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Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence

Wei Liao,* Yan Peng,† and Li-Shi Luo‡

Department of Mathematics and Statistics and Center for Computational Sciences, Old Dominion University,
Norfolk, Virginia 23529, USA

�Received 12 June 2009; published 14 October 2009�

We apply the gas-kinetic scheme �GKS� for the direct numerical simulations �DNSs� of compressible
decaying homogeneous isotropic turbulence �DHIT�. We intend to study the accuracy, stability, and efficiency
of the gas-kinetic scheme for DNS of compressible homogeneous turbulence depending on both flow condi-
tions and numerics. In particular, we study the GKS with multidimensional, quasi-one-dimensional,
dimensional-splitting, and smooth-flow approximations. We simulate the compressible DHIT with the Taylor
microscale Reynolds number Re�=72.0 and the turbulence Mach number Mat between 0.1 and 0.6. We
compute the low-order statistical quantities including the total kinetic energy K�t�, the dissipation rate ��t�, the
skewness Su�t�, and the flatness Fu�t� of the velocity field u�x , t�. We assess the effects on the turbulence
statistics due to the approximations made in the treatment of fluxes, the flux limiter, the accuracy of the
interpolation, and the bulk viscosity. Our results show that the GKS is adequate for DNS of compressible
homogeneous turbulence as far as the low-order turbulence statistics are concerned.

DOI: 10.1103/PhysRevE.80.046702 PACS number�s�: 47.11.�j, 47.40.�x, 94.05.Lk, 47.45.Ab

I. INTRODUCTION

Compressible turbulence has been a subject of interest for
a long time �1–14�. In compressible turbulence, the Kolmog-
orov paradigm, which forms the basis of most equilibrium
turbulence models, is questionable. This is due to the fact
that there can be baroclinic-type production of energy at all
scales of turbulence, including the inertial range, invalidating
the Kolmogorov hypotheses. Consequently, the premises of
most existing closure models for turbulence may not be valid
any more, thus the turbulent mass, energy and momentum
transport in compressible turbulence may not be amenable to
standard treatment. Hence, physics-based modeling of com-
pressible turbulence must start from fundamental first prin-
ciples.

Recently, there has been an intense effort to use direct
numerical simulation �DNS� for shock/turbulent boundary
layer interactions �STBLI� �cf., e.g., �15–19� and a recent
survey �20��, which are critically important for high-speed
flows. The hope is that by vigorously interrogating data gen-
erated by high-fidelity DNS, one can gain insights into flow
physics, which can in turn provide guidelines for turbulence
modeling. To ensure high fidelity of DNS for compressible
turbulent flows, the numerical methods are required to have
minimal numerical dissipation and high bandwidth effi-
ciency. These requirements naturally favor high-order meth-
ods. However, when shocks are considered, these require-
ments are more difficult to satisfy because they conflict with
the stability requirement for shock capturing. The general
solution to this conflict is a judicious addition of numerical
dissipation in the neighborhood of shocks, which are treated
as discontinuities �Godunov type of approaches �21–23��,
while maintaining the desired �high� order of accuracy in
smooth flow regions.

For compressible homogeneous isotropic turbulence in
three dimensions, high-order methods which have been used
for the purpose of DNS include the pseudospectral �PS�
method �2,3,6,7�, the high-order compact finite-difference
scheme �4,10,13,24�, and the fourth-order weighted essential
nonoscillatory �WENO� scheme �25–27�. For homogeneous
turbulence with high turbulence Mach number, shocklets are
ubiquitous, and the Godunov-type methods become nomi-
nally first-order accurate across discontinuities, regardless of
the order of accuracy of the interpolation used in reconstruc-
tion. Whether high-order schemes are more accurate and ef-
ficient than second-order schemes for flows with discontinui-
ties is a subject of ongoing debate �20,28,29�.

In this study we will use the gas-kinetic scheme �GKS�
�30,31� for direct numerical simulations of the compressible
decaying homogeneous isotropic turbulence �DHIT�. The
GKS is a second-order finite-volume kinetic scheme derived
from the Boltzmann equation as opposed to conventional
methods of computational fluid dynamics �CFD� based on
discretizations of the Navier-Stokes equations. In contrast to
conventional CFD methods, kinetic methods have two dis-
tinctive features. First, kinetic methods have the potential to
include extended hydrodynamics beyond the validity of the
Navier-Stokes equations because kinetic methods are based
on kinetic theory and the Boltzmann equation, which provide
the theoretical connection between hydrodynamics and the
underlying microscopic physics. And, second, the Boltzmann
equation is a first-order integro-partial-differential equation
with a linear advection term, while the Navier-Stokes equa-
tion is a second-order partial differential equation with a
nonlinear advection term. The nonlinearity in the Boltzmann
equation resides in its collision term, which is local. This
feature may lead to some computational advantages �32�.

Compared to most conventional CFD methods, the GKS
is relatively new and is still a topic of active research �e.g.,
�31,33–40��. Despite the fact that the GKS has been applied
to simulate a wide variety of flow problems, such as non-
equilibrium hypersonic flows with STBLIs �35,39,41�, shock
structures in gases �40,42–45�, scalar transport and mixing in
compressible flows �46–49�, chemically reacting multicom-
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ponent compressible flows �50–52�, nonequilibrium microf-
lows �53,54�, magnetohydrodynamics �55,56�, and solutions
of the shallow water equation �57–60�, little has been done in
the application of the GKS for DNS of compressible homo-
geneous turbulence �61�. It is well known that DNS of ho-
mogeneous turbulence are particularly sensitive to, among
other things, numerical dissipations and thus are challenging
for a second-order method.

The main objective of this work is to investigate the nu-
merical accuracy, stability, and efficiency of the GKS for
DNS of compressible DHIT in three dimensions. We will
investigate the effects due to the approximations in the flux
calculations, the flux limiters, the accuracy of the interpola-
tion in reconstruction, and the bulk viscosity on the low-
order statistical turbulence quantities, which include the ki-
netic energy K�t�, the dissipation rate ��t�, and the skewness
Su�t� and the flatness Fu�t� of the velocity field u�x , t�. We
will simulate compressible DHIT with the initial turbulence
Mach number Mat ranging from 0.1 to 0.6, corresponding to
near incompressible to fully compressible flow regions.

The remaining part of this paper is organized as follows.
In Sec. II we discuss in detail �a� the construction of the full
multidimensional �MD� GKS; �b� the quasi-one-dimensional
�Q1D� and the dimensional-splitting �DS� gas-kinetic
schemes, which are simpler thus more efficient than the full
GKS; �c� the simplified GKS for smooth �incompressible�
flows which is considerably simpler and efficient than the
full GKS; and �d� the limiter, the interpolations used in the
reconstruction, and the bulk viscosity in the GKS. In Sec. III
we discuss the governing equations and flow conditions for
the compressible DHIT, as well as the low-order statistical
turbulence quantities to be computed. We also show some
testing results to validate our code. In Sec. IV we present our
main results. We first evaluate the necessity of using the full
multidimensional GKS by comparing the results obtained
with the Q1D-GKS, DS-GKS, and full MD-GKS. We test the
Mach-number limit in the simplified GKS for smooth flows.
We next investigate the effects due to the flux limiter, the
interpolation, and the bulk viscosity on the low-order turbu-
lence statistics. Finally, we conclude the paper in Sec. V.

II. GAS-KINETIC SCHEME

In this section we provide the details in the construction
of the full MD GKS and several simplified versions of it,
including the Q1D, DS, and the simplified GKS for smooth
flows. We also discuss artificial dissipation, flux limiter, in-
terpolations at cell boundaries, and the bulk viscosity in the
GKS. We intend to provide sufficient details here so the GKS
can be easily implemented and the results can be easily re-
produced by our readers.

A. Construction of gas-kinetic scheme

To construct the full multidimensional gas-kinetic scheme
for compressible flows �30,31,39,40�, we begin with the lin-
earized Boltzmann equation �cf., e.g., �62��:

�t f + � · �f = L�f , f� , �1�

where fª f�x ,� ,� , t� is the single particle distribution func-
tion of space x, the particle velocity �ª ẋ, the particle inter-

nal degrees of freedom � of Z dimensions, and the time t; L
is the linearized collision operator. For the sake of simplicity
and without losing generality in the context of the linearized
Boltzmann equation, we will use the Bhatnagar-Gross-Krook
�BGK� single relaxation-time model for L �63�:

�t f + � · �f = −
1

�
�f − f �0�� , �2�

where � is the relaxation time related to the mean free time
between successive collisions and f �0� is the Maxwellian
equilibrium distribution function of D dimensions,

f �0� = �� �

2�
��D+Z�/2

exp�−
1

2
��c · c + � · ��� , �3�

where cª ��−u� is the peculiar velocity, �= �RT�−1, R is the
gas constant, and �, u and T are the density, flow velocity,
and temperature, respectively.

By integrating along the characteristics �64�, one can ob-
tain the following solution of the BGK equation �2�:

f�x + �t,t� = e−t/�f0 +
1

�
	

0

t

f �0��x�,�,�,t��e�t�−t�/�dt�, �4�

where x�ªx+�t�, and the initial state f0ª f�x ,� ,� , t=0�.
The GKS is formulated based on the above equation. With f0
and f0

�0�
ª f �0��x ,� ,� , t=0� given, one can construct an ap-

proximate solution for f at any time t�0. The gas-kinetic
scheme is a finite-volume method for compressible flows.
Thus, the values of the conserved variables are given at cell
centers, while the values of fluxes are needed at cell bound-
aries. Unlike conventional CFD methods which evaluate
fluxes from the hydrodynamic variables, the gas-kinetic
scheme computes the numerical fluxes from the distribution
function f .

