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Angular distribution of single-photon superradiance in a dilute and cold atomic ensemble
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2Institute for Analytical Instrumentation, Russian Academy of Sciences, 198095, St. Petersburg, Russia
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On the basis of a quantum microscopic approach we study the dynamics of the afterglow of a dilute Gaussian
atomic ensemble excited by pulsed radiation. Taking into account the vector nature of the electromagnetic field
we analyze in detail the angular and polarization distribution of single-photon superradiance of such an ensemble.
The dependence of the angular distribution of superradiance on the length of the pulse and its carrier frequency as
well as on the size and the shape of the atomic clouds is studied. We show that there is substantial dependence of
the superradiant emission on the polarization and the direction of fluorescence. We observe essential peculiarities
of superradiance in the region of the forward diffraction zone and in the area of the coherent backscattering
cone. We demonstrate that there are directions for which the rate of fluorescence is several times more than the
decay rate of the timed-Dicke state. We show also that single-photon superradiance can be excited by incoherent
excitation when atomic polarization in the ensemble is absent. Besides a quantum microscopic approach, we
analyze single-photon superradiance on the basis of the theory of incoherent multiple scattering in optically
thick media (random walk theory). In the case of very short resonant and long nonresonant pulses we derive
simple analytical expressions for the decay rate of single-photon superradiance for incoherent fluorescence in an
arbitrary direction.

DOI: 10.1103/PhysRevA.96.023830

I. INTRODUCTION

Since the original work by Dicke [1], the problem of
superradiance, and its counterpart subradiance, have attracted
great interest. By the end of the 1980s many aspects of the
physics of the superradiance problem had been studied in
detail (see [2] and references therein). However, in the past
decade, theoretical and experimental advances have led to
a rejuvenation of this field. This rejuvenation connects with
theoretical predictions [3,4] of the possibility to observe fast
collective spontaneous decay in an atomic ensemble under
conditions of very weak excitation. Such a type of fast decay
along with the accompanying collective Lamb shift have been
experimentally observed in the x-ray regime [5], in cold
atoms [6–8], and in quantum dots [9]. It has become more
or less conventional to designate these effects by the term
“single-photon superradiance”.

Contrary to the “traditional” superradiance predicted by
Dicke for polyatomic ensembles with sizes much smaller than
the radiation wavelength, the single-photon superradiance is
observed for large-sized systems. It differs also from well-
studied superfluorescence of long and extended ensembles
with a large number of initially excited atoms. Single-photon
superradiance is a linear-optics effect and it can take place
for dilute atomic systems under excitation by a weak pulse
of radiation. By now the main features of these effects as
well as closely related phenomena like optical precursors
and the flash effect have been studied both theoretically and
experimentally [5–14] (and references therein).

Due to the effect of coherent forward scattering, the main
part of the radiation pulse absorbed by the extended atomic
ensemble is scattered into directions close to that of the exciting
light pulse [3,15]. In this connection the main attention was
given to the properties of superradiance emitted in the forward
direction. Particularly it was shown that one way to obtain
strong coherent emission from the ensembles is to prepare

a timed-Dicke state [16]. However, as was shown in [17]
and studied in a sophisticated experiment [7] superradiance
can be observed in directions outside the bounds of the main
diffraction cone. Moreover, the fluorescence decay rate in these
directions can exceed the decay rate of the timed-Dicke state
responsible for forward radiation. In several works [7,17] the
time dependence of fluorescence in certain, fixed directions
was studied. The main goal of the present paper is to study
theoretically the angular distribution of superradiance in more
detail. Among other things, we will show that superradiance
is characterized by a strong and essentially nonmonotonic
angular dependence.

In analysis of the angular dependence of single-photon
superradiance, the polarization properties of the fluorescence
may play an important role. In experiments [6,7] the total
intensity of scattered light was measured. The polarization
dependence was not analyzed in detail. For radiation coher-
ently scattered into the forward direction the polarization of
superradiance should coincide with that of incident light. In [6]
it was experimentally confirmed in the case of the linear
polarization of the excitation pulse. So the polarization need
not be studied. In the case of sideways scattering it is not the
case. Decay of fluorescence in different polarization channels
has in the general case different rates. For this reason, in
studying single-photon superradiance, we will make additional
analysis of its polarization properties.

