View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Old Dominion University

Old Dominion University

ODU Digital Commons

Physics Faculty Publications Physics

7-2017

Higher-Twist Corrections to Gluon TMD

Factorization

I Balitsky
Old Dominion University, ibalitsk@odu.edu

A. Tarasov

Follow this and additional works at: https://digitalcommons.odu.edu/physics fac pubs
& Dart of the Elementary Particles and Fields and String Theory Commons

Repository Citation

Balitsky, 1. and Tarasov, A., "Higher-Twist Corrections to Gluon TMD Factorization" (2017). Physics Faculty Publications. 67.
https://digitalcommons.odu.edu/physics_fac_pubs/67

Original Publication Citation

Balitsky, I, & Tarasov, A. (2017). Higher-twist corrections to gluon TMD factorization. Journal of High Energy Physics, 2017(7), 95.
doi:10.1007/jhep07(2017)095

This Article is brought to you for free and open access by the Physics at ODU Digital Commons. It has been accepted for inclusion in Physics Faculty

Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.


https://core.ac.uk/display/217288144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics_fac_pubs?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics_fac_pubs?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/199?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics_fac_pubs/67?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: June 13, 2017
ACCEPTED: July 2, 2017
PUBLISHED: July 19, 2017

Higher-twist corrections to gluon TMD factorization

I. Balitsky®® and A. Tarasov®

@ Physics Department, Old Dominion University,
4600 Elkhorn Ave, Norfolk, VA 23529, U.S.A.

bThomas Jefferson National Accelerator Facility,
12000 Jefferson Ave, Newport News, VA 23606, U.S.A.

¢Physics Department, Brookhaven National Laboratory,
Bldg. 510A, Upton, NY 11973, U.S.A.

E-mail: balitsky@jlab.org, atarasov@bnl.gov

ABSTRACT: We calculate power corrections to TMD factorization for particle production

by gluon-gluon fusion in hadron-hadron collisions.
KeEYywoORDS: QCD Phenomenology

ARX1v EPRINT: 1706.01415

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP®. https://doi.org/10.1007/JHEPO7(2017)095


mailto:balitsky@jlab.org
mailto:atarasov@bnl.gov
https://arxiv.org/abs/1706.01415
https://doi.org/10.1007/JHEP07(2017)095

Contents

1 Introduction 1
2 TWMD factorization from functional integral 2
3 Power corrections and solution of classical YM equations 7

3.1 Power counting for background fields 7

3.2 Approximate solution of classical equations 9

3.3 Twist expansion of classical gluon fields 14
4 Leading higher-twist correction at s >> Q2 > Qi > m? 16
5 Small-x limit and scattering of shock waves 19
6 Conclusions and outlook 21
A Diagrams with retarded propagators 22
B Solution of Yang-Mills equations in two dimensions 25

1 Introduction

Particle production in hadron-hadron scattering with transverse momentum of produced
particle much smaller than its invariant mass is described in the framework of TMD fac-
torization [1-5]. The typical example is the Higgs production at LHC through gluon-gluon
fusion. Factorization formula for particle production in hadron-hadron scattering looks
like [1, 6]

do

dnd’q, Z/d%iei(q’bhpfm(m,bL,U)Df/B(l’B,bL,U)U(ff — H)
f

+ power corrections + Y — terms (1.1)

where 7 is the rapidity, Dy, A(z,z1,m) is the TMD density of a parton f in hadron A, and
o(ff — H) is the cross section of production of particle H of invariant mass m%{ = Q?
in the scattering of two partons. (For simplicity, we consider the scattering of unpolarized
hadrons.)

In this paper we calculate the first power corrections ~ éié in a sense that we represent
them as a TMD-like matrix elements of higher-twist operators. It should be noted that our
method works for arbitrary relation between s and Q2 and between qi and hadron mass
m? (provided that pQCD is applicable), but in this paper we only present the result for

the physically interesting region s > Q% > qf_ > m?2.
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Figure 1. Particle production by gluon-gluon fusion.

To obtain formula (1.1) with first corrections we use factorization in rapidity [7]. We
denote quarks and gluons with rapidity close to the rapidity of the projectile and target
protons as A-fields and B-fields, respectively. We call the remaining fields in the central
region of rapidity by the name C-fields and integrate over them in the corresponding
functional integral. At this step, we get the effective action depending on A and B fields.
The subsequent integration over A fields gives matrix elements of some TMD-like operators
switched between projectile proton states and integration over B fields will give matrix
elements between target states.!

The paper is organized as follows. In section 2 we derive the TMD factorization from
the double functional integral for the cross section of particle production. In section 3,
which is central to our approach, we explain the method of calculation of higher-twist
power corrections based on a solution of classical Yang-Mills equations. In section 4 we
find the leading higher-twist correction to particle production in the region s > Q? > qf_.
Finally, in section 5 we compare our calculations in the small-x limit to the classical field
resulting from the scattering of two shock waves. The appendices contain proofs of some
necessary technical statements.

2 TMD factorization from functional integral

We consider production of an (imaginary) scalar particle ® in proton-proton scattering.
This particle is connected to gluons by the vertex

Lo=go [d's B@PF ), Fa) = B (0)F"(2) (2.1)

Tt should be noted that due to the kinematics Q% > Q2 , m? we will not need the explicit form of the
high-energy effective action which is much sought after in the small-x physics but not known up to now
except a couple of first perturbative terms [7—11].



This is a ’%’ < 1 approximation [12, 13] for Higgs production via gluon fusion at LHC

with
! 1+ = +
= — —as ...
IH = 4872y A °
where o = % as usual.? The differential cross section of ® production has the form

d3q 92
W (pa,ps. q) (2.2)

do=_—241 Y9
7 T 2B, (21) 2s

where we defined the “hadronic tensor” W (pa,pp,q) as

d —iqT
Wipapma) Y [ate e pa,ppl? ) 0P O)lpa,s)

= /d4m e (pa, pplg* F*(x) F?(0)|pa, pB) (2.3)

As usual, )y denotes the sum over full set of “out” states. It can be represented by double
functional integral

Wi, p,0) = 3 [ @' 9 pslg? (0 X) (X190, ) (24)
X
tp—00 o pAR)=Aty) lep)=vlts) - > -
= gt [t e [ DADA, [ DUDEDEDY W, (A(t:), (k)

x Wy (At:), (i) 15aen (A0 giSaen (A) F2(5) F2(0)W,,, (Alt), (t:)) Wy, (A(t:), 9(1:))

Here the fields A, correspond to the amplitude (X|F2(0 )]p A, pB), fields A .1 correspond
to complex conjugate amplitude (pa, pp|F?(z)|X) and ¥,(A 1(t;),(t;)) denote the proton
wave function at the initial time ¢;. The boundary conditions A(t;) = A(t;) and U(t f) =
Y(ty) reflect the sum over all states X, cf. refs. [15-17].

We use Sudakov variables p = api + 8p2 + p1 and the notations z, = x,p} and
z, = x,p for the dimensionless light-cone coordinates (z, = f x4 and zo = \/gzn,) Our
metric is " = (1, =1, =1, —1) so that p-q = (a,B;+ayBp)5—(p,q) L Where (p,q)1 = —piq*.
Throughout the paper, the sum over the Latin indices i, j...runs over the two transverse
components while the sum over Greek indices runs over the four components as usual.

To derive the factorization formula, we separate the (quark and gluon) fields in the
functional integral (2.4) into three sectors: “projectile” fields A,,, 1, with |3] < o4, “target”

*For finite m; the constant gx should be multiplied by 27 [1 + (1 — 7) arcsin® =] with 7 = 4mt [14].