For the sake of convenience, we shall use the following
notation for the vectors of �D+Z� dimensions:

� ª „1,�,��2 + 	2�/2…†, �5a�

W ª ��,�u,�E�† =	 f�d� =	 f �0��d� , �5b�

F
 ª	 f��
d�, 
 � 
x,y,z� ª 
1,2,3� , �5c�

h ª ��,u,T�†, �5d�

h� ª ��−1,�u,
1

2
���c2 + 	2� − �D + Z��T−1�†

, �5e�

where † denotes the transpose operation; �, W, F
, and h
have the collisional invariants, the conserved quantities, the
fluxes along the 
 axis, and the primitive variables as their
components, respectively; E is the specific total energy, �E
=��+ 1

2�u2, where �ª 1
2 �D+Z�RT is the specific internal en-

ergy and R is the gas constant; and �ª �� ,�� denotes the
single particle velocity space and the internal degrees of free-
dom. According to Eq. �5b�, the conserved variables are the
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conserved moments of the collision operator. In this work we
will study three-dimensional �3D� flows in which the total
number of internal degrees of freedom is Z= �5−3�� / ��
−1� and �=cp /cv is the ratio of specific heats.

For a finite-volume scheme to be truly multidimensional,
the gradients of flow variables in both normal and two tan-
gential directions at a cell interface must be considered im-
partially. This can be easily achieved in the GKS method
because the advection term � ·�fª� · ��f� in the Boltzmann
equation is linear, thus operator splitting among D coordi-
nates can be easily implemented. To simplify the ensuing
discussion, we will show the construction of fluxes in the
GKS method along one direction, say x, for construction of
fluxes along the other two directions can be done similarly.
We denote a cell center by xi,j,k, and its left and right cell
boundaries along x coordinate by xi−1/2,j,k and xi+1/2,j,k, re-
spectively. For simplicity, we set the initial time t0=0, then
solution �4� at position xi+1/2,j,k and time t is

f�xi+1/2,j,k,t� = e−t/�f0�xi+1/2,j,k − �t�

+
1

�
	

0

t

f �0��x�,t��e−�t−t��/�dt�, �6�

where x�ªxi+1/2,j,k−��t− t�� is the coordinate of the particle
trajectory. In the above equation, we omit the variables � and
� in f whenever they remain constant. Initially, only the val-
ues of the conserved variables �, �u, and �E are given at the
cell center xi,j,k, but the fluxes are to be evaluated at the cell
boundaries xi1/2,j,k=0. Therefore, both f0 and f �0��x� , t�� in
the above equation are to be constructed from the hydrody-
namic variables through the Boltzmann equation and Taylor
expansions of f .

We can formally write the BGK equation �2� as the fol-
lowing:

f = f �0� − �dtf , dt ª �t + � · � . �7�

Thus, f can be solved iteratively, starting with f = f �0� on the
right-hand side of the above equation. For the purpose of
simulating the Navier-Stokes equation, f = f �0�−�dtf

�0� is suf-
ficient. The initial value can be approximated as

f0�x,0� � �1 − ���t + � · ���f �0��x,0� = �1 − �h� · ��t

+ � · ��h�f �0��x,0� . �8�

In addition, the equilibrium can be expanded in a Taylor
series about x=0,

f �0��x,0� � �1 + x · ��f �0��0,0� = �1 + h� · �x · ��h�f �0��0,0� ,

�9�

where xª �x ,y ,z�. By substituting Eq. �9� into Eq. �8�, we
have

f0�x,0� � �1 + h� · �x · ��h��1 − �h� · ��t + � · ��h�f �0��0,0�

= �1 + a · �x − ��� − A��f �0��0,0� , �10�

where aª �a1 ,a2 ,a3�ª �h� ·�xh ,h� ·�yh ,h� ·�zh�
ªh� · ��xh ,�yh ,�zh� and A=h� ·�th are functions of � and �,
and the hydrodynamic variables �, u, and T, and their first-

order derivatives. The coefficients a and A are related by the
compatibility condition for f

	 f �n��d� = 0, ∀ n � 0,

where f �n� is the nth-order Chapman-Enskog expansion of f
and f �0� is the Maxwellian given by Eq. �9�. Therefore, the
first-order compatibility condition

	 f �1��d� = − �	 dtf
�0��d� = − �	 �A + a · ��f �0��d�

= 0 �11�

leads to the relation between A and aª �a1 ,a2 ,a3�,

	 Af �0��d� = −	 a · �f �0��d� . �12�

We can concisely write the end results of a=� ln f �0� and
A=�t ln f �0� as following �65�:

a = � ln � + � �c2 + 	2�
2RT

−
3 + Z

2
� � ln T +

1

RT


=1

3

c
 � u
,

�13a�

A = − a · � + � �c2 + 	2�
2RT

−
5 + Z

2
�c · � ln T

+
1

RT
�cc −

1

5
�c2 + 	2�I�:�u , �13b�

where cª ��−u� is the peculiar velocity, c2
ªc ·c, and I is

the 3�3 identity matrix. For fully compressible flows, the
conserved variables �� ,�u ,�E� are used as opposed to the
primitive ones �� ,u ,T�. The Jacobians between the primitive
and conserved variables are readily available to transfer one
set of variables to the other. It should also be noted that in
computing the gradients �
h for the coefficients a
ª �a1 ,a2 ,a3� in Eq. �10�, we should allow the hydrodynamic
variables to be discontinuous at the cell boundary xi1/2,j,k in
general for compressible flows.

As for f �0��x , t� in the integrand of Eq. �6�, it can be evalu-
ated by its Taylor expansion,

f �0��x,t� � �1 + t�t + x · ��f �0��0,0� = f �0��0,0��1 + h� · �t�t

+ x · ��h� = �1 + a · x + Āt�f �0��0,0� , �14�

where aª �ā1 , ā2 , ā3� and Ā are similar to aª �a1 ,a2 ,a3� and
A, respectively. The difference is that in aª �ā1 , ā2 , ā3�, the
hydrodynamic variables themselves are assumed to be con-
tinuous, but not their gradients in the directions normal to
cell interfaces, while in aª �a1 ,a2 ,a3�, both the hydrody-
namic variables and their gradients are allowed to be discon-
tinuous. That means that, for example, in ā1 the gradients of
hydrodynamic variables are allowed to be discontinuous
when computing �xh. The details about how to evaluate a
ª �a1 ,a2 ,a3�, A, aª �ā1 , ā2 , ā3�, and Ā will be further dis-
cussed next.
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Assuming the hydrodynamic variables are discontinuous
at the cell boundary of xi+1/2,j,k=0, then the values of the
equilibrium f �0� on both sides of the cell boundary have to be
evaluated differently. For the value fL

�0� on the left side, the
hydrodynamic variables h are interpolated to the left cell
boundary xi+1/2,j,k

− with two points left of and one point right
of xi+1/2,j,k, i.e., xi−1,j,k, xi,j,k and xi+1,j,k. Then the left equi-
librium value fL

�0� is computed from the hydrodynamic vari-
ables at xi+1/2,j,k

− . Similarly, the right equilibrium value fR
�0� is

evaluated from the hydrodynamic variables interpolated to
xi+1/2,j,k

+ with two points right of and one point left of
xi+1/2,j,k, i.e., xi,j,k, xi+1,j,k, and xi+2,j,k. The van Leer limiter is
used in the interpolations to suppress the spurious oscilla-
tions �31,66�:

�Wi

�x
= �sign�W+� + sign�W−��

�W+��W−�
�W+� + �W−�

, �15a�

Wi+1/2
R = Wi+1 −

�Wi+1

�x
�xi+1 − xi+1/2� , �15b�

Wi+1/2
L = Wi +

�Wi

�x
�xi+1/2 − xi� , �15c�

where �Wi /�x denotes the approximated gradient in x direc-
tion of the conserved variable W at the ith cell center,
W+

ª �Wi+1−Wi� /�x and W−
ª �Wi−Wi−1� /�x.

Specifically, the gradients of the hydrodynamic variables
at the left cell boundary are computed as the following:

�xhL�xi+1/2,j,k
− � =

h�xi+1/2,j,k
− � − h�xi,j,k�
xi+1/2,j,k − xi,j,k

, �16a�

�yhL�xi+1/2,j,k
− � =

h�xi+1/2,j+1,k
− � − h�xi+1/2,j−1,k

− �
yi+1/2,j+1,k − yi+1/2,j−1,k

, �16b�

�zhL�xi+1/2,j,k
− � =

h�xi+1/2,j,k+1
− � − h�xi+1/2,j,k−1

− �
zi+1/2,j,k+1 − zi+1/2,j,k−1

. �16c�

Then the coefficients aLª �a1L ,a2L ,a3L� at the left cell
boundary xi+1/2,j,k

− are given by

a1L�xi+1/2,j,k
− � = hL��xi+1/2,j,k

− � · �xhL�xi+1/2,j,k
− � , �17a�

a2L�xi+1/2,j,k
− � = hL��xi+1/2,j,k

− � · �yhL�xi+1/2,j,k
− � , �17b�

a3L�xi+1/2,j,k
− � = hL��xi+1/2,j,k

− � · �zhL�xi+1/2,j,k
− � . �17c�

Similarly, at the right cell boundary xi+1/2,j,k
+ , the hydrody-

namic variables are interpolated from the following three
points: xi,j,k, xi+1,j,k, and xi+2,j,k, and we have

�xhL�xi+1/2,j,k
+ � =

h�xi+1/2,j,k
+ � − h�xi+1,j,k�
xi+1/2,j,k − xi+1,j,k

, �18a�

�yhL�xi+1/2,j,k
+ � =

h�xi+1/2,j+1,k
+ � − h�xi+1/2,j−1,k

+ �
yi+1/2,j+1,k − yi+1/2,j−1,k

, �18b�

�zhL�xi+1/2,j,k
+ � =

h�xi+1/2,j,k+1
+ � − h�xi+1/2,j,k−1

+ �
zi+1/2,j,k+1 − zi+1/2,j,k−1

, �18c�

and coefficients aRª �a1R ,a2R ,a3R� can be calculated simi-
larly to aLª �a1L ,a2L ,a3L�, except that they are computed at
xi+1/2,j+1,k

+ , instead of xi+1/2,j+1,k
− , in Eq. �17�. With aL

ª �a1L ,a2L ,a3L� and aRª �a1R ,a2R ,a3R� given, AL and AR
can be obtained immediately by using the compatibility con-
dition �12�.