Another goal of the present work is to study the influence
of the type of excitation on single-photon superradiance. For
scattering in the main diffraction lobe this influence has been
studied in great length. Particularly it has been discussed how
the nature of superradiance changes if the initial state differs
from a timed-Dicke state. In this work we will consider the
influence of the pulse duration on the angular distribution
of superradiance. Broadly speaking, single-photon excitation
is not necessary for superradiance. In the paper [18] it was
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shown that the initial spatially extended atomic coherence
is important. In real optical experiments excitation of the
atomic ensemble is performed by means of a light pulse. In
experiment [6] it was a short pulse with a length less than the
lifetime of the excited states of the free atom. In [7] the pulse
duration exceeded essentially the lifetime. For a large detuning
of the carrier frequency of the pulse the ensemble is optically
thin and all atoms were excited with the same probability
as in a timed-Dicke state. At the same time the scattering
at a large angle is incoherent and this raises the question of
whether coherent excitation is necessary for observation of
single-photon superradiance beyond the main diffraction lobe.
In this work we consider not only the dependence of the angular
distribution of the superradiance on the length of the exciting
pulse but also the possibility to observe superradiance in the
case of noncoherent excitation. We will show that it is indeed
possible.

Finally, we will study the dependence of the angular
distribution of the decay rate on the shape of the atomic
ensemble. We will consider how this distribution is modified
by the change of the aspect ratio of an elliptical sample with a
Gaussian density distribution.

II. BASIC ASSUMPTIONS AND APPROACH

In our calculations of time-dependent fluorescence we
will follow the theoretical approach developed previously
in [19]. In the framework of this approach we solve the
nonstationary Schrödinger equation for the wave function
ψ of the joint system consisting of all atoms and a weak
electromagnetic field. A vacuum reservoir is also included in
our considerations.

We consider a disordered atomic cloud of N two-level
atoms. All atoms have a ground state |g〉 with the total
angular momentum Jg = 0, an excited state |e〉 with Je = 1,
a transition frequency ωa , and a natural lifetime of the
excited state τ0 = 1/γ . Taking into account the experimentally
relevant situation of a cold atomic cloud we assume atoms
to be motionless and located at random positions ri , (i =
1,...,N ). Possible atomic displacement caused by residual
atomic motion is taken into account by averaging of calculated
quantities over random spatial distribution of the atoms.

We seek the wave function ψ as an expansion in a set of
eigenfunctions of the Hamiltonian H0 of the noninteracting
atoms and field. The key simplification of the approach
employed is in the restriction of the total number of states taken
into account. Assuming that the exciting radiation is weak,
which is typical in experiments [6,7], we take into account
only states with no more than one photon in the field. As it
was shown in Refs. [20–24], this approximation allows us to
describe collective effects under scattering of weak radiation,
including pulsed radiation.

Knowledge of the wave function gives us information about
the properties of the atomic ensemble as well as the properties
of the secondary radiation. In particular, the intensity Iα(�,t)
of the light polarization component α that the atoms scatter
in a unit solid angle around an arbitrary direction given by
radius-vector r (� = θ,ϕ) can be determined as follows:

Iα(�,t) = c

4π
〈ψ |E(−)

α (r)E(+)
α (r)|ψ〉r2. (2.1)

Here E(±)
α (r) are the positive and negative frequency parts of

the electric field operator.
In the case of pulsed excitation, the mean value in this

expression depends on time. The corresponding dependence
can be found as the inverse Fourier transform (for more details
see [25]),

〈ψ |E(−)
α (r)E(+)

α (r)|ψ〉 =
∣∣∣∣∫ ∞

−∞

h̄ exp(−iωt)dω

2π

×
∑
e,e′

�̃αe(ω)Ree′(ω)�e′ (ω)

∣∣∣∣∣
2

.(2.2)

Here the vector �e(ω) describes excitation of different states
of different atoms by external pulsed radiation,

�e(ω) = −de;gE(ω)

h̄
= −ude;g

h̄
E0(ω) exp(ikre). (2.3)

In this equation de;g is the dipole matrix element for the
transition from the ground g to the excited e state of the atom,
E0(ω) is a Fourier amplitude of the probe radiation, which
we assume to be a plane wave, k and u are its wave vector
and unit polarization vector, and re is the radius vector of the
atom e.

The matrix Ree′ (ω) is the resolvent of the considered system
projected on the onefold atomic excited states,

Ree′ (ω) = [(ω − ωe)δee′ − �ee′(ω)]−1. (2.4)

In this work we determine it numerically on the basis of the
known expression for the matrix �ee′ (ω). Matrix elements
�ee′ (ω) for e and e′ corresponding to different atoms describe
excitation exchange between these atoms,

�ee′(ω) =
∑
μ,ν

dμ
ea ;ga

dν
gb ;eb

h̄r3

×
[
δμν

(
1 − i

ωar

c
−

(ωar

c

)2
)

exp
(
i
ωar

c

)
− rμrν

r2

(
3 − 3i

ωar

c
−

(ωar

c

)2
)

exp
(
i
ωar

c

)]
.

