slow packet containing the unstable 
mode of the slow branch. As the pair evolves in time, they 
move apart because of the substantial differences in their 
group velocities. At t= 100 [Fig. 17(a)] the slow packet is 
somewhat larger than the fast packet and clearly exists in a 
region of x < 0 showing the absolute instability. At t= 500 
[Fig. 17(b)] both packets have grown, spread, and moved 
apart. The notation, X 10, close to the slow packet means 
that the amplitude of the slow packet, but not that of the 
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FIG. 17. Plot of the wave packets and envelopes for the fast and slow 
modes as a function of x  at (a) t= 100 and (b) t=500. The slow packet 
is absolutely unstable and the fast packet convectively unstable. Here 
~;n~l$~hOL~o~0.5, &=O, and q5= 1. The disturbances are two dimen- 

fast packet, has been multiplied by a factor of 10 in,order 
that it be visible on this scale. In Fig. 17(b) the fast packet 
is much larger than the slow packet because of its greater 
growth rate. The slow wave packet extends into the region 
x < 0, but because of the scaling it is difficult to see this on 
the figure. As time increases, the slow packet will continue 
to grow, but at a much slower rate than the fast packet, 
and spread both upstream and downstream. However, the 
upstream propagation is very slow. 

Figure 18 shows the wave packets generated with 
p=4, as in Fig, 17, but with M=0.4. Both packets have 
nearly the same group velocity as at M=O but smaller 
growth rates. Again, the upstream propagation of the slow 
packet at t= 100 is visible but is not readily visible at 
t==500 because of the scale. Since there is a substantial 
decrease in the growth rates of the slow branch relative to 
those of the fast branch as Mach number increases, the 
slow packet is much smaller than the fast packet, particu- 
larly at t-500. With the Mach number increased to 0.8 
(Fig. 19), the absolute instability has vanished [the up- 
stream propagation shown in Fig. 19 (a) is artificial owing 
to the relatively small time, for larger time it has com- 
pletely disappeared consistent with the results of Fig. 161. 
The amplitudes of both branches are further decreased be- 
cause of the increase in the Mach number, with that of the 
slow branch more so than that of the fast branch. The fast 
packet at this Mach number is much larger than the slow 
packet; note the scaling of 500 for the slow packet in this 
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FIG. 18. Plot of the wave packets and envelopes for the fast and slow 
modes as a function of x  at (a) t= 100 and (b) t=500.,The slow packet 
is absolutely unstable and the fast packet convectively unstable. Here 
p=4, M=O.4, &=0.5, &,=O, and $= 1. The disturbances are two di- 
mensional with B=o”. 

figure. The absolute instability is also absent at higher 
Mach numbers. The results presented here on the 
convective-absolute transition have been for &=0.5. Sim- 
ilar results are also found at other values of &. 

VII. CONCLUSIONS 

In this paper we have studied the absolute/convective 
instabilities of a compressible mixing layer with finite rate 
chemistry using a one-step, irreversible reaction of Arrhen- 
ius type. It is important to note that the similarity solution 
for the velocity profile does nit permit reverse flow, and 
thus all results presented here are for coflowing mixing 
layers. 

It was found that absolute instability occurs for mod- 
erate heat release without the introduction of backflow. 
The effects of the temperature ratio, heat release parame- 
ter, Zeldovich number, equivalence ratio, direction of 
propagation of the disturbances, and the Mach number on 
the transition value of the velocity ratio were given. It was 
found that the flame sheet model provides excellent pre- 
dictions on the transition values provided one is down- 
stream of ignition and Zeldovich numbers are greater than 
about 10. In particular, with fixed but small velocity ratio, 
it is possible to induce an absolute instability by increasing 
the heat release parameter or by decreasing either the 
equivalence ratio or the temperature ratio. If the slow 
stream is sufficiently cool and the heat release sufficiently 
large an absolute instability occurs with the fast stream 
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po=O, and #= 1. The disturbances are two dimensional with 0=0”. 

moderately supersonic. For a sufficiently rich mixture the 
ffow will always be convectively unstable. We conclude, on 
the basis of the results of our calculations and the analysis 
of Sec. V, that cooling the slow stream (decreasing &-), 
using a slightly lean mixture (4 < 1 ), and having a large 
heat release (large /3) will all tend to increase the magni- 
tude of the temperature gradient in the layer and that this 
causes the flow to undergo a transition from convective to 
absolute instability. We also showed that the effect of the 
direction of propagation on the transition from convective 
to absolute instability is a kinematic one. The tlow field sees 
the effective Mach number (1M cos 6) in the direction of 
propagation. 

Finally, we have shown that wave packet calculations 
are very useful for displaying the structure of both convec- 
tively and absolutely unstable flows. Because there is both 
a slow and a fast branch of unstable waves an impulse 
generates a pair of wave packets in both the case of abso- 
lute as well as convective instability. In particular, the 
wave packet calculations have shown that when the react- 
ing shear layer is absolutely unstable it is weakly unstable. 
That is, with increasing Mach number from zero and a 
fixed rate of heat release, the absolute instability becomes 
progressively weaker in that the range of negative x/t over 
which the growth rate is non-negative grows smaller and 
the growth rate in this region and the speed of the up- 
stream traveling wavesalso become smaller. Thus a wave 
packet will grow and spread throughout the entire domain, 
but it may take a long time for this to happen. 

In future work, we plan to carry out numerical simu- 
lations of the absolutely unstable mixing layer with finite 
rate chemistry. This approach is similar to that of Hanne- 
mann and Oertelz7 who studied the absolute/convective 
instabilities of the nonreacting incompressible wake. The 
object of this will be to examine the effects of the nonpar- 
allel mean flow, in particular in the ignition region, and the 
nonlinearity of the disturbances. 
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