\/;
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Figure 2. Rapidity factorization for particle production.

fields with |a| < 0, and “central rapidity” fields C,,, 1 with |a| > o, and 8] > 0,3

. A(tf):A(tf) - J’a(tf):¢a(tf) _ ~ -
W(pa,p5,q) = g* / d*ze " / DA,DA, / Dty Dt Dipa D,

x ¢ iSaen (A0 iSaen (AW (A(t), o 1) Wy, (Alt). 91(8)

B(t;)=B(t;) _ Pu(ty)=tu(ty) _ =
<[ DE.DE, [ Dy DYy DU DYy

x €_iSQCD(B’&b)eiSQCD(B’%)‘I’ZB (é(ti% Do) T (B(t:), p(t:)) (2.5)

C(ty)=C(ty) _ _ Pelty)=telty) . S, ) 5 s

where S = SQCD (A + B+ C) — SQCD(A) — SQCD(B).

Our goal is to integrate over central fields and get the amplitude in the factorized form,
as a (sum of) products of functional integrals over A fields representing projectile matrix
elements (TMDs) and functional integrals over B fields representing target matrix elements.
In the spirit of background-field method, we “freeze” projectile and target fields (and denote
them the A, &,, &, and B, &,, &, respectively) and get a sum of diagrams in these external
fields. Since |3| < o, in the projectile fields and |a| < o3 in the target fields, at the tree-
level one can set with power accuracy 8 = 0 for the projectile fields and « = 0 for the target
fields - the corrections will be O(;”Tz) and O(;”TZ) Beyond the tree level, one should expect
that the integration over C fields will produce the logarithms of the cutoffs o, and o which
will cancel with the corresponding logs in gluon TMDs of the projectile and the target.

3The standard factorization scheme for particle production in hadron-hadron scattering is splitting the
diagrams in collinear to projectile part, collinear to target part, hard factor, and soft factor [1]. Here we
factorize only in rapidity. For our purpose of calculation of power corrections in the tree approximation it
is sufficient; however, we hope to treat possible logs of transverse scales in loop corrections in the same way
as it was done in our rapidity evolution equations for gluon TMDs in refs. [18, 19].



As usual, diagrams disconnected from the vertices F?(x) and F2(0) (“vacuum bubbles”
in external fields) exponentiate so the result has the schematic form

C(ty) N Ye(ty)=the(ty) . e ) 51 iS
/ pC / DG, / DieDie / DicDic g*F2(x)FE(0) e-iSc+ise
= Sn VU O(q 25 A, A, patda; B, B, Py, ) (2.6)

where OM(q,x; A, 4; B,1p) is a sum of diagrams connected to F2(z)F2(0). Since ra-
pidities of central fields and A, B fields are very different, one should expect the result of
integration over C-fields to be represented in terms of Wilson-line operators constructed
form A and B fields.

The effective action has the form

Seg(U,V,U,V) = 2T1r/d%cL [— iV + iUV (2.7)
+ (LU, V)LUU, V) = 2L(U, VLU, V) + Li(U, V) LU, V) In 04045 + O(In 04035)?]
where Wilson lines U are made from projectile fields
U(z,) = [oopa + x1, —0oop2 + xL]A*, U; = Utig,U
and Wilson lines V' from target fields
V(zy) = [oopy + 21, —oopy + x5, v, = vtio,v

and similarly for U and V in the left sector. The explicit form of “Lipatov vertices”
L;(U,V) is presented in [20]. Unfortunately, the effective action beyond the first two terms
in (2.7) is unknown, but we will demonstrate below that for our purposes we do not need
the explicit form of the effective action.

After integration over C fields the amplitude (2.4) can be rewritten as

) Alty)=A(ty) _ Yaltp)=valty) ~ N
W (paspis ) / dize / DA,DA, / Db Diba Diu D

% e—iSQCD(Aﬂ/’a)eiSQCD(Aa"l’a)\IJZA (A(tl)7 d;a (tl))\l’pA (/T(tl), w(tl))
B(t;)=B(t;) Do(ty)=thy(ty) = .
. / DB,DB, / D Dy Dy Dy
% e*iSQCD(B:"Z’b)eisQCD(B’d)b) \Il;B (B(tz), z/jb(ti))\lpr (E(tz), Up(t;))
X CSQH(U’V7U7‘~/)O(Q7 x; A: wtb A> @a; Ba ¢ba Ba l/;b) (28)

Note that due to boundary conditions at ¢y in the above integral, the functional integral
over C fields in eq. (2.6) should be done in the background of the A and B fields satisfying

A(tf) = A(tf)v &a(tf) = %(tf) and B(tf) = B(tf)v &b(tf) = wb(tf) (2.9)

Our approximation at the tree level is that 8 = 0 for A, A fields and o = 0 for B, B fields
which corresponds to A = A(ze,z,), A= A(ze,2,) and B = B(x,,x ), B = B(z.,x).



Now comes the important point: because of boundary conditions (2.9), for the purpose
of calculating the integral (2.6) over central fields one can set

A(ze, 1) :A(l'.,ll), Va(Te,T1) = Vo(Te,x 1)

and

B(.’L'*,.’IIJ_) = B(I‘*,{I;J_), ¢b($*,$L) = TZJb(fL'*,l‘J_) (210)

Indeed, because A, and A, 1; do not depend on x, if they coincide at x, = oo they should
coincide everywhere. Similarly, if B, and B, 1;1, do not depend on x,, if they coincide at
Te = 00 they should be equal.

It should be emphasized that the boundary conditions (2.9) mean the summation
over all intermediate states in corresponding projectile and target matrix elements in the
functional integrals over projectile and target fields. Without the sum over all intermediate
states the conditions (2.10) are no longer true. For example, if we would like to measure
another particle or jet in the fragmentation region of the projectile, the second condition
in eq. (2.10) breaks down.

Next important observation is that due to egs. (2.10) the effective action (2.7) van-
ishes for background fields satisfying conditions (2.9). For the first two terms displayed
in (2.7) it is evident, but it is easy to see that the effective action in the background fields
satisfying (2.10) should vanish due to unitarity. Indeed, let us consider the functional in-
tegral (2.4) without sources F2(z)F2(0). It describes the matrix element (2.11) without ®
production, that is

> (pa,pBlX)(X|pa,p) =1 (2.11)
X

(modulo appropriate normalization of |p4) and |pp) states). If we perform the same de-
composition into A, B, and C fields as in eq. (2.4) we will see integral (2.8) without
OM (q,x,y; A, a, A, ha; B, by, B, 1) which can be represented as

<pA7pB‘€SeE(U,V7U7V) ‘pA,pB> -1 (2'12)

which means that the effective action should vanish for the Wilson-line operators con-
structed from the fields satisfying egs. (2.10). Summarizing, we see that at the tree level
in our approximation

Cltp)=Clty) _ _ deltp)=velty) . _ - s
/DCM/ DCu/D@Z}CD@ZJC/ DieDije g*FE(z)FE(0) emSctise
= O(q,2; A, a; B, p) (2.13)

where now S¢ = SQCD(C+ A+ B)— SQCD(A) — SQCD(B) and SC = SQCD(é +A+B) -
Sqcp(A) — Sqep(B). It is known that in the tree approximation the double functional
integral (2.13) is given by a set of retarded Green functions in the background fields [21-23]
(see also appendix A for the proof). Since the double functional integral (2.13) is given
by a set of retarded Green functions (in the background field A + B), the calculation of
tree-level contributions to, say, F2(z) in the r.h.s. of eq. (2.13) is equivalent to solving YM



equation for A,(z) (and ¢ (z)) with boundary conditions that the solution has the same
asymptotics at t — —oo as the superposition of incoming projectile and target background
fields.

The hadronic tensor (2.8) can now be represented as

W(pAva7Q) :/d4x6_iqx<pz4|<p3‘@(qax;Aa 77/}(1;Baqﬁb)’px4>‘pB> (214)

where @(q,az;fl,lf)a;é,zﬂb) should be expanded in a series in fl,ﬂa;é,iﬁb operators and
evaluated between the corresponding (projectile or target) states: if

~ ~ A

Oq, ;A ha; Bh) = > / dzmdzy e (¢, 2)D 4 (2n) D (2),) (2.15)
(where chyr, are coefficients and ® can be any of A, 1 or 1) then?
W= [atee 3 [deneltoa.0)pal®atea)lpa) [denlpalbn(lon) (216)

As we will demonstrate below, the relevant operators are quark and gluon fields with
Wilson-line type gauge links collinear to either ps for A fields or p; for B fields.