(2.5)

This expression is written assuming that in states ψe′ and ψe

atoms b and a are excited correspondingly, we used also the
pole approximation (�ee′ (ω) = �ee′(ωa); see [26]). In (2.5)
rμ is projections of the vector r = ra − rb on the axes of the
chosen reference frame and r = |r| is the spacing between
atoms a b.

If e and e′ correspond to excited states of one atom then
�ee′ (ω) differs from zero only for e = e′ (i.e., m = m′, where
m is magnetic quantum number of the atomic excited state).
In this case,

�ee(ω) = −iγ /2. (2.6)

The matrix �̃αe(ω) in (2.2) describes light propagation from
an atom excited in the state e to the photodetector. In the
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rotating wave approximation it is (see [19])

�̃αe(ω) = −u′∗
αdg;e

h̄r

(ω

c

)2
exp

(
i
ω|r − re|

c

)
≈ −u′∗

αdg;e

h̄r

(ω

c

)2
exp

(
i
ωr

c
− i

k′re

c

)
. (2.7)

Here u′
α is a unit polarization vector of the scattered wave and

k′ is its wave vector.
Substituting (2.3) and (2.7) into (2.2), after some simplifi-

cations we have

Iα(�,t) = c

4πh̄2

∣∣∣∣∫ ∞

−∞
E0(ω)k2 exp(−iωt)dω

2π

×
∑
e,e′

(u′∗dg;e)Ree′ (ω)(ude′;g) exp (i(kre′−k′re))

∣∣∣∣∣
2

.

(2.8)

The total intensity I (�,t) can be obtained as a sum of (2.8)
over two orthogonal polarizations α.

Note that the coupled-dipole approach very similar to those
described in this paper is used to analyze the atomic decay or
dynamics of fluorescence in several works [26–40]. In the main
part of the mentioned references, the scalar approximation was
used. It is known that for the dilute clouds we are interested
in here this approach is quite appropriate for a description
of a whole series of properties [41–43] (if one takes into
account that it underestimates optical thickness; see below).
However, in the present work we are going to study the
polarization dependence of fluorescence and we have to avoid
this simplification.

In the next section, we will use relation (2.8) to analyze
temporal, polarization, and angular properties of the scattered
light.

III. RESULTS AND DISCUSSION

In the present work we will consider axially symmetric
Gaussian clouds having an average density distribution given
by

n(r) = n0 exp

(
− z2

2L2
− x2 + y2

2R2

)
. (3.1)

The incident light is a plane wave propagating in the z direction
except for the case when we consider incoherent excitation.
In the latter case we will consider quasi-isotropic irradiation
from all directions. For illustrative purposes, we will restrict
our consideration to temporally rectangular pulses having a
central frequency ωL. The length of the pulse is τL. We will
assume that the zero-time reference t = 0 corresponds to the
end of the exciting pulse. In all calculations the incident light
is left-handed circularly polarized.

In the following we will use Eq. (2.8) averaged over the
ensemble of possible atomic configurations to study the av-
erage intensity of the time-dependent fluorescence 〈Iα(�,t)〉.
Collective effects not only accelerate the fluorescence in some
directions but also modify the functional form of 〈Iα(�,t)〉
making it nonexponential. To analyze the peculiarities of the

FIG. 1. Angular distribution of light scattered in different po-
larization channels for different times after the excitation pulse is
switched off. (a) t = τ0; (b) t = 5τ0. Spherically symmetric Gaussian
cloud L = R = 25λ, n0λ

3 = 0.005. Pulse length is τL = 0.1τ0.

time dependence we introduce a current decay rate as follows:

�α(�,t) = −∂ln〈Iα(�,t)〉
∂t

. (3.2)

For the total fluorescence without polarization analysis we will
use a similar relation but with summed intensity 〈I (�,t)〉 =∑

α〈Iα(�,t)〉.