The equilibria at the both sides of the cell boundary
xi+1/2,j,k are fL

�0�
ª f �0��� ,hL� and fR

�0�
ª f �0��� ,hR�, which are

available now because hL and hR are given. At the equilib-
rium f �0�, the hydrodynamic variables are assumed to be con-
tinuous. Therefore, the conservative variables W at the cell
boundary xi+1/2,j,k are obtained by integrating the equilibrium
at both sides of the cell boundary xi+1/2,j,k:

W�xi+1/2,j,k� = 	
�x�0

d��fL
�0� + 	

�x�0
d��fR

�0�, �19�

the hydrodynamic variables hª �� ,u ,T�† can be easily ob-
tained from the conservative variables Wª �� ,�u ,�E�†, and
then the coefficients ā1L and ā1R are computed as the follow-
ing:

ā1L�xi+1/2,j,k� = h��xi+1/2,j,k� ·
h�xi+1/2,j,k� − h�xi,j,k�

xi+1/2,j,k − xi,j,k
,

ā1R�xi+1/2,,j,k� = h��xi+1/2,j,k� ·
h�xi+1/2,j,k� − h�xi+1,j,k�

xi+1/2,j,k − xi+1,j,k
.

Consequently, we have

f0�x,0� = f0L�x,0� + f0R�x,0�

= H�− x��1 + aL · �x − ��� − �AL�fL
�0��0,0�

+ H�x��1 + aR · �x − ��� − �AR�fR
�0��0,0� ,

�20a�

f �0��x,t� = �1 + H�− x�ā1Lx + H�x�ā1Rx + ā2y

+ ā3z + Āt�f �0��0,0� , �20b�

where H�x� is the Heaviside function. Finally, the value of f
at a cell boundary can be obtained by substituting the above
equations of f0�x , t� and f �0��x , t� into Eq. �6�,

f�xi+1/2,j,k,t� = 
��1 − Ā���1 − e−t/�� + Āt�

+ ��t + ��e−t/� − ��
�ā1LH��1�

+ ā1RH�− �1���1 + ā2�2 + ā3�3��f0
�0�

+ e−t/�
�1 − �t + ��aL · � − �AL�H��1�f0L
�0�

+ �1 − �t + ��aR · � − �AR�H�− �1�f0R
�0�� , �21�

where f0
�0�, f0L

�0�, and f0R
�0� are initial values of f �0�, fL

�0�, and fR
�0�

evaluated at the cell boundary xi+1/2,j,k. The only unknown in

f�xi+1/2,j,k , t� of Eq. �21� is the coefficient Ā. By using
f �0��xi+1/2,j,k , t� of Eq. �20� and f�xi+1/2,j,k , t� of Eq. �21�, the
conservation laws lead to the following equation:
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0

�t

dt	 d��f �0��xi+1/2,j,k,t� = 	
0

�t

dt	 d��f�xi+1/2,j,k,t� ,

�22�

which determines Ā in terms of spatial gradients of hydrody-
namic variables: aLª �a1L ,a2L ,a3L�, aRª �a1R ,a2R ,a3R�,
ā1L, ā1R, ā2, and ā3. Therefore, f �0��xi+1/2,j,k , t� is determined
from the hydrodynamic variables at the cell centers around
the cell boundary xi+1/2,j,k. Figure 1 provides an 1D illustra-
tion of construction of the distribution function f with a lim-
iter.

A succinct comment concerning the multidimensionality
of the GKS is in order at this point. Clearly, the flux in x
direction given by Eq. �21� includes the gradients of hydro-
dynamic variables in all directions, regardless of the mesh
orientation. The only effect of mesh here is the accuracy with
which the gradients are computed with a given mesh. This
multidimensional feature saliently distinguishes the GKS
from any Riemann solver based on the picture of one-
dimensional wave.

In the gas-kinetic scheme, the relaxation time � in Eq.
�21� is determined by the local hydrodynamic variables
through

� = �/p , �23�

where � is the dynamic viscosity and p is the pressure. The
above relation between �, �, and p is valid when hydrody-
namic variables are continuous. When discontinuity is al-
lowed as in compressible flows with shocks, artificial dissi-
pation must be introduced to capture shocks �31�. The
artificial dissipation is introduced in the GKS method by
modifying the relaxation time � as the following:

� =
��xi+1/2�
p�xi+1/2�

+ ��t
�pL − pR�
�pL + pR�

= �� + ���, �24�

where �� and ��� represent the physical and artificial relax-
ation times, respectively. A detailed discussion about com-
puting �� and ��� is referred to Sec. II D.

With f given at the cell boundaries, the time-dependent
fluxes can be evaluated,

Fx
i+1/2,j,k =	 �x�f�xi+1/2,j,k,t�d� , �25a�

Fy
i,j+1/2,k =	 �y�f�xi,j+1/2,k,t�d� , �25b�

Fz
i,j,k+1/2 =	 �z�f�xi,j,k+1/2,t�d� . �25c�

Thus the fluxes F
 are fully determined through the distribu-
tion function f at the cell interfaces xi+1/2,j,k, xi,j+1/2,k, and
xi,j,k+1/2. By integrating the above equation over each time
step �t, we obtain the total fluxes as

Fx
i1/2,j,k = 	

0

�t

Fx
i1/2,j,kdt ,

Fy
i,j1/2,k = 	

0

�t

Fy
i,j1/2,kdt , �26�

Fz
i,j,k1/2 = 	

0

�t

Fz
i,j,k1/2dt .

The GKS is an explicit numerical scheme and therefore its
time step �t in Eq. �27� is dictated by local flow character-
istics. For the viscous flows governed by Navier-Stokes
equations, the time step is determined by the following
Courant-Friedrichs-Lewy �CFL� condition:

�t �
�x�CFL

��u� + cs��1 + 2/Re��
, �27�

where �CFL is the CFL number, cs=��RT is the speed of
sound, and Re�

ª �u��x /� is the grid Reynolds number. The
governing equations in the finite-volume formulation can
then be written as

FIG. 1. �Color online� A 1D illustration of construction of f . Dashed and solid vertical lines indicate cell centers and boundaries,
respectively. Discs and circles indicate the values of the equilibrium f �0� at cell centers and boundaries, which are given initially at t= t0 and
by Eq. �19�, respectively. The continuous piecewise linear dash-dot line represents f �0�, which is assumed to be linear between two cell-center
values. The continuous piecewise linear dash line connecting the discs and circles and the discontinuous solid lines represent f �0� and f0

obtained with a limiter, respectively.
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Wijk
n+1 = Wijk

n −
1

�x
�Fx

i+1/2,j,k − Fx
i−1/2,j,k� −

1

�y
�Fy

i,j+1/2,k

− Fy
i,j−1/2,k� −

1

�z
�Fz

i,j,k+1/2 − Fz
i,j,k−1/2� , �28�

which are used to update the conserved flow variables.

B. Multidimensional, quasi-one-dimensional, and directional
splitting GKS

The particle velocity distribution function f�xi+1/2,j,k , t� at
a cell interface is computed according to Eq. �21�, which in
turn determines the fluxes at a cell interface. To make the
gas-kinetic scheme multidimensional, the fluxes must con-
sider, in principle, the gradients of flow variables in both
normal and tangential directions at a cell interface. The flux
calculation in the GKS method is more costly than most
conventional CFD methods, thus one often invokes various
approximations to enhance computational efficiency without
thorough understanding and assessment of the effects of
these approximations on physical fidelity of the GKS
method. Specifically, we will discuss the approximations
leading to the quasi-one-dimensional �Q1D� and the
directional-splitting �DS� GKS schemes �31,39,48,57,67� and
evaluate the effects of these approximations in comparison
with the full multidimensional GKS scheme.

In both the Q1D-GKS and the DS-GKS, the fluxes com-
puted at cell interfaces ignore gradients of flow variables
tangential to cell interfaces, that is, in Eq. �21� of
f�xi+1/2,j,k , t� for the flux along x direction, all the terms re-
lated with a2L, a3L, a2R, a3R, ā1, and ā3, which are related to
gradients in y and z directions, are ignored. Consequently,
Eq. �21� becomes

f�xi+1/2,j,k,t� = 
��1 − Ā���1 − e−t/�� + Āt� + ��t + ��e−t/� − ��

��ā1LH��1� + ā1RH�− �1���1�f0
�0� + e−t/�

�1

− �t + ���1a1L� − �AL�H��1�f0L
�0� + 
�1 − �t

+ ���1a1R� − �AR�H�− �1�f0R
�0�� . �29�

Clearly, both the Q1D-GKS and the DS-GKS only consider
the normal slopes in computing the fluxes. In the Q1D-GKS,
the fluxes along all directions at t= tn are computed indepen-
dently and simultaneously according to Eq. �29�, and then
they are used to update flow variables simultaneously ac-
cording to Eq. �28�. In the DS-GKS, an operator splitting
procedure is used. The fluxes are updated in an asymmetric
and sequential manner, say, in the order of x, y, and z. When
the fluxes along x direction are obtained, it is immediately
used to update all flow variables and the updated flow vari-
ables are then used to compute the fluxes along y direction,
which are used to update flow variables again; the twice-
updated flow variables are used to compute the fluxes along
z direction. Thus, the fluxes computed first depend only on
the flow variables at time t= tn; the fluxes computed next in
line depend on the flow variables updated by the fluxes com-
puted first; and the fluxes computed last depend on the flow
variables updated by all the fluxes computed previously.
Clearly the DS-GKS intends to utilize the fluxes as soon as

they are available. This leads to an asymmetry in the flux
updating, depending to the order of calculations. There is no
prevailing guide to determine the order of updating in this
approach.