3 Power corrections and solution of classical YM equations

3.1 Power counting for background fields

As we discussed in previous section, to get the hadronic tensor in the form (2.14) we
need to calculate the functional integral (2.13) in the background of the fields (2.10). To
understand the relative strength of Lorentz components of these fields, let us compare the
typical term in the leading contribution to W

64/s2 —iqx Srmi rmyj n n
G [t e a0 s O Olpa) Vi e DV Olpm) (1)
where
ﬁfi(zh ZJ_) = [—OO., Zo]gbgﬁfi(z'a ZJ_)7 V.%(Z*y ZJ_) = [—OO*, z*]gbgﬁ‘obz(zh ZJ-) (32)

and some typical higher-twist terms. As we mentioned, we consider W(pa,pp,q) in the
region where s, @ > @2, m? while the relation between Qi and m? and between Q? and
s may be arbitrary. So, for the purpose of counting of powers of s, we will not distinguish

4Our logic here is the following: to get the expression for O in eq. (2.13) we calculate O in the background
of two external fields ®4 = (Ap,a) and g = (B, 1) and then promote them to operators b4 and g
in the obtained expressions for . However, there is a subtle point in the promotion of background fields
to operators. When we are calculating O as the r.h.s. of eq. (2.13) the fields ®4 and ®p are c-numbers; on
the other hand, after functional integration in eq. (2.4) they become operators which must be time-ordered
in the right sector and anti-time-ordered in the left sector. Fortunately, as we shall see below, all these
operators are separated either by space-like distances or light-cone distances so all of them (anti) commute
and thus can be treated as c-numbers.



between s and Q? (although at the final step we will be able to tell the difference since

our final expressions for higher-twist corrections will have either s or Q? in denominators).

Similarly, for the purpose of power counting we will not distinguish between m and @

and will introduce m | which may be of order of m or ) depending on matrix element.
The estimate of the leading-twist matrix element between projectile states is

(paUfi (e, 21 )UL(0)[pa) = w5 (palUfii(xe, 21)U5(0)pa) ~ 8% (mi g5; + miaia;
(3.3)
(here we assume normalization (p4|pa) = 1 for simplicity).
The typical higher-twist correction is proportional to (see e.g. eq. (4.4))
A (pa|US (e, 1)Ul (2, 2.1) U5 (0)[pa)
= dphpsp) (palUi(ze, x 1) Upi (24, 1) US;(0) pa)
~ s3mf (gé:nk + girx; + gﬁcxl) + $3mS wizjop (3.4)
1 A
Since Q:ZL ~ %2 ~ n% we see that an extra F),; in the matrix element between projectile
L

states brings p1,m | which means that U*, ~Sm|.
Next, some of the higher-twist matrix elements have an extra Uy like

A (palUS (e, 21 ) U, 21 )UZ (0)|pa) (3.5)
where
Uki(Te, 1) = [—00e, Te]2 G Fki(Te, T 1 )[Te, —00s]2 (3.6)

Since we consider only unpolarized projectile and target hadrons

A (pa| UL (e, 1) URy (2, 21 ) U (0)|pa)
~ 2 (mgiggi + mSggaje + ml gimiay — k1) (3.7)

and, comparing this to eq. (3.3), we see that an extra Fy; can bring an extra mi Combining
this with an estimate U,; ~ sm | we see that the typical field A, is of order s while A; ~ m | .
Similarly, for the target fields we get By ~ s, B; ~m | .

Some of the power corrections involve matrix elements like

A (pa| UL (e, 21) ULy (24, 21) U7 (0)|pa) (3.8)

where
U*.(IE., :L‘L) = [_0007 l‘.]ng*.(:L‘., xL)[;UQ, _ooo]z (39)
An extra field strength operator FM between the projectile states can bring ﬁ—;@ — v

so that Fle ~ sm2.5 Since A, ~ s we see that Ae ~ mi Similarly, for the target we get
B, ~m?.

5The denominator p4 - p2 is due to the fact that py enters only through the direction of Wilson line and
therefore the matrix element should not change under rescaling pa — Apa.
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Figure 3. Typical diagram for the classical field with projectile/target sources. The Green func-
tions of the central fields are given by retarded propagators.

Summarizing, the relative strength of the background gluon fields in projectile and

target is
A(Te,21) ~ s, Ag(xe,z1) ~m?2, Ai(ze, 1) ~ my
Bi(zy,z1) ~ m?, Be(T4,71) ~ s, Bi(zs,71) ~ my (3.10)

To finish power counting, we need also the relative strength of quark background fields
¥, and . From classical equations for projectile and target

DMAZ. = _gdja’)/otawm D#A,au' = —gdja%ta%, DMAZ* = —glﬁa’y*t%a

2 29 o
260, + 0451 + 2L Aups + (10, + 9A) [0 = 0
DMBZ. = _gQEb’YOthba DNBZZ, = _qubPYita@bba DHBZ* = —Q&b%ta%
(2 _ 29 . _—
g(za.—i—gB.)pg—i-?gB*m + (i0; + gBi)y' |y =0 (3.11)
we get
R 5/2 3/2 R
P1%a(Te,x1) ~ m, , Yita(Te, L) ~ my ., P2ta(Te, w1) ~ 3\/”TJ-
Prp(Tear) ~ symi,  yitp(rey) ~ mY paty(zear) ~ m)? (3.12)

Thus, to find TMD factorization at the tree level (with higher-twist corrections) we need
to calculate the functional integral (2.4) in the background fields of the strength given by
egs. (3.10) and (3.12).

3.2 Approximate solution of classical equations

As we discussed in Sect 2, the calculation of the functional integral (2.13) over C-fields
in the tree approximation reduces to finding fields C), and 1. as solutions of Yang-Mills
equations for the action S¢ = Sqcp(C + A+ B) — Sqcp(A4) — Sqep(B)

D'FS(A+B+C) =g (& +4] + 0Dyt (f + v +¢f)
f
(id + gA+ 9B + g@) (WL + ol +0l) = m@! + o] + ) (3.13)



As we discussed above (see also appendix A) the solution of eq. (3.13) which we need
corresponds to the sum of set of diagrams in background field A + B with retarded Green
functions (see figure 3). The retarded Green functions (in the background-Feynman gauge)
are defined as
1 1 1 1
(a:IPQgW T 2igF T i, ly) = (| ly) — g(z|

1Y)

ly) + ... (3.14)

Tl x —O0 -
p? + iepo p? +iepo " p? +iepo

1 e 1
p? +iepo U p? + iepo

2
@
tyg (x|p2+i€p0 Hé

P, =i0u+ gAu+ 9By, Fu =0,(A+ B), — p < v—iglA,+ By, Ay + B,
Ow = ({P° A¢ + B¢} + 9(A + B)?) gy + 21, (3.15)

and similarly for quarks.
The solutions of egs. (3.13) in terms of retarded Green functions give fields C, and 1.
that vanish at t — —oo. Thus, we are solving the usual classical YM equations

D'Fg, = gty (P —mp)! =0 (3.16)
7

with boundary conditions

Aule) =7 Ay(we,xr), (@) =T (@, w1
Au(@) =7 Bulwe,xr), (@) *E dylas, 1) (3.17)
t——o0

following from C),,%. = 0. These boundary conditions reflect the fact that at ¢ — —oo
we have only incoming hadrons with “A” and “B” fields.