A. Angular distribution of scattered light

In Fig. 1 we show the angular distribution of light scattered
in different polarization channels. The calculation is performed
for a spherically symmetric atomic ensemble. The radius of the
Gaussian distribution is R = L = 25λ. Hereafter in this paper
we use λ as a unit of length, where λ = λ/2π . The peak density
is n0 = 0.005. Figure 1(a) corresponds to a time equal to t = τ0

after the exciting pulse is switched off. It demonstrates very
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different behaviors for different polarizations of the scattered
light. In the helicity preserving channel (H‖H ) we see a typical
diffraction picture. There is a large main diffraction peak. Two
higher order peaks are also well distinguished. The scattering
into the back half-sphere is suppressed in this polarization
channel. For the helicity-nonpreserving (H⊥H ) polarization
channel the main part of the radiation is scattered into the
backward direction. The intensity is mainly determined by
single scattering from the boundary region. For the H‖H
channel single scattering in the exact backward direction is
absent because of selection rules for atomic electric dipole
transitions.

The angular distribution of fluorescence changes with time.
In Fig. 1(b) this effect is shown for t = 5τ0. For this time,
the main contribution to the fluorescence is determined by
multiply scattered light. The difference between polarization
channels becomes less evident. Further, the angular distribu-
tion becomes more spherically symmetric in each channel.
However, even at this time interval we see some traces
of a diffraction picture. In both channels we see also the
cone-shaped feature associated with coherent backscattering
(see, for example, reviews [44,45] and references therein). The
enhancement factor for the helicity preserving channel is close
to two which is typical for a 0-1 transition. For another channel
it is much less because of the single scattering contribution to
the background [44,45].

We calculated angular dependencies like those shown in
Fig. 1 for different instants of time and thus determined
the current decay rate (3.2) for fluorescence in any direction
and for any polarization channels. Consider at first, however,
the decay rate for the total intensity as it was made in
experiments [6,7].

In Fig. 2 we show the angular dependence of �(�,t) aver-
aged over some time intervals �t . For a clearer demonstration
we displaced the graphs along the abscissa.

Figure 2 demonstrates the essential angular dependence,
especially near the forward and backward directions. Such
dependence takes place for all considered time intervals.
For the short time after the excitation pulse is switched
off the superradiance is observed for radiation emitted in
any directions (solid line). For the very beginning of the
fluorescence the sideways scattering is characterized by a faster
decay than a forward one.

The maximal decay rate corresponds to an angle which
depends on the size of the system (see below). Beginning
with some time, the decay rate changes the sign for definite
angular intervals. This means that for corresponding time and
angular intervals the intensity of fluorescence increases. Here
we see the manifestation of oscillation in the afterglow of the
atomic ensemble connected with quantum beating and caused
by interference of light scattering through different collective
states (see [5,6,17]).

In Fig. 2(b) we show the angular dependence of the decay
rate for the region of the diffraction pattern on a large scale.
One can see that the diffraction picture transforms with time.
Particularly, the separation between pairs of diffraction peaks
changes. In our view, the transformation of the diffraction
pattern is responsible for the unusual angular dependence
shown in Fig. 2. The intensity in a given direction changes
not only because of decay of collective states but also because

FIG. 2. Angular distribution of averaged decay rate �(�,t) for
different time intervals �t . (a) Full range of scattering angles;
(b) diffraction region. Calculations have been performed for the same
parameters as Fig. 1.

of alteration in the direction of emission. The maximal decay
rate is observed in directions of diffraction minima.

The difference in decay rates (3.2) for different directions
of fluorescence is shown also in Fig. 3. Just after the end of
the exciting pulse (t = 0) �(�,0) > γ for any direction. As
time passes �(�,t) changes. The afterglow into the forward
direction maintains a high value for the longest period of time.
For t up to t = 4τ0 its value practically coincides with �(0,0).
It means that for this period of time the contribution of the
timed-Dicke state into the forward emission is dominant. The
decay rate of radiation into the backward half-sphere (θ >

π/2) decreases monotonically and for the considered condition
it loses its superradiant properties for t � τ0. Fluorescence
into diffraction minima and higher order maxima demonstrate
nonmonotonic, oscillatory behavior. Two curves for θ = 0.065
and θ = 0.075 show that the decay rate can increase several
times during the afterglow as well as decrease up to relatively
large negative values.
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FIG. 3. Time dependence of the current decay rate of the fluores-
cence in different directions. Calculations have been performed for
the same parameters as Figs. 1 and 2.

The dynamics of the fluorescence in different polarization
channels (see Fig. 4) is even more complicated than that of the
total light intensity. It is connected with the absence of single
scattering in these channels into some specific direction. That
is why the light intensity increases just after the pulse ends
in the forward direction for the case of H⊥H and for the
backward direction for H‖H . In these directions the decay
rate (3.2) is negative and is relatively large in absolute value.
With time the contribution of high order scattering increases
and we observe the usual decreasing of decay rate.