In the compressible Navier-Stokes equations, the heat
fluxes depend only on the gradients normal to cell interfaces,
while the viscous fluxes depend on gradients both normal
and tangential to cell interfaces. The components of the rate-
of-strain tensor in the x direction, for instance, can be de-
rived from the non equilibrium part in Eq. �21�:

�xx = 2��xu + �� −
2

3
����xu + �yv + �zw� , �30a�

�xy = ���xv + �yu� , �30b�

�xz = ���xw + �zu� , �30c�

where � is the bulk viscosity. However, in the Q1D-GKS and
the DS-GKS, all the tangential derivatives are omitted as
indicated by Eq. �29�, which leads to

�xx = 2��xu + �� −
2

3
���xu , �31a�

�xy = ��xv , �31b�

�xz = ��xw . �31c�

Clearly, all tangential velocity gradients have been omitted in
both the Q1D-GKS and the DS-GKS. The approximation
would inevitably induce modeling errors in simulations.

We note that the existing comparative studies of the Q1D,
DS, and full GKS were mostly restricted to steady laminar
flows in two dimensions �37,38�. Li et al. assess the Q1D,
DS, and full GKS for several laminar flows and the rarefied
nonequilibrium gas flows in 2D and concluded that the full
GKS is needed for rarefied nonequilibrium flows, and the
DS-GKS is adequate for low-Reynolds-number laminar
flows, while the Q1D-GKS is less so. May et al. �37� ob-
served that the difference between the Q1D-GKS and the full
GKS is small for steady subsonic laminar flows in 2D. These
previous studies are inconclusive and for the most part have
little bearings to the three-dimensional turbulent flows. In
this work we will compare the Q1D-GKS, the DS-GKS, and
the full multidimensional GKS for the DNS of fully com-
pressible turbulent flows with shocklets in three dimensions.

C. Simplified GKS for smooth flows

In Eq. �21�, flows are assumed to be discontinuous, and
the flow variables and their gradients on both sides of a cell
boundary are computed differently. The GKS is essentially a
shock-capturing method, which is only first-order accurate
across a shock, regardless of the order of accuracy of the
method. The discontinuous treatment of hydrodynamic vari-
ables at cell boundaries will introduce numerical errors, es-
pecially for smooth flows. These errors are the consequences
of inequalities of hydrodynamic variables and their gradients
evaluated from both sides of a cell boundary with finite grid
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spacings. For smooth �incompressible� flows, however, hy-
drodynamic variables and their gradients must be continuous
across a cell boundary, thus their values on both sides of a
cell boundary must be equal. This simply means that a1L
=a1R= ā1L= ā1R, a2L=a2R, and a3L=a3R. And as a conse-

quence, AL=AR= Ā. Therefore, for smooth flows, Eq. �21�
reduces to

f�xi+1/2,j,k,t� = f0
�0��1 − �a · � + A�� + At� , �32�

where aª �a1 ,a2 ,a3� is given by Eq. �13a�, and flow vari-
ables and their gradients at cell boundaries can be computed
by using linear interpolations or other high-order reconstruc-
tions depending on accuracy requirement. This will be fur-
ther discussed in Sec. II E.

Clearly, the distribution function given by Eq. �32� is
much simpler than that given by Eq. �21� and hence can
reduce computational time considerably. This approximation
has been used to simulate low-Mach-number viscous flows
or incompressible flows �61,65,68�. It has been observed
that, for compressible decaying homogeneous turbulence,
numerical schemes for smooth flows would work well, in
general, if the initial turbulent Mach number Mat�0.5 �10�.
Our results concur with the previous observations. This is,
the approximation given by Eq. �32� works well for com-
pressible decaying homogeneous turbulence with Mat�0.6.

In theory, the full GKS with Eq. �21� should automatically
reduce to the simplified GKS with Eq. �32� in smooth flow
regions when the grid spacing is infinitesimal, and the two
approaches should be equivalent if the linear interpolations
are used to compute both the hydrodynamic variables and
their gradients at cell boundaries for both of them. However,
it is not so in reality because of the difference in the numer-
ics of these two approaches and finite grid spacings. We will
compare the simplified GKS and the full GKS schemes for
compressible homogeneous turbulence simulations.

D. Viscosity, flux limiter, and artificial dissipation

As shown in Eqs. �23� and �24�, the relaxation time � in
the GKS is related to the dynamic viscosity � and pressure p
by �=� / p. In this work, the value of the dynamic viscosity
��xi+1/2,j,k� in Eq. �23� and �24� is determined by

� = �0� T

T0
�0.76

, �33�

where �0 and T0 are material-dependent constants. In Eq.
�24�, we use ��=� / p=�� /� to calculate ��, and the value of
���xi+1/2,j,k� at t= tn is determined by the values of T�xi+1/2,j,k�
and ��xi+1/2,j,k� at the previous time step t= tn−1, given by the
hydrodynamic variables h�xi+1/2,j,k , tn−1� through the con-
served variables W�xi+1/2,j,k� of Eq. �19�.

The term ��� in Eq. �24� gives rise to artificial dissipa-
tion, where �� is the relaxation time corresponding to the
artificial dissipation. The parameter �� �0,1� is used to ad-
just the intensity of artificial dissipation. We should empha-
size that the artificial dissipation is necessary only when the
Mach number is sufficiently high. When the turbulence
Mach number is greater than 0.65 or so, we must use a lim-

iter to stabilize the code. However, when the turbulence
Mach number is further increased beyond a certain point, we
must use artificial dissipation in addition to a limiter. We will
assess the effect of the artificial dissipation on turbulence.

The values of pressure evaluated at the left and the right
of the cell boundary xi+1/2,j,k, pL and pR, are obtained from
h�xi+1/2,j,k

− � and h�xi+1/2,j,k
+ �, respectively. Therefore, the arti-

ficial dissipation is effective only when shocks are treated as
discontinuities. Obviously, when flow fields are continuous,
pL= pR, hence the artificial dissipation vanishes. We use the
van Leer limiter �31,66� in the interpolations of hydrody-
namic variables at cell interfaces, which also introduces nu-
merical dissipations. These dissipations due to the limiter
and the artificial relaxation time �� are the so-called dynamic
artificial dissipations �31�. On the other hand, the GKS also
assumes discontinuity at cell interfaces in the reconstruction
step. The averaging process in the initial reconstruction also
introduces numerical dissipations, which are the so-called
kinematic artificial dissipations �31�. All artificial dissipa-
tions, whether dynamic or kinematic, can severely affect the
accuracy of the GKS scheme although they can enhance nu-
merical stability. We will assess the effects of the artificial
dissipations due to the flux limiter and initial reconstruction
in this work.

E. Interpolations at cell boundaries for smooth flows

For smooth flows, the flow variables and their gradients at
cell boundaries are obtained by interpolations. To achieve a
second-order accuracy, it is sufficient to the following linear
interpolations, for instance, in the x direction,

Wi+1/2,j,k =
1

2
�Wi,j,k + Wi+1,j,k� , �34a�

�xWi+1/2,j,k =
1

�x
�Wi+1,j,k − Wi,j,k� , �34b�

�yWi+1/2,j,k =
1

2�y
�Wi+1/2,j+1,k − Wi+1/2,j−1,k� , �34c�

�zWi+1/2,j,k =
1

2�z
�Wi+1/2,j,k+1 − Wi+1/2,j,k−1� . �34d�

Unless otherwise stated, the above linear interpolations will
be used in the simplified GKS. It should also be noted that,
when the linear interpolation of Eq. �34a� is also used in the
reconstruction for the full GKS, the gradients given above
are fully equivalent to those given by Eqs. �16� and �18� for
smooth flows. To understand the effect due to the interpola-
tions, we will also test the following third-order interpola-
tions in our simulations,

Wi+1/2,j,k =
9

16
�Wi,j,k + Wi+1,j,k� −

1

16
�Wi−1,j,k + Wi+2,j,k� ,

�35a�
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�xWi+1/2,j,k =
5

4�x
�Wi+1,j,k − Wi,j,k� −

1

12�x
�Wi+2,j,k

− Wi−1,j,k� , �35b�

�yWi+1/2,j,k =
8

12�y
�Wi+1/2,j+1,k − Wi+1/2,j−1,k�

−
1

12�y
�Wi+1/2,j+2,k − Wi+1/2,j−2,k� , �35c�

�zWi+1/2,j,k =
8

12�z
�Wi+1/2,j,k+1 − Wi+1/2,j,k−1�

−
1

12�z
�Wi+1/2,j,k+2 − Wi+1/2,j,k−2� . �35d�

Note that, in calculating the gradients at the cell interface
xi+1/2 using above interpolations given by Eqs. �34c� and
�34d� or Eqs. �35c� and �35d�, all the values of the flow
variables at xi+1/2 must be interpolated from the cell center
values using Eq. �34a� or Eq. �35a�, respectively. Obviously,
interpolations for y and z directions can be easily done, in a
similar manner as Eq. �34� or Eq. �35�.