The solution of YM equations (3.16) in general case is yet unsolved problem, especially
important for scattering of two heavy nuclei in semiclassical approximation. Fortunately,
for our case of particle production with % < 1 we can construct the approximate solution
of (3.16) as a series in this small parameter. However, before doing this, it is convenient
to perform a gauge transformation so that the incoming projectile and target fields will no
longer have large components ~ s as A, and B, in eq. (3.10). Let us perform the gauge
transformation of eq. (3.16) and initial conditions (3.17) with the gauge matrix Q(z) such
that

Qze, Toy 21 ) 7 [Te, —00e]a*, Qs e, xl) T [, —00,] 5 (3.18)

The existence of such matrix is proved in appendix B by explicit construction. After such
gauge transformation, the YM equation of course stays the same but the initial condi-
tions (3.17) turn to

gAL(2) TE T Uy(ze, 1), () TE T Se(ae, z1)

gAL(x) TE T V(v zy), W) E T Sy(rh, 7) (3.19)

~10 -



where

Up(ze,z1) = %ngU.(m.,mJ_) + Uy, (Te, 1) (3.20)
Viler21) = 2piaVale,2.) + Vi (2, 21)

Ui(xe,x1) = i/x. dxl, Usi(zh,2.1), Vi(xy,x,) = i/x* dx’, Vei(zl, 1)
Ue(Te,z1) = 2/1. dxl, Use(zl,21), Vi(zs,z1) = —i/x* da!, Vie(zl,z1)

and X,, >, are defined as

Ya(2e,2L) = [00s, Ze|:Va(2e, 21),  Bp(2s,21) = [—00x, 24|20 (24, 21) (3.21)

The initial conditions (3.19) look like the projectile fields in the light-like gauge ph A, =
0 and target fields in the light-like gauge pj'A, = 0 so our construction of matrix 2 in a
way proves that we can take the sum of projectile fields in one gauge and target fields in
another gauge as a zero-order approximation for iterative solution of the YM equations.
Note also that our power counting discussed in previous section means that

U ~ Vi ~m?, U ~V; ~my (3.22)

so we do not have large background fields ~ s after this gauge transformation. Finally, the
classical equations for projectile and target fields in this gauge read:®

DyUS, = ¢* Y Siyut'S], ilySa =0
/

DYV, = g*> Sy, Dy, =0 (3.23)
/

where U, = 0,U, — 8,U, — i[U,,U,], Df; = (0" —i[U*,) and similarly for V fields.
We will solve egs. (3.16) iteratively, order by order in perturbation theory, starting
from the zero-order approximation in the form of the sum of projectile and target fields

g A (2) = Uu(2e,21) + Vo, 21)

U (2) = B4 (ze, 21 ) + Sp(2e, 21 ) (3.24)

and improving it by calculation of Feynman diagrams with retarded propagators in the
background fields (3.24).

The first step is the calculation of the linear term for the trial configuration (3.24).
We rewrite field strength components as

gF W = Uy + Vi — i[Ua, Vi),  gF% = Ui + Vii — i[Va, U] (3.25)

Note that Uy ~ Va; ~ sm |, Use ~ Vie ~ stl while all other components are not large.

SHere we consider only u, d, and s quarks which can be regarded as massless.

- 11 -



The linear term has the form

L¢ = DHFI 4 gOl0ypawl) = L0 4 Ve

i

— _; [Ujab‘/]l; + VjabUJbi + D?b(UjbCV;C + ijcUiC)]

9 _ ]
- ;; (UL — VEU?) + gSat™i S + gZpt™ %%,
a 21 . .
iV = —;;[U?bv*ﬁ- + VUL — i{Us, Vi}U7 — i{ Vi, U} VY]
Lo = DrFEN 4 gully gl = Ve 4 pOo g e L = ;UjabV.bj
4

LSO)Q _ ZvjabUfj + EDjabUfCV’jc +giata,y.zb —i—gibta%za _ iUgva*b.
g g gs

a 2
LSI) _ f(U.U.)abV*b
gs

Lt = DrFED 4 g0y o wl0) = Vg g0 p M Y= Ly,

g
(0)a_£jabb zjab berre S ga S ﬁabb
L7 = gU Vij + gD VU + gEat™ X + g8pt " i Ea + gSV* U/,
2
e = Z (v ®ut
gs
Ly=pu® =1 + L
LS/}O) = Y'U;Zp + 7' Vi X, LE;) = ;ﬁgU,Eb + ;an*Za (3.26)

where DV = 97 — iUJ — iVI, Dy = 0y — iU,, and D, = 0, — iV,. The power-counting
estimates for linear terms in eq. (3.26) are

5

) 3 (1 _mi

L ~ L -
mL, S

6
Lsil) ~ Lgil) ~ smi, LSO) ~ L,(kO) ~ mjl_a le) ~ L>(|<1) ~ % (327)
9/2

(0) 5/2 n m
Lw ~my, Lw ~ s

Note that the order of perturbation theory is labeled by (...) and the order of expansion
2
in the parameter % by (...)".

With the linear term (3.26), a couple of first terms in perturbative series are

1
Moy = [ g
AN (.CI?) /d z (x‘,ng“V + 22'9.7[0}#1/

1
[2]a _ 4 o
A” (x) = g/d z { z(xlngw T 2ig FO
+ (z|

2) L (2) (3.28)

P£|Z)aa’fa’bcA[§1]bA[1]cn

1
P2ghn 4 2igF0lkn

’Z)aa’fa’bcA[l]bﬁ(stA[l]cn o DHA[;]C)
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for gluon fields (in the background-Feynman gauge) and

1 1
vl(z) = / d*2(al 512 Lu(2), V()= / d4z<x|ﬁ|z>A[”<z>w£?]<z> (3.29)
for quarks where
Po =10e +Us, Pi=1i0+V,, Pi=10;+U; +V; (3.30)

are operators in external zero-order fields (3.24). Hereafter we use Schwinger’s notations for
propagators in external fields normalized according to (z|F(p)|ly) = [d*'p e~ @Y F(p).
Moreover, when it will not lead to a confusion, we will use short hand notation OO/ (x) =
Jd*z (2|5]2)O'(z). Next iterations will give us a set of tree-level Feynman diagrams in the
background field U, + V,, and X, + 3.

Let us consider the fields in the first order in perturbation theory:

1
[1] — v
AL = ngw+2¢g;r[0}uvL (3.31)
1 v
C Ho+ 2Ve B+ 2005 — (p+ U+ V)T)gm + 2igF O + depy
TP SO (-0l Gt
P

{a+ 3V, B+ 3035 = (p+ U+ V)T +iepo

o)

Here o, 8, and p, are understood as differential operators oo = 16 B=lg-andp; =iz; 0

oxt”

Now comes the central point of our approach. Let us expand quark and gluon prop-
agators in powers of background fields, then we get a set of diagrams shown in figure 3.
The typical bare gluon propagator in figure 3 is

1 1
= 3.32
p?+iepp  afs—pt +ie(a+ B) (3:32)

Since we do not consider loops of C-fields in this paper, the transverse momenta in tree
diagrams are determined by further integration over projectile (“A”) and target (“B”)
fields in eq. (2.8) which converge on either ¢; or m. On the other hand, the integrals over
a converge on either ay or a ~ 1 and similarly the characteristic 8’s are either 3, or ~ 1.

Since oyfys = ﬁ > Qi, one can expand gluon and quark propagators in powers of 5 és

1 pi/s
P +iepo  s(a+ie)(B + ie) (1 TatioBtio ) (3.33)

YA 2 P pi/s
P> +iepy 8(5+z‘e+a+z‘e+ (a+i6)(ﬁ+i€)>(l+ (a + i€)(B + ie) +)
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and B S

The explicit form of operators CEEDIEED)

1 1
a+ie? [+ie?

1 _ 5 (42 do —ia(@—y)e—iB(z—y)ati(pa—y) L
($|a—|—i6’y) N 2/d pL/a—l—iedﬁ ©
= (27T) 263 (w1 — y1)0(xe — yo)d (s — ya)

1 = 2 AB_ ia(z—y)e—iBla—y)s+ilpa—y).
(@l 35l = /d da e
- (27T) 5(2)< yl)e( y*)é(.%'. - yo)
1 da , . ,
= _““(I—y)o—15($—y)*+2(17733—y)¢
($’(a+ie)(,6’+ie)’y) / /a—l—zeﬁ+zee

= 2 27r)2(5( @1 —y1)0(we — y.)0(ze — y) (3.34)

After the expansion (3.33), the dynamics in the transverse space effectively becomes trivial:
all background fields stand either at  or at 0. (This validates the reasoning in the footnote
on page 3).