B. Dependence on type of excitation

1. Dependence on the excitation duration

In many cases, in theoretical papers devoted to single-
photon superradiance the decay of the timed-Dicke state
is discussed. However, excitation of a real physical system
into such a state is a separate and difficult problem. The
authors of [5] found an original way to do so. In more
traditional experiments with cold gases the excitation is
performed by means of pulsed radiation. The length of the
pulse strongly influences the type of prepared atomic states
and the consequent fluorescence. In the case of a short pulse
many different collective states in a wide spectral region
are excited and the type of decay may differ essentially from
the decay of a timed-Dicke state. In the case of a very long pulse
we have a quasi-steady-state distribution of atomic excitation
which differs from the distribution of the Dicke state. For
the resonant excitation it is connected with absorption and
for a nonresonant one with dispersion [21,22]. The spatial
distribution of phases of the atomic oscillators is determined
not by the wave number of the exciting light but by the light
wavelength in the medium.

The dependence of the nature of decay on the type of
excitation for the forward scattering was discussed earlier
(see, for example, [5,18,46,47]). We will focus our attention
on its influence on the angular distribution of single-photon

FIG. 4. Angular distribution of averaged decay rate �α(�,t) for
different polarization channels. (a) H‖H ; (b) H⊥H . τL = τ0. The
other parameters are as in Fig. 1.

superradiance. The corresponding dependence for the most
interesting angular region is shown in Fig. 5. We demonstrate
the angular dependence of decay rate both for very short and
very long pulses. For the exact forward direction we see the
weakest changes when the length of the pulse changes. It
is connected with the fact that short-lived collective states
responsible for forward scattering have a larger width and they
are effectively excited independently of pulse length (spectral
width of the pulse).

For the directions where we observe a sharp angular
dependence the length of the pulse influences at the very
beginning of fluorescence. Because of the spatial inhomo-
geneity of Gaussian clouds the length of the resonant pulse
causes transformation of not only longitudinal (along light
propagation) but also the transverse distribution of excited
atoms. In its turn it causes transformation of the diffraction
patterns.

Besides changes in width of the diffraction pattern we see a
qualitative difference in angular dependence. For τL = 0.1τ0

there is only relatively small maxima whereas already for
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FIG. 5. Angular distribution of the decay rate for fluorescence
excited by pulses of different length. Calculations have been per-
formed for the same parameters as Fig. 1. Observation time interval
is �t = (0 − 0.1)τ0.

τL = 5τ0 the maxima become more sharp, their amplitudes
decrease essentially with angles, and in some regions the
decay rate changes sign. For further increasing of τL we
observe only small quantitative changes. A saturation-type
effect takes place. Increasing τL from τL = 5τ0 up to τL =
100τ0 practically changes neither intensity of fluorescence nor
its rate. It means that for the considered cloud for t = 5τ0

quasi-static regime is realized.
The influence of excitation duration on fluorescence is also

demonstrated in Fig. 6. Here we show the time dependence
of the decay rate of fluorescence in different directions for
two pulse lengths τL = 0.1τ0 and τL = 100τ0. The qualitative
difference between short (a) and long (b) excitation is that for
a long pulse there are directions for which intensity begins
to increase immediately after the end of the pulse. Figure 6
shows also that the excitation duration changes the nature of
quantum beating.

2. Single-photon superradiance for incoherent excitation

The features of decay of a timed-Dicke state are essentially
connected with phase matching of different atomic oscillators
in the ensemble. Superradiance beyond the diffraction zone is
caused by incoherent scattering. In this connection the question
arises whether it is necessary to use coherent excitation to
observe sideward superradiance. Or it is possible to observe
this superradiance for incoherent excitation for complete
absence of phase correlation. We performed calculation of
atomic fluorescence assuming that different atoms in the
Gaussian cloud are excited independently. In such a case
the phases of different atoms are random and average atomic
polarization is absent.

Analyzing the time dependence of the fluorescence we
calculated the current decay rate for an exciting pulse of
different lengths. The results are shown in Fig. 7.