For smooth flows, the linear interpolations given by Eq.
�34� make the GKS scheme a second-order accurate one
�34,38,40�. For DNS of turbulence, however, quantities re-
lated to high-order gradients of flow variables may be sensi-
tive to the accuracy of interpolations used at cell interfaces,
thus higher-order interpolations may be required. We will
investigate the effects due to different interpolations at cell
interfaces for DNS of compressible homogeneous turbu-
lence.

F. Bulk viscosity �

For thermochemical nonequilibrium hypersonic flows, the
internal degrees of freedom of gas molecules must be con-
sidered. In the framework of continuum theory and the
Navier-Stokes equations, the internal degrees of freedom is
accounted for through the bulk �second� viscosity

� =
2Z

3�Z + 3�
� , �36�

where � is the dynamic �first� viscosity and Z is the number
of the internal degrees of freedom, which is equal to 2 for
diatomic gases with rotational degrees of freedom in three-
dimensional space. Thus �=4� /15 with Z=2. In the GKS,
the bulk viscosity � can be easily adjusted by tuning the
parameter Z. We will study the effects of the bulk viscosity
�, and in turn the compressibility � ·u, in DNS of compress-
ible homogeneous turbulence.

III. COMPRESSIBLE DECAYING HOMOGENEOUS
ISOTROPIC TURBULENCE

A. Governing equations and flow conditions

We use the GKS method to solve the fully compressible
Navier-Stokes equations in 3D,

�t� + � · �u = 0, �37a�

�t�u + � · �uu + �p = � · � , �37b�

�tE + � · Eu + � · pu =
1



� · �� � T� + � · �� · u� , �37c�

�ij ª ���iuj + � jui� + �� −
2

3
���ij � · u , �37d�

where � is the stress tensor and � is the heat conductivity.
The dimensionless parameters for the compressible Navier-
Stokes equations are

(b)(a)

FIG. 2. �Color online� The kinetic energy K�t�� /K0 and dissipation rate ��t�� /�0 in DHIT. Mat=0.1, Re�=24.0, and N3=2563. The GKS
method �thick lines� vs pseudospectral method �thin lines with symbols�.
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Re =
�0cs0L

�0
, Ma =

U

cs0
, cs0 = ��RT0, Pr =

�0cp

�0
= 0.7.

�38�

For decaying homogeneous isotropic turbulence �DHIT�, the
flow domain is a three-dimensional cube of size L3= �2��3

with periodic boundary conditions in all three directions. The
cube is discretized with a uniform Cartesian mesh size N3. A
divergence-free random initial velocity field u0�x� is gener-
ated for a given spectrum by using the method of Rogallo
�69� with a specified root mean square �rms�:

u� ª
1
�3

��u · u� . �39�

The initial energy spectrum Ẽ0�k� in the Fourier space k is
given by

Ẽ0�k� = A0k4 exp�− 2k2/k0
2� , �40�

where A0=1.3�10−4 and k0=8. At t=0,

K0 =
3A0

64
�2�k0

5,

�0 =
15A0

256
�2�k0

7,

�0 = 2
�0

�0
�0,

Re� ª
���u��

���
=

�2��1/4

4

�0

�0

�2A0k0
3/2,

Mat ª
�3u�

�cs�
=

�3u�
��RT0

,

where K0, �0, and �0 are the initial kinetic energy, enthalpy,
and dissipation rate, respectively; and Re� and Mat are the
initial Taylor microscale Reynolds number and turbulence
Mach number, respectively. With u�, Re�, and Mat given at
t=0, we set �0=1, and determine �0 and T0 from Re� and
Mat, respectively.

The following quantities of turbulence will be computed
in our simulations �5,7,8,10,70�:

K�t� ª
1

2
��u · u� , �41a�

��t� ª 2��

�
u · �2u� , �41b�

Su�t� =
1

3
i

Sui
, �41c�

Sui
=

���iui�3�
���iui�2�3/2 , �41d�

Fu�t� =
1

3
i

Fui
, �41e�

Fui
�t� =

���iui�4�
���iui�2�2 , �41f�

where K�t� and ��t� are the kinetic energy and dissipation
rate, respectively; Sui

and Fui
are the skewness and flatness of

the velocity derivative �iui, with i� 
x ,y ,z�, and Su and Fu
are the skewness and flatness averaged over three directions,

(b)(a)

FIG. 3. �Color online� The skewness Sui
�t�� �left� and flatness Fui

�t�� �right� in DHIT. Mat=0.1, Re�=24.0, and N3=2563. The GKS
method �lines� vs pseudospectral method �symbols�.
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respectively. We will investigate effects on these quantities
due to numerics.

B. Code validation

To validate our code, we first test the code for the incom-
pressible DHIT by using a low turbulent Mach number
Mat=0.1 and compare the results with a pseudospectral �PS�
method. For the pseudospectral method we use here, the
second-order Adam-Bashforth scheme is used to numerically
integrate the nonlinear term, while the viscous term is treated
exactly. In the GKS method, no artificial dissipation is used
in this work unless otherwise stated, that is, we set �=0 in
Eq. �24�. The mesh size used for the validation is N3=2563

and the Taylor Reynolds number is set to Re�=24.0. With the

resolution given, the flow is well resolved. In this test, the
DHIT is simulated by using the simplified GKS with the
third-order interpolations given by Eq. �35� and the bulk vis-
cosity �=4� /15 �Z=2 in Eq. �36��.

We first compare the kinetic energy K�t� and the dissipa-
tion rate ��t� computed by using the GKS method and the
pseudospectral method in Fig. 2. The time is normalized by
the turbulence turnover time �0=K0 /�0, i.e., t�= t /�0, and the
simulations are carried out to t��3.5. We observe excellent
agreement between the results obtained by both methods.

We next show in Fig. 3 the comparison of the skewness
Sui

and the flatness Fui
, i� 
x ,y ,z�, obtained by using the two

methods. The skewness and flatness are related to the fourth-
order and the first-order velocity gradients, respectively, and
are sensitive to numerical accuracy and dissipations. It can

(a)

(c)

(b)

(d)

FIG. 4. �Color online� The comparison of the GKS and the dealiased spectral computation �13� on the kinetic energy and thermodynamic
fluctuations at Mat=0.3, Re�=30.0 and N3=643: �a� kinetic energy K��t��, �b� the rms of the specific volume V��t��, �c� the rms of the
pressure p��t��, and �d� the rms of the temperature T��t��.
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be a challenging task for a second-order method, such as the
GKS method, to accurately compute these quantities. The
results of Fig. 3 show that the skewness and flatness com-
puted from the GKS method agree very well with those from
the pseudospectral method, and they are close to the theoret-
ical values for isotropic turbulence, Su�−0.5 and Fu�3.5.

To further validate the GKS code, we use the same GKS
strategy for a compressible DHIT with Mat=0.3 and Re�

=30 and compare our results with the data obtained with a
dealiased spectral method �13�. The mesh size is N3=643, the
same as what has been used previously �13,14�. In this case,
a divergence-free random initial velocity field u0 is generated
with A0=3.74�10−4 and k0=4 for the initial energy spec-
trum given by Eq. �40�.

We compute the evolution of the normalized kinetic en-
ergy K��t��, the normalized root mean squares of the pressure
fluctuation, p��t��, the temperature fluctuation, T��t��, and the
specific volume fluctuation, V��t��,

K� ª
3u�2

cs0
2 Mat

2 ,

p� ª
��p − p̄�2�1/2

�p0Mat
2 ,

T� ª
��T − T̄�2�1/2

�� − 1�T0Mat
2 ,

V� ª
��V − V̄�2�1/2

V0Mat
2 ,

where V=1 /�, V0=1 /�0, and V̄=1 / �̄; p0, T0, and �0 are the

initial mean values of p, T, and �, respectively; p̄, T̄, and �̄
are the instantaneous mean values of p, T, and �, respec-
tively; and cs0=��RT0. The results of K��t��, V��t��, p��t��,

and T��t�� are shown in Fig. 4, and our results agree well
with the existing data obtained by using spectral and high-
order finite difference methods �13�. We should also note
that, with a small mesh size of N3=643, the initial conditions
have observable effects on the results of K��t��, V��t��,
p��t��, and T��t��. This is responsible in part for the differ-
ences between our results and the existing data shown in Fig.
4.

IV. NUMERICAL RESULTS AND DISCUSSIONS

The main focus in this study is to investigate the efficacy
and fidelity of the GKS schemes for direct numerical simu-
lations �DNSs� of compressible homogeneous turbulence.
Thus turbulence physics is not main focus of this study. In
what follows, we will investigate the effects on interested
turbulence quantities due to approximations in the flux con-
struction, flux limiters, interpolations at cell boundaries, and
the bulk viscosity under different flow conditions. We do not
use any artificial dissipation in the results presented in this
section unless otherwise stated; that is, we set �=0 in Eq.
�24�. Unless otherwise stated, we will use the linear interpo-
lations of Eqs. �16� and �18� at cell boundaries, and consider
the bulk viscosity �=4� /15.

For the cases present in this section, we will use the res-
olution of N3=1283 and the Taylor microscale Reynolds
number Re�=72.0, which has been used previously �10�. The
initial turbulence Mach number Mat will be between 0.1 and
0.6.

A. Effect of multidimensional fluxes

We will first assess the necessity to use the full multidi-
mensional �MD GKS� fluxes based on Eq. �21�, as oppose to
the Q1D and DS fluxes based on Eq. �29� for DNS of com-
pressible DHIT. The mesh size we use is N3=1283, and the
flow conditions are Mat=0.5 and Re�=72.0. We also use

(b)(a)

FIG. 5. �Color online� The evolution of the kinetic energy K�t�� /K0 �left� and dissipation rate ��t� /�0 �right� with Mat=0.5, Re�=72.0,
N3=1283, and �CFL=0.1. The results are computed by using the full MD GKS, the Q1D GKS, and the DS-GKS.
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different values of the CFL number �CFL to test the numeri-
cal stability of these GKS schemes.