One may wonder why we do not cut the integrals in eq. (3.34) to |a| > o3 and |5| > o,
according to the definition of C fields in section 2.” The reason is that in the diagrams like
figure 3 with retarded propagators (3.34) one can shift the contour of integration over «
and/or § to the complex plane away to avoid the region of small a or 3.%

Note that the background fields are also smaller than typical pﬁ ~ s. Indeed, from

eq. (3.22) we see that p = 58> Uy ~ m? ( because o > oy > mTQ) and similarly p. > V.
Also (p; + U; + V;)? ~ qi < pﬁ. The only exception is the fields V,; or U,; which are of
order of sm, but we will see that effectively the expansion in powers of these fields is cut
at the second term with our accuracy.

3.3 Twist expansion of classical gluon fields

2
Now we expand the classical gluon fields in powers of 24 ~ % It is clear that for the
H
leading higher-twist correction we need to take into account only the first two terms (3.28)

of the perturbative expansion of classical field. The expansion (3.28) of gluon field A, takes

"Such cutoffs for integrals over C fields are introduced explicitly in the framework of soft-collinear
effective theory, see the review [24].

8This may be wrong if there is pinching of poles in the integrals over a or 8 but we will see that in
our integrals for the tree-level power corrections the pinching of poles never occurs. In the higher orders
in perturbation theory the pinching does occur so one needs to formulate a subtraction program to avoid
double counting.

— 14 —



the form

6
AL 4l 4O A0 +O<M> (3.35)
A _ q@e | 1pa 1 L( Va y Lpra _ Tpra o 1 aby
9 ° 9" 9" 2
A 1 ab 1 .
ALY = IO (o, U + B,V POV 0! — 2y (1, A(Y
P 29p) Pj
4- (U*. N V*.)ab 1 L( 1)b igfabcAi[l]o)bAsmo)c B —As[l}o)abUbCVCj
S p as p2 J
I P I
where
A = Lpene U paegiye g0 = Lpna L paegyyes
p” 2ag I p” 289
= D, Al _p, A0 - fabCUbVCJ + O(m?) (3.36)
Similarly, from eq. (3.28) one obtains
6
AP 4 Al = 4D AW o(”}) (3.37)
A _ 40e 1y L( Day Iya - Lya Uaijb
9" B 9" 9 287
A 1 Cap 1 1,
A = SO b (e U)o+ 8, V) = PO V) = 2is (0. A7
P 29p] b P
47’ 1 (U*. + ‘/*.)abA(m ng A ([1]0)b A([l]O)c _ %Ai[l]o)ab‘/}chcj
s b ps P
and
1
AP = AP = E(Ui + Vi) (3.38)
7 3
1 420 _ 40, 4@ i m_ 170 my
A AP — A g +0(83), A= L -
I
a 1 a a
AP = SIS (P o U} = (8,V2)° (gl
[ [ I

where (n =1,2)

~ 41 21 1 ] ool
LEO) — Lz('O) + i (V.ZL( 1) + U*ZfL( )) — Lz('O) ¢ (V Uj)ab Vb 2 (U*ivj)abinl?
s gs B gs

P P «
(3.39)
In these formulas the singularity in 1 is always causal ; +Z€ and similarly for % = Biz‘e and
1 1/s
7 = rETa)” see eq. (3.34).
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The corresponding expansion of field strengths reads

gFSV @) = Va(e), gFS V(@) = US(x)

GF" () = Usia) — U2 @)V @) — L1 (@) 4 DEVI(r) - U ()

9P (@) = Via) = V@)U ) = 51 @) + DU (@) 55V a)
gFTV(2) = U (2) + VA (z) — %SUJ‘-‘I’(x)Vbj (x)

9FY" (@) = Ug(w) + V(@) — (U @)V () — i > k) (3.40)

Power corrections to hadronic tensor are proportional to

F2(2) = Fg, () F" () = S F(@)FS (@) + F4(n) P (@) = SFA@)FL@) (341

SO

(F2(x)) = > paya

sq
a ai. 8 —1)a —1)a
(F@)© = B @ POk - SR @) P @)
8 . a 8 . a
+5W%ﬂ?m+QWWW?M (3.42)

and the leading higher-twist correction is proportional to

(F2(@)O(F*(0)) + (2 0) = [F.(,SW(@ FOuik () s% FCV () FE D ()

7

[ X

ﬁ ai (0)a é ai (0)a i a at
F VI @ED @)+ SUS @D @) SGUSOVE0) + (2 00)  (343)

4 Leading higher-twist correction at s > Q% > Q% > m?

As we mentioned in the Introduction, our method is relevant for calculation of higher-twist
corrections at any s, Q? > Q2 ,m?
physically interesting case s > Q2% > Qf_ > m? which we consider in this section.? We
will demonstrate that the leading correction in this region comes from the following part

of eq. (3.41)

. However, the expressions become manageable in the

g F*(x) = gUf"(w)V.%(ﬂﬂ) +2fmec fr AU () U () ViE(2) Vi (@) + ... (40)

where
1.kl — 47kl ik gl il 1k
AT = gl gt — g gt — gty (4.2)

9We also assume that the scalar particle is emitted in the central region of rapidity so 0gs ~ Bgs > Q2.
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The higher-twist correction coming from the second term in the r.h.s. will be ~ g—g whereas
. . o Q2 2
other terms in the r.h.s. of eq. (3.41) yield contributions ~ =+, ~ ﬁ? or ~ =+ all of which

are small (see the footnote 9). In this approximation we get

g () F(0) = U @)V @)U 00V 0)

2 e AR [ () U2 ) Vi () V) U (0)V 0)

+ U (2)Var(2)UF(0) U7 (0) Vi (0) Vi (0)] (4.3)

where the first term is the leading order and the second is the higher-twist correction.
Substituting our approximation (4.1) to eq. (2.3) and promoting background fields to

operators as discussed in section 2 we get (note that a,8,s = ﬁ ~ Q?):
64/s 2
W(pA,pB, NQ/_ 1/d2 S/dxodx* COs (Oéqxo + qu* - (%x)l_) (44)

x {<pA|0;"i<x.,m>U* () pa) 5V (a2 V2 (O) p5)

4N2 Azgklz abc b Ue
g palU O (2 ) U5 O)l)
2 & ~ ~
= / dal, P VL )V 1)V O)l0)

where we used formula [25, 26|
1
fee fbd dabr qedn — 5(]\702 — 1)(]\702 —4) (4.5)

Since an extra U,y (or V) brings s

210 we see that the higher-twist correction in the
J_

r.hs. of eq. (4.4) is ~ 22% so it gives the leading power correction in the region s > Q? =
m2 > ¢> > m?. The TMD factorization formula with the higher-twist correction (4.4) is
the main result of the present paper.

We parametrize gluon TMD for unpolarized protons as (cf. ref. [27])

4 —i1Bqx«+i(k,x a a
Sggg/dm*/dQM e Pat L (p | Vi (aa, 1) Va5 (0) [p)
kik;

- —wﬁq[gz-ngwq,ki;ab)—( “)ngq?ki;ab)] (4.6)

where oy is the cutoff in « integration in the target matrix elements, see the discussion
in ref. [18]. The normalization here is such that Dy(53,,k?%;0,) is an unintegrated gluon
distribution:

[ 400,35, 2500) = Dyl = 015, (4.7)

1970 see this, we compared matrix elements of leading-twist operator (pa|Um™ (ze,2 1)U (0)|pa) and
higher-twist operator (pa|U%;(ze, 1)UL (x4, 21 )US.(0)|pa) between quark states which gives an extra s 2 >

modulo some logarithms.
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where Dgy(fq, ©2) is the usual gluon parton density (this formula is correct in the leading
log approximation, see the discussion in ref. [18]).
Next, the three-gluon matrix element in eq. (4.4) for unpolarized hadrons can be

parametrized as

249 / dz, / Ay e Pare i) / d= xd“b%pmv. (T 1)V (@l )VE(0) P +i 4 ]