The calculation was made for the case when the carrier
frequency of the pulse coincides with the resonant frequency
of the free atoms. It is seen that for short pulses we observe

FIG. 6. Time dependence of the decay rate of fluorescence in
different directions θ . (a) τL = 0.1τ0; (b) τL = 100τ0. The other
parameters are as in Fig. 1.

a decay with a rate that exceeds the decay rate of the free
atom, i.e., we observe superradiance. For long resonant pulses
the superradiance is absent. However, in the paper [7] it
was shown that long coherent nonresonant excitation causes
superradiance of fluorescence in sideways directions. For this
reason we studied how the decay rate depends on carrier
frequency of the radiation in the case of incoherent excitation.

In Fig. 8 we show the corresponding dependence for
two lengths of the pulse. The calculation is made for a
spherically symmetric Gaussian cloud with radius R = 25 and
peak density n = 0.005. Because of spherical symmetry (on
average) of the cloud and excitation the secondary radiation of
the atomic ensemble is spherically symmetric.

For the short pulse τL = 0.1τ0, and because of its large
spectral width the decay rate does not practically depend on
carrier frequency. On the contrary for long pulse τL = 100τ0

we see an essential dependence and, like in the case of coherent
excitation [7], increasing of detuning causes increasing of
decay rate up to some constant magnitude which depends on
the size of the cloud, density, and which exceeds γ . The typical
region of essential alteration of the rate is about the natural
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FIG. 7. Time dependence of the decay rate of fluorescence in the
case of incoherent excitation by radiation of different pulse lengths.
The other parameters are as in Fig. 1.

width of the transition of the free atom. For this spectral region
the optical depth of the cloud is big and for long pulses we have
a quasi-steady-state regime of atomic excitation. The atomic
excitation under such conditions is determined not only by the
external radiation but also by trapped light [22]. By the time
of the end of the exciting pulse, the fluorescence is determined
by photons scattered a different number of times inside the
medium. For optically dense media scattering of high order
plays an important role. After the end of the pulse we still see
contributions of different order scattering but only the single
scattering is responsible for superradiance. The contributions
of higher order decay are much slower. That is why we do
not see superradiance for long resonant pulse excitation. For
nonresonant light the optical thickness is small and single
scattering in the sideways direction gives the main contribution
and superradiance can be seen.

FIG. 8. Spectral dependence of the decay rate of fluorescence
excited by incoherent radiation of different pulse durations. The decay
rate is calculated for the time interval �t = (0 − 0.1)τ0 after the end
of the exciting pulse. The other parameters are as in Fig. 1.

FIG. 9. Angular dependence of the decay rate of fluorescence
excited by pulsed radiation of different durations. Decay rate is
calculated for the time interval �t = (0 − 0.1)τ0 after the end of
the exciting pulse. n0 = 0.002. Pulse length is τL = 0.1τ0.

C. Single-photon superradiance for ensembles of different sizes

In this section we consider the dependence of angular
distribution of superradiance on the sizes of the atomic
ensemble. We will analyze both dependence on longitudinal
and transverse sizes.

Let us consider at first how the angular distribution of the
decay rate changes with length L of the Gaussian clouds
for fixed transverse radius R. Results of the corresponding
calculations for several L and R = 20 are shown in Fig. 9.
The density in the center of the atomic ensemble is equal to
n = 0.002. The decay rate increases with L for all directions.
But the specific dependence is different for different angles θ .

For the forward direction we have

�(θ = 0,t → 0) = γ

(
1 + b0z

8

)
, (3.3)

where b0z = √
2πσ0n0L is the maximal resonant thickness

of the Gaussian cloud along the z direction. This expression
coincides with results obtained earlier in [47] if we take into
account that the authors of [47] considered a scalar model of
the radiation which underestimates the optical depth of the
cloud by the factor 1.5.

The scattering in the near backward direction requires
special attention. We see that for oblong clouds the decay rate
into this direction (θ = π ) even exceeds that for a timed-Dicke
one (θ = 0). Note also that the decay rate for fluorescence at
θ = π/2 also increases in spite of the fact that the transverse
size is fixed.

Such angular dependence as well as many important
regularities of single-photon superradiance can be understood
in the framework of a random walk approach without analysis
of collective states of a polyatomic ensemble usually used
in such a case. The random walk approach is very effective
for description of incoherent multiple scattering in optically
thick but dilute media (see, for example, [48–51]). The
light transport in a dilute medium generally performs a
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diffusion-type process, which in a semiclassical picture can
be visualized as a zigzag-type path consisting of segments
of forwardly propagating waves. The forwardly propagating
incoming, secondary, and multiply scattered waves can be
expressed via a retarded-type Green’s propagation function.
The incoherent scattering events, which randomly happen in
the medium, can be probabilistically simulated and properly
described with the scattering theory formalism.