We first show in Fig. 5 the kinetic energy K�t�� /K0 and
the dissipation rate ��t�� /�0 computed from three GKS
schemes, denoted as MD, Q1D, and DS GKS schemes. The
CFL number is �CFL=0.1. While the results of K�t�� /K0
computed from three GKS schemes are rather close to each
other on the log-log scales, a close look reveals that during
the initial stage t��1.0 the kinetic energy K�t�� /K0 com-
puted from the full MD GKS is greater than that from the DS
GKS scheme, which is greater than that from the Q1D GKS
scheme. This suggests that both the DS and Q1D-GKS
schemes are more dissipative then the full multidimensional
GKS scheme and especially so is the Q1D-GKS scheme al-
though all these schemes are all second-order accurate. This
fact is further confirmed by the results for the dissipation rate

��t�� /�0. As clearly shown in the figure, the maximum of
��t�� /�0 computed from the full MD GKS is greater than that
from the DS and Q1D-GKS schemes and in that order. This
is because the numerical dissipations in DS and Q1D-GKS
schemes weaken the nonlinearity in the Navier-Stokes equa-
tion and, in turn, the peak of the dissipation rate. This also
suggests that numerical dissipations can effectively decrease
the Reynolds number of the flow.

We next show in Fig. 6 the skewness Su�t�� and the flat-
ness Fu�t�� computed from three GKS schemes. Because the
skewness and flatness are related to fourth- and first-order
velocity derivatives, respectively, both these quantities can
distinguish the three schemes more prominently. For Su�t��,
during a short initial period of time t��0.8, the results com-
puted from GKS schemes agree well with each other. After
this short initial period of time, the result of the Q1D-GKS

(b)(a)

(c) (d)

FIG. 6. �Color online� The evolution of the skewness Su�t�� �left� and flatness Fu�t�� �right� with Mat=0.5, Re�=72.0, N3=1283, and
�CFL=0.1. The results are computed by using the full MD GKS, the Q1D-GKS, and the DS-GKS. In the bottom row, the results are
smoothed.
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quickly and significantly deviates from the results of the full
MD GKS and the DS-GKS, which agree with each other
closely for the entire period of the simulation t��16.0 and
remain close to the theoretical value of Su�−0.5. Similar
observations can be made for the flatness Fu�t�� as well. The
results obtained by all three GKS schemes agree with each
other for a very short period of time initially. After this short
initial period of time, the result of Fu�t�� computed from the
Q1D-GKS quickly deviates from that computed by using the
full MD GKS and the DS-GKS, while the result computed
by using the DS-GKS starts to deviate significantly from the
MD-GKS result only after t��8.0. The MD-GKS result
maintains close to the theoretical value of Fu�3.5.

To investigate the effect of the CFL number �CFL, we
repeat the simulations with �CFL=0.2 and 0.5. The evolu-
tions of the kinetic energy, K�t�� /K0, and the dissipation rate,
��t� /�0 for �CFL=0.2 are shown in Fig. 7. The differences
between the Q1D-GKS results for both K�t�� /K0 and ��t� /�0
and those computed by using the DS-GKS and the full MD
GKS are obviously larger than the case of �CFL=0.1 of Fig.
5. Similar observations can be made for the skewness Su�t��
and flatness Fu�t�� shown in Fig. 8. We also observe that the
differences between results computed by using the DS-GKS
and the full MD GKS appear to be affected very little by the
CFL number �CFL.

As the CFL number is increased to �CFL=0.5, the Q1D-
GKS becomes unstable, as shown in Fig. 9 for K�t�� /K0 and
��t� /�0. In addition, the differences for the results of the
skewness Su�t�� and flatness Fu�t�� �Fig. 10� computed by
using the DS-GKS and the full MD GKS are further ampli-
fied, and the values of Su�t�� and Fu�t�� computed by using
the full MD GKS remain close to their theoretical values.
The high-frequency oscillations in both Su�t�� and Fu�t��
weaken as the CFL number �CFL increases. This is under-
standable because as the CFL number �CFL increases so do
the time step size and the corresponding truncation errors.
The former reduces the resolution in time, and the latter in-

creases numerical dissipations; both effects suppress the
high-frequency oscillations.

Our results show that among three schemes, the Q1D-
GKS is the most dissipative, least accurate, and most un-
stable. The full MD GKS is the best one in terms of numeri-
cal dissipation, accuracy, and stability, while the DS-GKS
ranks second. Obviously, the Q1D-GKS is not adequate for
DNS of homogeneous turbulence flows, while the DS-GKS
is adequate for the purpose provided that the CFL number is
small enough. We also observe that an increase in numerical
dissipations leads to an increase in the skewness Su�t�� as
well as a decrease in the flatness Fu�t�� after a very short
initial period in time.

We also assess the computational efficiencies of the three
approaches. For the part related to the calculation of fluxes,
the computational effort of the DS-GKS is only slightly more
than that of the Q1D-GKS �less than 5%�, while the compu-
tational effort of the full GKS is about twice of that of the
DS-GKS. In light of the results above and the consideration
of the computational efficiency, the DS-GKS appears to be
adequate to compute low-order turbulence statistics within
the parameter ranges tested for the DNS for decaying turbu-
lence.

B. Simplified GKS vs full multidimensional GKS

The simplified GKS with the fluxes determined by Eq.
�32� is much simpler, thus much computationally efficient
than the full multidimensional GKS with the fluxes deter-
mined by Eq. �21�. Another benefit of using the simplified
GKS for smooth flows is numerical consistency of the values
of hydrodynamic variables and their gradients at cell bound-
aries because the simplified GKS assumes these quantities to
be continuous, while the multidimensional GKS assumes
them to be discontinuous. It is important to note that the
simplified GKS is a multidimensional scheme, it does not
neglect the derivatives tangential to cell interfaces. We will

(b)(a)

FIG. 7. �Color online� The evolution of the kinetic energy K�t�� /K0 �left� and dissipation rate ��t� /�0 �right�. Similar to Fig. 5, with
�CFL=0.2.
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compare the simplified GKS and the multidimensional GKS
for the DNS of compressible DHIT. For both schemes, the
linear interpolations of Eq. �34� are used to compute the
conservative variables and their gradients at cell boundaries.

We first compare the results of the simplified GKS and the
full GKS for the following flow conditions: Mat=0.1, Re�

=72.0, �CFL=0.2, and with a mesh size of N3=1283. Figure
11 shows the evolutions of the kinetic energy K�t�� /K0 and
the dissipation rate ��t�� /�0, and Fig. 12 shows that of the
skewness Su�t�� and the flatness Fu�t��. It is clearly that the
results obtained by the simplified GKS and the full GKS
agree very well with each other.

We repeat the calculations with a larger turbulence Mach
number Mat=0.5 and a larger CFL number �CFL=0.5. The
results of the kinetic energy K�t�� /K0 and the dissipation rate
��t�� /�0 are shown in Fig. 13, and that of the skewness Su�t��
and the flatness Fu�t�� are shown in Fig. 14. For the kinetic

energy and the dissipation rate, the results computed from
the simplified GKS and the full GKS are indistinguishable,
as shown Fig. 13. As for the skewness Su�t�� and the flatness
Fu�t��, the results computed from the both schemes agree
very well when t��2.5 but show observable differences
later, especially for the flatness Fu�t��. Given the fact that the
hydrodynamic variables and their derivatives are treated so
differently at cell boundaries in the numerics in these two
schemes, the agreement of the results is remarkable.

In the simplified GKS the hydrodynamic variables and
their gradients are treated as continuous variables, this ap-
proach becomes numerically unstable when the turbulence
Mach number is sufficiently high and shocks in the flow are
so strong that they are practically discontinuous with the
given resolution. It has been shown that there are eddy
shocklets in the compressible DHIT �4�. To demonstrate this
point, we show in Fig. 15 the contours of instantaneous den-

(b)(a)

(c) (d)

FIG. 8. �Color online� The evolution of the skewness Su�t�� �left� and flatness Fu�t�� �right�. Similar to Fig. 6, with �CFL=0.2. In the
bottom row, the results are smoothed.

LIAO, PENG, AND LUO PHYSICAL REVIEW E 80, 046702 �2009�

046702-14



sity � and local Mach number Ma for a simulation of com-
pressible DHIT with Re�=72.0 and Mat=0.5 by using the
simplified GKS scheme. The figure clearly shows areas
where the gradients of � and Ma have very high intensities,
indicating the presence of shocklets.

To test the limit of the turbulence Mach number Mat for
the simplified GKS, we perform simulations with a fixed
CFL number �CFL=0.5 and a fixed Reynolds number Re�

=72.0 and various values of the initial turbulence Mach
number Mat. Figure 16 shows the results for the kinetic en-
ergy K�t�� /K0 and the dissipation rate ��t� /�0 obtained by
using the simplified GKS with Mat=0.1, 0.5, and 0.6. The
corresponding results for the skewness Su�t�� and the flatness
Fu�t�� are shown in Fig. 17. Clearly, as the turbulence Mach
number Mat increases, so also do the strengths of shocklets

in the flow. Consequently, the gradients of flow fields be-
come larger and larger as Mat increases. This phenomenon is
clearly reflected in both the skewness Su�t�� and the flatness
Fu�t�� shown in Fig. 17: as Mat increases, the amplitudes of
oscillations in both Su�t�� and Fu�t�� increase significantly.
The oscillation amplitudes also grow in time. If the initial
turbulence Mach number Mat is increased to 0.65, the simu-
lation becomes unstable quickly regardless of how small the
CFL number �CFL is. Our results indicate that the upper limit
of the initial turbulence Mach number Mat, below which the
simplified GKS can yield acceptable results, is about 0.6.
Below this limit of Mat, the simplified GKS works effec-
tively for the compressible DHIT.