= —7fy [(kigjr+kjgir)D$f(5q,ki;%) +k,-9i;D3(Bq, k2 ;00)

2

k 1
—L(kTgijJrkingrkjgir) WHf(ﬁqaki;Ub) (4.8)

— | kikjk,
e

At large k2 gluon TMDs in the r.h.s. of eq. (4.6) behave as Dy(By,k?2) ~ k and

Hy(Bg, k%) ~ % Similarly, one should expect that DY(3,, k%) ~ k2 and H{(B3,, k3 )

It is well known that in our kinematic region s > Q% > Q2 gluon TMDs (4.6) possess
Sudakov logs of the type

1 d 2 —ifBqxti(k,a) L n ni — o4 In? Ubs k2
oz [ [dase Vil VI (0) ) e Eo, (8,02 )
(4.9)
One should expect double-logs of this type in DY(8,, k2 ;04) and HY (B4, k%;0), too.
Let us now demonstrate that the terms in (F2(z))(©) (see eq. (3.42)) which we neglected
give small contributions. For example, consider the following contribution to F2(x)F?(0):

- 6;%&@( WVi(z)V (0)Vr(0)US(0) (4.10)

The corresponding contribution to hadronic tensor W has the form

64/s2 , 2 . .

‘%;QhﬂUfwmnJd)UfKONPA>QUﬂV3($MQUJL?C«DVE(OMPB> (4.11)

Note that unlike eq. (4.4), the factor in the denominator is ags > Q? so the contribu-

tion (4.11) is power suppressed in comparison to eq. (4.4) in our kinematic region.!!
As a less trivial example, consider the following term in F2(z)F?(0)
64 a ai bj 1 k\bc 1 c
- ngU*z‘(w)V. (z)Vs (O)B(V;J'U ) Evk (0) (4.12)
The corresponding contribution to hadronic tensor W reads
64/s% [ . i . .
A’z €M) Z j/d oda, e e Bate & (p A| U (e, 21 ) UL (0 4.13
g [ s @0 [ S Pl e DU O)pa) (413)
4 [0 - / / a bk a\bcyrc
x| da | dz (2= 2)ulpsl V(e 2 VI (0) (Var (2, 0.0)T) V5 (24, 00 Ipm)
—0o0 —0Q0

11 Of course, this power suppression may be moderated by difference in logarithmic evolution of operators
in the r.h.s.’s of egs. (4.4) and (4.11), but one should expect the evolution of these operators to be of the
same order of magnitude.
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where we used

1 [ 2 [
5T iEVk(m) =—i /OO da!, Vi(zh,z,) = N da!, (x — ") Ve (2}, )

In both examples (4.11) and (4.13) the factor a%, comes from an extra integration over
z, in Uj, see eq. (3.20):

[z e o)) = 2 [do [ delem o stet o )00)
21

= ——— [ dre e (Usi(z4, 21 )U;(0)) (4.14)
ays

The way to figure out such integrations is very simple: take oy — 0 and check if there
is an infinite integration of the type ff;o dz),. Evidently, it may happen if we have a single
Ui(z) (without any additional U-operators) at the point x, or a single U;(0).

Similarly, the factor ,Biq comes from an extra integration over z, in V; in eq. (3.20) so
an indication of such contribution is the infinite integration ff;o dz/, in the limit 8, — 0
which translates to the condition of a single V; at the point « or at the point 0.

Thus, to get the terms ~ é we need to find contributions which satisfy both of the
above conditions which singles out the contribution (4.3).

5 Small-x limit and scattering of shock waves

Let us consider the hadronic tensor

(pa,pBlg* F*(x)F*(y)|pa, pB) (5.1)

in the small-x limit s — oo, Q2 and ¢? - fixed. At first, let us not impose the condition
Q? > qi which means that the relation between xﬁ and :102L is arbitrary (later we will see
that Q2 > qi corresponds to :cﬁ < mi)

The small-x limit may be obtained by rescaling s — A\%2s < p; — Ap1,p2 — Ap2. As
discussed in refs. [7, 20, 28], the only components of field strength surviving in this rescal-
ing are Usi(ze, 1) and Ve;(zs, ). Moreover, if we study classical fields at longitudinal
distances which does not scale with A, we can replace the projectile and target fields by
infinitely thin “shock waves”

Usi(te,21) — ga(x.)uim) and  Vii(ze,21) — ga(x*)vim) (5.2)

However, since we need to compare the classical fields in the small-z limit to our expres-
sions (3.40) at small longitudinal distances, we will keep x, and x, dependence for a while.
As described above, to find the classical fields we can start with the trial configuration

A (@) = Uy(we, 1) + Vilws, 21), A = AP =
\I/[O] (iL') = Eq(-’L’.,.’EJ_) + Eb(x*, I'J_), plEa = pQEb = ’yz‘za = "yiEb =0 (53)
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with the linear term

20P1y s iabrrb | 2P2u prjaby b yabpribeysL jbey 7L

gLy = T“VJ“ Uy + T“UJ“ Vo, —iD{" UV, + VI™U ) (5.4)

and improve it order by order in L,. In this way we’ll get a set of Feynman diagrams in

the background field (5.3). Unfortunately, in the general case of arbitrary relation between
2

q| and ¢, we no longer have a small parameter % so we need explicit expressions for
I

propagators in the background fields, and, in addition, we need all orders in the expansion
of linear term (5.4). Still, we can compare our calculations with the perturbative expansion
of classical fields in powers of the “parameter” [U;, V] carried out in refs. [7, 8]. In the
leading order in perturbation theory only the first line of eq. (3.28) survives and we get

1 ]

Ao = j; YR A* == . j; *7
g p2 —i—iepo [U V]] g p2 —|—Z€p0 [V UJ]

A =Ui+Vi+ -2 ([U;, V] — 5.5
g + +p2+%p0([ i) — i ) (5.5)

The corresponding expressions for field strengths are

I !
F.i: o) - 1] s Ve iy Ver| — i1y Vej .
9F i = Vei = i (gilU" Vel = (U, Vaal = (Ui Vag) (5.6)
p .
Fo = Uy — —5——(gi5 s Ux jy Uxi| — [Vi, Uxyj
g U. p2+zepg(g][v U] + [V}, Usi] = [V U]D
2i ;
Fie = 7.U*]7Vv°'
g p2+zep0[ il
iy = iUV — PP (0 Vil — e k) —i o = — (Vi — i e )
grj; = iy Vj p2+i€p0 i Vk J J_p2+i6p0 xiy Vej J
In the last line we used the identity
pi([Us; Vil —j < k) —i > j = —pi([Us, Vj] — i > j) (5.7)

and the fact that in the small-z limit 0;,U; — 0;U; — i[U;, U;] = 0;V; — 0;Vi —i[V;, V;] = 0.
2
Let us discuss now how our approximation % <& 1 looks in the coordinate space. The

I
explicit expressions for fields (5.6) are

gFei(x) = Vei(ze,21) + Zlir/dz (5'3—12%3(35]'6[(33 —2)if — (x = 2)3]0(x — 2).gL;;(2)

9Pa(o) = Ualawsas) = 1= [d2 = mlbl(@ = 2 - (2 = 21600 - Do)

4m x—z).gj
gFe(z) = —;/dz §[(z— z)ﬁ — (z — z)i]ﬂ(:v — 2)4[U7 (20, 21), Vaj (24, 21 )] (5.8)
gF;(z) = —% dz §[(z — z)ﬁ — (2 —2)1]0(z — 2)+ ([Usi(2e, 21), Vaj(zs, 21)] — i 4> 5)

where
9L;5(2) = gii[U", Var] £ [Usi, Vo] F [Usj, Vail (5.9)
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At longitudinal distances xe, 2, ~ 1 these expressions agree with eq. (52) from ref. [7] after
the replacement (5.2).