In practically important cases when sideward superradiance
is observed, i.e., for short resonant or long nonresonant pulses
the time dependence of the incoherent fluorescence, just after
the end of the exciting pulse, can be described by taking into
account only single incoherent scattering. The single scattering
approximation is valid for a not very big average optical depth
b0 of the cloud – b0τ0/τL � 1 (for short pulses) or b0τ0�L �
1 (for long nonresonant pulse). In such cases the intensity
I s
α(�,t) can be calculated as follows:

I s
α(�,t) =

∫
cn(ra)

4πh̄2 d3ra

∣∣∣∣∫ ∞

−∞
E0(ω)

exp(−iωt)dω

2π

× k2χ (r,ra,ω)
∑

e

(
u′∗dg;e

)(
ude;g

)
ω − ωa + iγ /2

χ (ra,r0,ω)

∣∣∣∣∣
2

.

(3.4)

Here the function χ (ra,r0,ω) describes propagation of light
from the source to the point ra where a single incoherent
scattering event takes place. The function χ (r,ra,ω) describes
propagation of a secondary photon toward the photodetector.
In the isotropic medium these functions are determined as
follows:

χ (r2,r1,ω) = exp

(
− ib0(r2,r1)

2

γ /2

ω − ωa + iγ /2

)
, (3.5)

where the resonant optical thickness of the inhomogeneous
cloud between points r1 and r2 for the considered case of the
J = 0 ↔ J = 1 transition is

b0(r2,r1) = 6πλ2
∫ r2

r1

n(r)ds. (3.6)

Expression (3.4) can be used for calculation of the decay
rate for all directions except in the zones of backward and
forward scattering. For forward scattering the main contri-
bution comes from the coherent component of the scattering
light and for the backward direction one of the polarization
components is absent for single scattering and scattering of
higher order should be taken into account. Equation (3.4) is
also not valid for the cloud with a large aspect ratio. In such
a case diffraction effects play an essential role [52,53] and the
propagation function χ cannot be described by Eq. (3.5).

The integral over frequency ω in (3.4) can be calculated on
the basis of the theory of residues. Restricting by the case of
a typical experimental situation without polarization analysis
and taking into account that for rectangular pulse for t > τL

FIG. 10. Angular dependence of the decay rate of fluorescence.
Comparison with analytical expression (3.7); τ = 0.01τ0, L = 20,
R = 30. The curves obtained in the microscopic approach were
calculated as a result of averaging over approximately 20 000 different
random spatial configurations of the atomic ensemble and were not
smoothed. The fluctuations in the curves demonstrate the accuracy of
the calculations.

only the pole ω = ωa − iγ /2 is important, we have

�(�,t → 0)

= γ

(
1 + b0(r)

2

)

= γ

(
1 + b0z

8

(
1 +

√
2R√

R2 + L2 + (R2 − L2) cos(2θ )

))
.

(3.7)

Here b0(r) is the total optical length of the resonant light ray
coming from the source and incoherently scattered in the point
r toward the detector located along the direction θ ; b0(r) is the
value averaged over all atoms in the cloud.

In Fig. 10 we demonstrate the adaptability of Eq. (3.7)
for a description of the angular distribution of the decay rate
of single-photon superradiance. In this figure we compare
results of a quantum microscopic approach and approximate
calculation of �(�,t → 0) on the basis of Eq. (3.7). It is clear
that for a very small time interval �t = (0 − 0.01)τ0 we have
a good qualitative agreement. For bigger intervals �t = (0 −
0.1)τ0 some quantitative discrepancy caused by scattering of
higher order appears, but qualitatively the angular dependence
of �(�,t → 0) is reproduced by Eq. (3.7) quite well.

Note that in much the same way as we get Eq. (3.7), we can
obtain expression (3.3) for forward scattering if we consider
only the coherent component of transmitted light.

Good agreement between a microscopic approach and a
single scattering random walk approximation allows us to
give a simple explanation of sideward superradiance in the
considered cases. The calculation based on Eq. (3.4) shows
that independently of the carrier frequency of the pulse the
properties of secondary radiation after single scattering are
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determined by optical depth of the cloud for quasiresonant
radiation. Physically it is connected with the known fact that
without external action any vibrating system oscillates at its
eigenfrequencies. For dilute media these frequencies are close
to the free atom resonant frequency. Propagation of such
quasiresonant radiation in the considered dispersive medium
is accompanied by substantial spectral transformation. For not
very big optical depth this propagation leads to broadening of
the spectrum and consequently to acceleration of fluorescence.
For large optical depth distortion of the spectrum can be more
essential. In such a case scattering of higher orders should be
taken into consideration.