We note that the simplified GKS is much more efficient
computationally—it is about five times faster than the full

(b)(a)

FIG. 9. �Color online� The evolution of the kinetic energy K�t�� /K0 �left� and dissipation rate ��t� /�0 �right�. Similar to Fig. 5, with
�CFL=0.5.

(b)(a)

FIG. 10. �Color online� The evolution of the skewness Su�t�� �left� and flatness Fu�t�� �right�. Similar to Fig. 6, with �CFL=0.5.
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multidimensional GKS. Thus it is highly recommended for
flows for which the simplified GKS is suitable.

C. Effects of flux limiter and artificial dissipation

In the previous section we show that, for compressible
flows with a high enough turbulent Mach number, the sim-
plified GKS with the continuous treatment of hydrodynamic
variables and their gradients is inadequate. When dealing
with high Mach number turbulence, some sort of discontinu-
ous treatment of shocks must be used. In addition to treating
hydrodynamic variables and their gradients as discontinuities
at cell boundaries, a flux limiter has to be used when the
Mach number is sufficient high. Inevitably flux limiters do

introduce numerical dissipations. In this section we will as-
sess the effects of a flux limiter, as well as artificial dissipa-
tion on the DNS of compressible turbulence.

We use the full MD GKS with the van Leer limiter
�31,66� for the following tests. With the limiter, we can use
the GKS to simulate compressible DHIT with a turbulence
Mach number up to Mat=2.0. Figure 18 compares the results
of the kinetic energy K�t�� /K0 and the dissipation rate
��t�� /�0 computed by using the full MD-GKS with and with-
out the limiter. The flow conditions are Re�=72.0 and Mat
=0.5, and the mesh size is N3=1283 and the CFL number is
�CFL=0.5. This is the case for which the limiter is not nec-
essary. The evolutions of the kinetic energy and the dissipa-
tion rate clearly show that the limiter introduces a significant

(b)(a)

FIG. 11. �Color online� Evolutions of the kinetic energy K�t�� /K0 �left� and the dissipation rate ��t�� /�0 �right� obtained by the simplified
GKS and the full GKS. N3=1283, Re�=72.0, Mat=0.1, and �CFL=0.2.

(b)(a)

FIG. 12. �Color online� Evolutions of the skewness Su�t�� �left� and the flatness Fu�t�� �right� obtained by the simplified GKS and the full
GKS. N3=1283, Re�=72.0, Mat=0.1, and �CFL=0.2.
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amount of numerical dissipation: the kinetic energy K�t�� /K0
and the dissipation rate computed with the limiter are much
lower than their counterparts computed without the limiter.
The results of the skewness Su�t�� and the flatness Fu�t��
shown in Fig. 19 corroborate the above observation. Before
the viscous decay completely dominates the decaying pro-
cess �71�, when t��5.0, the flatness Fu�t�� computed without
the limiter is closer to its theoretical value of 3.5 than that
with the limiter. Our results clearly demonstrate that flux
limiters can introduce significant amount of numerical dissi-
pation, which can adversely affect the quality of DNS results
for compressible turbulence.

To assess the effect of the artificial dissipation, we use the
van Leer limiter, plus the artificial dissipation with �=1.0 in
Eq. �24�. Note that, without a limiter, the values of hydrody-

namic variables in both sides of a cell boundary are equal
because of the linear interpolations used to compute these
values �cf. Eqs. �16� and �18� and Fig. 1�. Therefore the
artificial dissipation will not take effect unless a limiter is
used in the GKS used in this work. In Figs. 18 and 19 we
also show the effects of the artificial dissipation on K�t�� /K0,
��t�� /�0, Su�t��, and Fu�t�� obtained by using the MD-GKS
with the van Leer limiter and with �=1.0 in Eq. �24�.
Clearly, the artificial dissipation has no visible effect on these
quantities. This indicates that when a limiter is working, the
dissipation due to the limiter is overwhelmingly dominant,
and the effect of artificial dissipation is negligible for the
low-Mach-number cases tested here.

(b)(a)

FIG. 13. �Color online� Evolutions of the kinetic energy K�t�� /K0 �left� and the dissipation rate ��t�� /�0 �right� obtained by the simplified
GKS and the full GKS. Similar to Fig. 11, with Mat=0.5 and �CFL=0.5.

(b)(a)

FIG. 14. �Color online� Evolutions of the skewness Su�t�� �left� and the flatness Fu�t�� �right� obtained by the simplified GKS and the full
GKS. Similar to Fig. 12, Mat=0.5 and �CFL=0.5.
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D. Effect of the interpolation accuracy at cell boundaries

In the GKS, one must interpolate hydrodynamic variables
and their gradients from cell centers to cell boundaries. The
accuracy of interpolations determines the accuracy of the
scheme. Since the GKS is constructed as a second-order
scheme, the linear interpolations of Eq. �34� are sufficient to
achieve the required second-order accuracy. Because turbu-
lence DNS have a very stringent requirement on the accuracy
of numerical schemes, we would like to investigate the nu-
merical fidelity of the linear interpolations used in the GKS
for DNS of compressible DHIT. In what follow, we will use
the simplified GKS to test the linear interpolation of Eq. �34�
against the third-order interpolations of Eq. �35�. We main-
tain the Reynolds number Re�=72.0 and the mesh size N3

=1283.
In Fig. 20, we show the kinetic energy and the dissipa-

tions rate with two sets of conditions: Mat=0.1 and �CFL
=0.2 and Mat=0.5 and �CFL=0.4. For the case of Mat=0.1,
the kinetic energy K�t�� /K0 shows no visible difference due
to the difference of interpolations used, while the dissipation

rate clear indicates that the linear interpolations are more
dissipative than the third-order ones—the peak of ��t�� /�
computed with the linear interpolations is lower than what
computed with the third-order interpolations. For the case of
Mat=0.5, the discrepancy in the ��t�� /� due to interpolations
disappears. However, the kinetic energy K�t�� /K0 computed
with the linear interpolations decays slower after t��8.0,
indicating that a larger numerical dissipation due to linear
interpolations. The reason behind this phenomenon can be
explained as follows. Stronger numerical dissipations due to
linear interpolations reduce the dissipation rate � in the initial
stage, as clearly shown in Fig. 20 for the case of Mat=0.1,
which in turn slow down the decay of the kinetic energy K in
later times. Thus, a larger numerical dissipation leads to a
slower decay of the kinetic energy in this case.

Figures 21 and 22 show the evolution of Su�t�� and Fu�t��
for Mat=0.1 and Mat=0.5, respectively, corresponding to the
results shown in Fig. 20. For the case of Mat=0.1, the results
in Fig. 21 show that the results computed with linear and
third-order interpolations display large discrepancies. While
one cannot argue that the results computed with the third-
order interpolations are better than that computed with the
linear interpolations, there are some indications—the flatness
Su�t�� computed with the third-order interpolations is
bounded between −0.5 and −0.4, which is more reasonable
than that computed with the linear interpolations, which goes
beyond the bound of �−0.5,−0.4� after t��15.0. For the case
of Mat=0.5, oscillations in the Su�t�� and Fu�t�� computed
with the linear interpolations have larger amplitudes. How-
ever, the smoothed Su�t�� and Fu�t�� computed with the linear
and third-order interpolations agree with each other rather
well, as shown in Fig. 22.

Our results here clear show that the accuracy of interpo-
lations does have observable effects on various quantities in
DNS of compressible DHIT. Clearly, the linear interpolations
introduce stronger numerical dissipations. These effects seem
to be stronger at lower Mach numbers. Overall, the linear

(b)(a)

FIG. 15. �Color online� Contours of the density �left� and the
Mach number �right� on the xy plane k=2 at t�=1.03 for �CFL

=0.5, Mat=0.5, Re�=72.0, and N3=1283.

(b)(a)

FIG. 16. �Color online� The evolution of K�t�� /K0 �left� and ��t�� /�0 �right� obtained by using the simplified GKS with N3=1283,
�CFL=0.5, Re�=72.0, and Mat=0.1, 0.5, and 0.6.
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interpolations are acceptable for DNS of compressible turbu-
lence flows. Overall, the linear interpolations save about
15% computational time when compared with the third-order
interpolations.

E. Effect of bulk viscosity

Finally, we assess the effect of the bulk viscosity �. We
use the simplified GKS with linear interpolations at cell
boundaries. In GKS, the bulk viscosity is tuned with the
parameter Z and it does not change the complexity of the
code because one does not need to explicitly compute the
divergence of the velocity field � ·u. We perform the simu-
lations for the compressible DHIT at Mat=0.1 and 0.5 with
�K=2� or without �K=0� the bulk viscosity �. Figure 23
shows the effect of the bulk viscosity at Mat=0.1 on the
kinetic energy K�t�� /K0 and the dissipation rate ��t�� /�0. We

can see that the bulk viscosity has no observable effect on
the kinetic energy K�t�� /K0; however, it does increase the
dissipation rate ��t�� /�0 slightly in the initial stage. Clearly,
the dissipation due to the bulk viscosity � produces observ-
able effects in both the skewness Su�t�� and the flatness
Fu�t��, as shown in Fig. 24.