Now let us compare the fields (5.8) at small longitudinal distances to our approxi-
mate solution (3.40). Let us start with Fj;(x) in the last line in eq. (5.8). If (z — z)ﬁ is
smaller than the characteristic transverse distances in the integral over z, one can replace
[Usi(2e,21), Vaj(24, 21)] by [Usi(ze, 1), Vaj(24, 21 )] and get

21

gFi(x) = —— d?2)0(x — 2):0(x — 2) o ([Usi(20, 1), Vaj (2, 21)] — i > 5)

= —i[Ui(ze, 1), Vj(xs,z1)] + i[Uj(xe,z 1), Vi(zs, z1)] (5.10)

which is exactly the last line in eq. (3.40). Similarly, the third line in eq. (5.8) reproduces
F,, in the fourth line in eq. (3.40).

Next, gF.(ZQ )% in second line in eq. (3.40) in the leading order in perturbation theory
turns to

Y]

2 [ T -
~ S 0T =0+ 0 V) = 5 [ e [ (0= 201 20) (511)

On the other hand, the first line in eq. (5.8) at small (x — z)| gives

i [ O(x — 2)4

i ol =t = = 2 o) (5.12)

i O(x —z)s |4 =
~ dz ((:E_Z))*Q L(az —2)s(z—2)e — (v — z)ﬂ O L (24, 20,21 )

which agrees with eq. (5.11) after integration over z, . Similarly, one can check the consis-

tency of two expressions for F;.

6 Conclusions and outlook

We have formulated the approach to TMD factorization based on the factorization in
rapidity and found the leading higher-twist contribution to the production of a scalar
particle (e.g. Higgs) by gluon-gluon fusion in the hadron-hadron scattering. Up to now our
results are obtained in the tree-level approximation when the question of exact matching
of cutoffs in rapidity does not arise. However, this question will become crucial starting
from the first loop. In our previous papers we calculated the evolution of gluon TMD with
respect to our rapidity cutoff so we need to match it to the coefficient functions in front of
TMD operators. The work is in progress.

Also, we obtained power corrections for particle production only in the case of gluon-
gluon fusion. It would be interesting (and we plan) to find power corrections to Drell-Yan
process. There is a statement that for semi-inclusive deep inelastic scattering (SIDIS) the
leading-order TMDs have different directions of Wilson lines: one to 400 and another
to —oo. We think that the same directions of Wilson lines will be in the case of power
corrections and we plan to study this question in forthcoming publications.
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A Diagrams with retarded propagators

In this section we prove that the field C), created by a source .J,, in the presence of external
fields /_1“ and BMH

a ~ a i AAmEmn S
(Ca(x))s = /DCDC’ Cii(x) exp {/dz {20 ‘ogmem (A1)
. 2 .
- emnl HE S mn A Al 9" cabm pcdm Fa Abn Fefd R Yaus b m&—mn m
+ig "M DECMICE G+ S f e O CMICECT — O — SO
. mnl m mn i 2 abm pccdm va c < T YN
—igf"M DECTICECl — E U OO CEC + i C 5}}

is given by a set of Feynman diagrams with retarded Green functions (note that eq. (A.1)
implies that Ju,fi#, and Bu are the same in the right and left part of the amplitude).
Hereafter we use the notation [, = PQgW + 2iGW.

First, we consider gluon propagators for the double functional integral over C fields in
the background filelds A = fl, B = B and prove that

—1

(Ch@)Co(y)) — (C(x)Ci(y)) = (x\m\y)“b
(Ci@)Co(y)) = (Cx)Ci(y) = (éle#l,:jifpoly)“b (A.2)
Note that we define (O) in this section as
() = / DEDC O efd=(s0m e —somngcm) (A.3)
To prove eq. (A.2), we write down
Op = 0°gpw + Oy Oy = ({pgv A¢ + Bey + (A+ B)Z)g;w +2iG (A.4)

and expand in powers of O, .
In the trivial order egs. (A.2) immediately follow from the bare propagators for the
double functional integral (A.3)

o i o A gt
<Cﬂ(x)cl/(y)>bare - (‘ﬂﬁ‘y% <Cu(x)cu(y)>bare - (x‘pgu_ ic ’y)
(Ci(@)CL (W) bare = —Gyu 6" (2[276(p*)0(—po)|y) (A.5)

where . N )
O = [DEDC @ (5075070 (A.6)

12For simplicity, in this section we disregard quarks so in our case Jy is eq. (3.26) without quark terms.
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In the first order in O, we get

HOR@O(:) bmogz< TelE >cb< ]
(@O = i [ ds] - (CiIC(z
HORO () O (O >cs<y>>bm] (A7)

SO 1 o 1

p2 + iepo IWPQ + iépo

(C@)Coy) ™V = (C@)Coy) V) = ilz] v) (A-8)

Similarly, it is easy to see that
(Ch(x)Chy)™M) =i / dz[ — (Cf(@)C%(2) ) bare Ogy (2)(CT(2)C1 () bare
+H(Cii(2)C (2))bare O (2)(C (2)CL(Y) ) vare
(Cr(x)Coy)M) =i / dz[ — (Cf(@)C%(2) ) bare Ogs (2)(CT(2)CL () bare
HC (@) C (2))bare O (2) (CM(2)CR () bare)  (A9)

SO
1 b 1

~a b 1) _ //va ~b (1):
(o)) — (C N = it o L

v) (A.10)

In the second order in O,,,
(Ca(x)Chy)? = i/dZ[ (Ca(x)C%(2) D OgL2)(CM(2)CH(Y) D bare
+(Ch(z )ch( )Y MO (2)(CM (2 )Cb( ))bare)

so using the results (A.8) and (A.10) we get
1 1 e 1

a b (2) a ~b 2 _ _, ab
<CM($)CV(y)> <C,u (‘T)Cy(y» Z(x‘pg T iepo Ouﬁpg + iepo I/p2 T iepo ’y)
(A.12)
Similarly, it is easy to demonstrate that
~ ~ ~ 1 1 1
a b (2) a b 2 — 13 ab
Co@)Chw) ~ (Ca ) ® = ~ilal g Oy g 0%, ry( |
A.13

One can prove now eq. (A.2) by induction using formulas
(Ch@)Chy)™ = i/dZ[ (Cpi(@)C(2)) "V Og () (CM(2)Cp(y) bare
HCpi(@)C* () "V Og () (C(2)CL(Y)) bare]
(Ci(@)Chy)™ = i/dZ[ (Cpi(@)C%(2)) "V Og () (CM(2)Cp () bare
HCp(@)C* (2) VO ()M ()L (Y))bare] - (A14)

~ 93 -



Now we are in a position to prove eq. (A.1). In the leading order in g it is trivial:
using eqgs. (A.2) one immediately sees that

(Cote)) = [DEDC Cptr) (O i gorcain )

_ /DC‘DC C’g(x) efdz(_géasDggébn_ugéas+gcasmggcbn+ugcas)

1 a 14

In the first order in g (with one three-gluon vertex) we obtain
(@) = —igpmt / DCDC C4(x) / dz[DEC™CECL(2) — DEC™CECL(2)]
X exp { / dz’ [;éaﬁmgj;éb" —iJ¢C% — %caﬁmgf;cb" + z’chai] (z')}
i _ U
= 2y / d2d'd" (Ci(w) | DEC™CECl(2) = DEC™ICECH ()]
X [JGO(2) = TGO ([JFCP (") — JECP (")
= —igf™ [d{ ((Ca)1DFC™(2) ~ (o DEC™(a) (2 chn
+ ((Ca@)CE () — (Ca@)CEEN) (D™ () — & < m)(ch(=)] }

1 _
——igr™ | dz{<x|MPfrz>am<cg<z>>?} (=)

Ly DEem (N e o n><of7<z>>5”} (A.16)

— il OHE + depo

which is the desired result.
Similarly, in the g2 order one obtains after some algebra

(Ca)] (A17)
_ gl L pepyam[iomean™icn0 o om0 oyl
——igf™ [t ol g P 2 + @ Picn' ]
Hilal gy [(DCE = € e O + (D™ ~ 6 )

x(Ch(N ] } 40 [ dtstelga | e e e e

At arbitrary order in g the structure similar to eq. (A.17) can be proved by induction.
Thus, we see that eq. (A.1) is given by a set of Feynman diagrams with retarded Green
functions. In a similar way, one can demonstrate that

S ~a i AmEmn Am
/DCDC () exp{/dz [20 SD&] cm
~ ~ ~ 1 2 ~ ~ ~ ~ ~
+ ig " DECTICE Gy 4 E e eI oS C GG — i Cme
. . 2
— SOMSOECM — igfM DSCTICEC, — S fm e Cet OMCECy + ijgomf] }
= r.hs. of eq. (A1) = (Cj(2))s (A.18)
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B Solution of Yang-Mills equations in two dimensions

To find matrix Q(z) satisfying eqgs. (3.18) we will solve the following auxiliary problem: we
fix x| as a parameter and find the solution of Yang-Mills equations

D F(Ts,2e) = 0 (B.1)

in 2-dimensional gluodynamics with initial conditions

Al e) EF A(aa), Al E Bu(e) (B.2)

Since 2-dimensional gluodynamics is a trivial theory, the solution of the equation (B.1) will
be a pure-gauge field A, = Qi@MQT with Q(x.,xe) being the sought-for matrix satisfying
egs. (3.18).