Finally, we make the important point that Eq. (3.4) also
implies that, within this model, the superradiant signals in the
sideways direction, for an unpolarized ground-state medium,
should approximately have the same optical polarization
as that of light scattered from a single atom. This means
that for the optical transition case considered here, linearly
polarized excitation would imply a 100% linear polarization
degree of the scattered light. However, for different transitions
F − F ′ the result will be different. For superradiance on an
F = 2 → F ′ = 3 transition as studied recently in the sideways
direction [7], the linear polarization degree would be about
9/28 in the traditional 90◦ geometry. This result would serve as
a nice test of this interpretation of the sideways superradiance.

IV. CONCLUSIONS

In this paper we analyzed the time-dependent fluorescence
of dilute Gaussian clouds of cold atoms excited by a weak
quasi-resonant light pulse. The calculation was performed
on the basis of the quantum microscopic approach. Solving
the nonstationary Schrödinger equation for the joint system
consisting of atoms and a weak electromagnetic field we
calculated the angular distribution and polarization properties
of the fluorescence.

We focused our attention on the initial stage of fluorescence
where superradiance was expected. Calculating transformation
of the angular distribution of the afterglow of the ensemble with
time we observed that for total emission without polarization
analysis superradiance took place in any direction if the length
of the pulse less or comparable with natural lifetime of atomic
excited states. Besides that there is substantial dependence of
superradiance on the direction of fluorescence, especially in
the region of the diffraction pattern and in the angular area
of the coherent backscattering cone. Maximal decay rate is
observed not for the forward direction but at some angle which
is determined by the transverse size of the cloud. This maximal
value is several times more than the decay rate of the timed-
Dicke state. Time-dependent fluorescence in separate polariza-
tion channels is more complicated. For a short exciting pulse
there are directions where the corresponding polarization com-
ponent does not decrease, but increases initially. For example,
for the helicity preserving channel it takes place for a direction
close to the backward direction, for nonpreserving channels
we see increasing of intensity into the forward direction.

For long coherent pulses the nature of fluorescence decay
essentially depends on the frequency as was predicted in [7].
For resonant radiation the superradiance is observed only in
the forward direction. Moreover, there are directions near the

main diffraction maximum where the total intensity summed
over two orthogonal polarizations increases just after the
end of exciting pulse. As the carrier frequency shifts from
exact atomic resonance the decay rate in sideward directions
increases and for some detunings superradiance takes place
(see also [7]).

We repeated analysis of single-photon superradiance for
the incoherent excitation and found that the superradiance can
be observed in this case, i.e., when atomic polarization in the
ensemble is absent. It can be excited either by a short pulse or
by a long nonresonant one.

We studied the dependence of the angular distribution of
superradiance on the size and shape of the atomic ensemble.
Besides a sharp feature connected with the diffraction pattern,
and the coherent backscattering cone, we observed noticeable
transformation of this dependence caused by changes in the
aspect ratio of the cloud. The decay rate is determined by
average optical depth of the cloud for singly scattered photon.

Besides a quantum microscopic approach we analyzed
single-photon superradiance on the basis of random walk
theory. We showed that for not very big optical depth of
the cloud, and in the case of very short resonant and long
nonresonant pulses, the time dependence of the incoherent
fluorescence just after the end of the pulse can be described by
taking into account only single incoherent scattering. In such
a case we derive simple analytical expressions for the decay
rate of single-photon superradiance in an arbitrary direction.

The random walk approach has some advantages compared
to exact coupled-dipole computations applied in the first
part of our work. It gives us the opportunity to interpret
the observed effects as a result of the light spectral shape
transformation in dispersive media. Besides that it can be
used for dilute atomic ensembles consisting of a macroscopic
number of atoms, for example, prepared in a magneto-optical
or optical dipole trap. In the framework of this approach we
can take into account hyperfine structure of excited and ground
states of the atoms, atomic motion, possible nonuniform
population of different Zeeman sublevels of the ground
states, i.e., possible orientation of atomic angular momentum.
Scattering of any order also can be taken into account. In our
opinion this approach can be also applied in the presence of
a control field. Such a field changes the spectral properties
of the medium essentially which strongly influences the
incoherent scattering under conditions of electromagnetically
induced transparency [54,55] and may modify single-photon
superradiance in cold and dilute atomic gases.
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