When the initial turbulent Mach number Mat=0.5, the
bulk viscosity � does not seem to have any observable ef-
fects on both the kinetic energy K�t�� /K0 and the dissipation
rate ��t�� /�0, as shown in Fig. 25. However, the bulk viscos-
ity do have prominent effects on both the skewness Su�t��
and the flatness Fu�t��, as shown in Fig. 26. Several obser-
vations can be made here. First, for a low initial turbulence
Mach number Mat=0.1, the bulk viscosity � simply adds
more dissipation to the flow; it enhances the value of the
skewness Su�t�� and depresses that of the flatness Fu�t�� after
an initial period of time. It seems to be difficult to distinguish
a priori between the dissipative effects due to the bulk vis-

(b)(a)

(c) (d)

FIG. 17. �Color online� The evolution of Su�t� �left� and Fu�t� �right� obtained by using the simplified GKS with N3=1283, �CFL=0.5,
Re�=72.0, and Mat=0.1, 0.5, and 0.6. In the bottom row, the results are smoothed.
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cosity � and that due to numerical viscosities. Secondly, for
a higher initial turbulence Mach number Mat=0.5, the skew-
ness Su�t�� and the flatness Fu�t�� computed with a nonzero
bulk viscosity have high-frequency oscillations stronger than
that with zero bulk viscosity. In addition, it is interesting to
note that the skewness Su�t�� and the flatness Fu�t�� com-
puted with a nonzero bulk viscosity remain much closer to
their theoretical values of −0.5 and 3.5 at late stage of DHIT,
respectively, than their counterparts with a zero bulk viscos-
ity.

V. CONCLUSIONS

In this paper we apply the gas-kinetic scheme �GKS� for
DNSs for compressible decaying homogeneous isotropic tur-

bulence in a three-dimensional cube with periodic boundary
conditions. We measure the statistical quantities including
the total kinetic energy K�t��, the dissipation rate ��t��, the
skewness Su�t��, and the flatness Fu�t��. The simulations are
carried out with the Taylor microscale Reynolds number
Re�=72.0, a fixed mesh size of N3=1283, and various values
of initial turbulence Mach number Mat, up to the dimension-
less time t��30 in terms of the turbulence turnover time
�0=K0 /�0.

We first validate our GKS code against pseudospectral
simulations in both near incompressible and fully compress-
ible regions for the DHIT, corresponding to the initial turbu-
lence Mat=0.1 and 0.5, respectively. We find that the GKS
can yield satisfactory results for K�t��, ��t��, Su�t��, and

(b)(a)

FIG. 18. �Color online� Effects of flux limiter and artificial dissipation �AD� on the kinetic energy K�t�� /K0 �left� and ��t�� /�0 �right�. We
set �=1.0 in Eq. �24� when AD is used. Re�=72.0, Mat=0.5, �CFL=0.5, and N3=1283.

(b)(a)

FIG. 19. �Color online� Effect of flux limiter and AD on the skewness Su�t� �left� and the flatness Fu�t� �right�. We set �=1.0 in Eq. �24�
when AD is used. Re�=72.0, Mat=0.5, �CFL=0.5, and N3=1283.
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Fu�t��, and the results are in good agreement with pseu-
dospectral results.

We investigate effects due to approximations made in
computing the fluxes, that is, we compare the quasi-one-
dimensional �Q1D� GKS and dimensional-splitting �DS�
GKS, versus the full MD GKS. We find that the Q1D-GKS is
the most dissipative and the least stable and accurate scheme
among the three, while the full GKS is the best. The accu-
racy and numerical stability of the Q1D-GKS deteriorate as
the initial turbulence Mach number Mat increases, while the
DS-GKS is only slightly more dissipative than the full MD
GKS, which is only observable in the skewness and the flat-
ness. For most part, the DS-GKS results agree well with the
full MD-GKS ones in the parameter ranges we have tested.

The ratio of the computational speeds of the DS-GKS and
the full GKS is about 1.8. The tests performed in this work
show that the DS-GKS is an adequate DNS tool to compute
the low-order turbulence statistical quantities in compress-
ible decaying turbulence, while the Q1D-GKS is not recom-
mended for the purpose of turbulence DNS.

We test the simplified GKS for smooth flows. The simpli-
fied GKS treats the hydrodynamic variables and their deriva-
tives as continuous variables at cell boundaries, leading to
considerably simplifications in the calculations of fluxes,
thus significantly reducing the computational cost. The com-
putational cost of the simplified GKS is only about 1/5 of
that of the full GKS. The simplified GKS works very well for
the DNS of decaying turbulence when the initial turbulence

(b)(a)

FIG. 20. �Color online� Effect of the accuracy of interpolations on the kinetic energy K�t�� /K0 and the dissipation rate ��t�� /�0.
N3=1283, Re�=72.0, Mat=0.1, and �CFL=0.2 �left�; and Mat=0.5 and �CFL=0.4 �right�.

(b)(a)

FIG. 21. �Color online� Effect of interpolation accuracy at cell boundaries on Su�t� �left� and Fu�t� �right� at �CFL=0.2, Mat=0.1,
Re�=72.0, and N3=1283.
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Mach number Mat�0.6. At a low Mach number Mat=0.1,
the results generated from both simplified and full GKS have
almost invisible difference. At a higher Mach number Mat
=0.5, the differences can only be observed in the skewness
Su�t�� and the flatness Fu�t�� when t�ª t /�0�5.0, where �0
ªK0 /�0 is the turbulence turnover time. The simplified GKS
is highly recommended as a DNS tool for turbulence when
the Mach number is not too high.

We also evaluate the effects on the low-order statistical
turbulence quantities due to flux limiter, the accuracy of the
interpolations at cell boundaries, and the bulk viscosity �.
The flux limiter introduces considerable amount of numerical
dissipations, thus significantly affects all the turbulence sta-
tistics adversely. Therefore it should only be used for high
Mach number flows when necessary, e.g., when the initial
turbulence Mach number Mat�0.6 for DHIT. We observe
that the accuracy of the interpolations at cell boundaries has

more significant effects near incompressible flow with low
Mach number, e.g., Mat=0.1. With Mat=0.5, the flatness
Fu�t�� is the only quantity showing visible difference due to
the accuracy of the interpolations. Thus, higher-order inter-
polations would only be needed for near incompressible
flows. The bulk viscosity � introduces dissipations due to
dilatation, which is a physical effect. The bulk viscosity has
very little effect on the kinetic energy K�t�� /K0 and the dis-
sipation rate ��t�� /�0, and its effect on ��t�� /�0 is more vis-
ible for near incompressible flows, i.e., Mat=0.1. For near
incompressible flows, it appears that the bulk viscosity does
nothing more than increasing viscous effect. At a higher
Mach number Mat=0.5, the bulk viscosity seems to play a
more subtle role. It enhances the intensities of high-
frequency oscillations in the skewness Su�t�� and the flatness
Fu�t��, which are due to acoustics in the system. Also, the
bulk viscosity seems to maintain the values of Su�t�� and

(b)(a)

(c) (d)

FIG. 22. �Color online� Effect of interpolation accuracy at cell boundaries on Su�t� �left� and Fu�t� �right� at �CFL=0.4, Mat=0.5,
Re�=72.0 and N3=1283. In the bottom row, the results are smoothed.
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Fu�t�� closer to their theoretical ones, −0.5 and 3.5, respec-
tively, than the simulations without the bulk viscosity.

Overall, our results demonstrate that the gas-kinetic
scheme is adequate to simulate decaying homogeneous iso-
tropic turbulence as far as the low-order statistics are con-
cerned. The GKS is not the most effective and efficient
method for near incompressible flows with low Mach num-
bers �65�. For near incompressible flows, our experience in-
dicates that the lattice Boltzmann equation �LBE� is a much
better method in terms of effectiveness and efficiency
�61,72�. Since the GKS is only a second-order scheme, the
strength of the GKS may be in high-Mach-number flows in
which a flux limiter must be used. When a flux limiter must
be used, the benefit of using more accurate high-order meth-
ods may not be so obvious because the numerical dissipation

introduced by the flux limiter becomes the dominating factor
affecting the accuracy of the scheme.

Kinetic schemes have two notable advantages in general,
which motivate this work in part. The first one is the numer-
ics. In contrast to the Navier-Stokes equation with a nonlin-
ear advection term u ·�u, the Boltzmann equation has a lin-
ear advection term � ·�f =� · ��f� and its nonlinearity resides
in the collision term which is local. This feature of the ki-
netic equation has important ramifications including �32�: �a�
its nonlinearity is in local collision term, stiffness of which
can be overcome by local techniques; and �b� it is much
easier to formulate multidimensional schemes for fluxes. The
second advantage of the GKS is physics. Kinetic schemes
based on the Boltzmann equation have the potential to model
extended hydrodynamics which is beyond the validity of the

(b)(a)

FIG. 23. �Color online� Effect of the bulk viscosity � on the kinetic energy K�t�� /K0 and the dissipation rate ��t�� /�0. N3=1283,
Re�=72.0, Mat=0.1, and �CFL=0.2.

(b)(a)

FIG. 24. �Color online� Effect of the bulk viscosity on the skewness Su�t� �left� and the flatness Fu�t� �right�. N3=1283, Re�=72.0,
Mat=0.1, and �CFL=0.2.
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(b)(a)

FIG. 25. �Color online� Effect of the bulk viscosity � on the kinetic energy K�t�� /K0 and the dissipation rate ��t�� /�0. N3=1283,
Re�=72.0, Mat=0.5, and �CFL=0.5.

(b)(a)

(c) (d)

FIG. 26. �Color online� Effect of the bulk viscosity on the skewness Su�t� �left� and the flatness Fu�t� �right�. N3=1283, Re�=72.0,
Mat=0.5, and �CFL=0.5. The bottom figures are the smoothed ones of the top ones.
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macroscopic continuum theory. This feature is particularly
relevant to thermochemically nonequilibrium flows for
which the Navier-Stokes equations are no longer valid
�39,40,73,74�. We also note that the full MD-GKS is compu-
tationally more intensive for the benefit of better fidelity of
flow physics. To fully exploit the advantages and to fully
realize the potential of gas-kinetic schemes will remain the
subjects of our future research.
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