Let us first demonstrate that the solution A, (x4, xs) of the YM equations (B.1) with
boundary conditions (B.2) in two longitudinal dimensions is a pure gauge. To this end, we
will construct A, (x4, x,) order by order in perturbation theory (see figure 3, but now in
two dimensions) and prove that Fy,(A) = 0.

We are looking for the solution of eq. (B.1) in the form

Au(a,20) = Ap(Ta,20) +Cpu(T, o)y Au(@sy Te) = Ai(To), Ae(Ts,Te) = Bo(zs) (B.3)

Imposing the background-gauge condition

DFCy(xy,e) =0 (B.4)
we get the equation

(pQQ,LLV + Qigp,uu)abéby — Dab{p{bﬂ + gfabc(2CSDyéﬁ _ C«SDuC«cu> _ ngabmfcdvabVCﬁCfg

(B.5)

where D, = (9, —ig[A,,) and F.e = —ig[A., Bs]. The boundary conditions (B.2) in terms
of C fields read

Cﬂ(x#ﬂ l‘.) $*—£—00 07 Cﬂ(x*a 5U0) $._£_OO 0 (BG)

It is convenient to rewrite the equation (B.5) in components as

2(P,P,)C? (B.7)
= DYPFL +igFJC + gDy (f*7CLC0) + 29/ CIDLCY — g 0 e CLCLC!
2(P,P,)C?

= DIPFY, — igFCh — gD (fCICE) + 29 CIDCE — ¢ [ U CLOEC

We will solve this equation by iterations in F.e and prove that F.e = 0 in all orders.
In the first order we get the equation

2(P,P,)®C = DP®Fb, . 2(P,P,)"Ct = —DWF?, (B.8)
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The solution satisfying boundary conditions (B.6) has the form

Ce Boricle = Ce " () 5 d zH(:c|7P* i |2) P Fly(2)
<) _ /2 ~(Dag,y _ Z/ 2 ab b
Cy/' = fon ieF*. & Cy/'" (x) = 5 d°z)(z| fo Z,6]2) Fl(2) (B.9)

Using the explicit form of the propagators in external A, and B, fields

1 —

(el 5012) = —i0( = 20)0(ws = 22)fw 2]
(:415* —ol) = =il = 2)0(we — z) e, o)A (B.10)
we get CM) in the form
D) = - / Oodz [0, 204 [ (), Au(20)] [0 2] 4
o) = ! / Zdz. (e, 2] (A (20), Au(2)][20, 0] (B.11)

From this equation it is clear that C,Sl)(x*,x.) vanishes if z, — —oo and/or x4 — —00
(recall that we assume A, (z,) #2530 and Bo(z4) g 0).
Also, form eq. (B.9) we see that

D* _Sl) = _%F*oa Doéagl) == F*. (B12)

1
2
and therefore

Fre = Fua + D.CY — DOV + O(F?) = O(F?) (B.13)

so in the first order in F the field strength of the solution of classical equation (B.5)
vanishes.

In the second order the equations for the field C,, take the form
— ~ — 1. = = = ) 1 ad! 1. = ~
2(P, P, abCSQ)b: pDaa a bcCil)bcsl)c N C£2)a: _g _ a bcCil)bC£1)c
(PoFx) 9D (f ) o\ )
I — — . = =(1)e =(2)a ) 1 ad’ "be ~(1)0 ~(1)e
2(P,P, abciz)b: _ gD ( fo bccil)b Sl) C>|(<2) _ 9 - a bccil) S
(P.F,) gD (f ) = o\ Be)
(B.14)

where we used eq. (B.12) to reduce the r.h.s. Again, from the explicit form of the propa-
gators (B.10) we get

_£2)(az) = _Y *dz* [x*,z*]A'[_il)(z*,x.),c_'sl)(z*,ac.)][z*,a:*]A'
S — 00
Py = / dze [0, 2] [CD (@2, 20), O (20, 20)][20, 70 (B.15)
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from which it is clear that C_',(f) satisfy boundary conditions (B.6) (recall that we already

proved that C;Sl) satisfy eq. (B.6)). Next, we use
D,.CP = _g gabegbA(De DW= % fabegbE(De (B.16)
to prove that F,e vanishes in the second order:

Fe = Fo(A+CW 4+ @)+ O(F?)
= F% + (D,CY — D,CW)e + (D.CY — DJCP)e + gptecMPEiVe 1+ O(F3)
= O(F?) (B.17)

In the third order we get

2(p.p*)abcis3)b _ nga’fa’bc(Cfil)bCfSQ)C + é£2)bé£1)c)
2(P,P,)*C¥ = —gpoa’ pa'be(cPGPe y GG (B.18)

where again we used egs. (B.12) and (B.16) to reduce the r.h.s. The solution is

o = —w( = ) e el

¢ 2 \ P, + ic
~(3)a Zg 1 a/c ~(2)b ~(1)c

Again, from the explicit form of propagators (B.10) it is clear that C’Ls) satisfy boundary
conditions (B.2) if C’f}) and C’l(?) do (which we already proved). Next, from

D* —53)(1 _ fabc( )E E?)c + C_'>|(<2)bc_'£1)c), fabc( £ 52)0 + C‘,i?)bc,Sl)c)
(B.20)
we see that F.e vanishes in the third order:

Fa, = FA(A+CW 4+ C® 4 CO) 4 o(FY)
= F + (D.CY = D,CY) + (D.CP - D.CP)e 4+ (D.CP) - DY)
+ gf (MO 4+ OV CP 4+ OO + O(FY) = O(FY)
Note also that eqs. (B.12), (B.16) and (B.20) illustrate self-consistency check for the
background-field condition (B.4).

One can continue and prove by induction that F,e vanishes in an arbitrary order in
F7 and therefore the field A, is a pure gauge

Ay (4, 2e) = Ay(e) + Co (T4, 20) = Q24, 24)i0, QT (4, 0
Ae(@y,Za) = Ba(y) + Col2s, 26) = Q4,4 )i0eQ (., 4) (B.22)

Now we shall demonstrate that the matrix € satisfies our requirement (3.18). Since
Cy(ze = —00,xe) = 0 due to eq. (B.2), we get

Q(—00, 2e)i0 QO (—00, 4) = Ay(zs) = Q(—00,Ls) = [Le, —004] (B.23)
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Similarly,

(24, —00)i0e QI (14, —00) = Bo(z) =  Q4, —00) = [24, —00,]P* (B.24)

One can also construct the expansion of matrix  in powers of A, and B,. For example,
up to the fifth power of the 121“ fields

Q(m*,x.):;{[x*, )P, [ac., oo.]A*}—l([[x., sod e, —00uP])? (B.25)

/ az! / da" / ! / dz! [[Au(L), Au(al)], [Ae(e), A (al)]

Now, for each x| we solve auxiliary 2-dimensional classical problem (B.1) and find
Q(z4, Te, x ) satisfying the requirement (3.18).

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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