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Abstract 

Directing to the high cost of computer simulation optimization problem, Kriging surrogate model is widely used to decrease 
the computation time. Since the sequential Kriging optimization is time consuming, this article extends the expected 
improvement and put forwards a modified sequential Kriging optimization (MSKO). This method changes the twice optimization 
problem into once by adding more than one point at the same time. Before re-fitting the Kriging model, the new sample points 
are verified to ensure that they do not overlap the previous one and the distance between two sample points is not too small. This
article presents the double stopping criterion to keep the root mean square error (RMSE) of the final surrogate model at an ac-
ceptable level. The example shows that MSKO can approach the global optimization quickly and accurately. MSKO can ensure 
global optimization no matter where the initial point is. Application of active suspension indicates that the proposed method is
effective.  

Keywords: surrogate model; Kriging; expected improvement; collaborative simulation; optimization 

1. Introduction1

Conventional simulation methods are not capable of 
solving comprehensive product design problem, so 
multidisciplinary collaborative simulation method 
emerges as the times require for such complicated en-
gineering simulation problem[1]. Since the evaluation 
cost of collaborative simulation is high, surrogate 
model provides a cheaper but lower-fidelity solution[2].
Kriging model, one of the surrogate models, is gaining 
popularity as a way of developing fast approximation 
system for time-consuming simulations. Due to the 
challenge of interpolation strategy in Kriging model, 
this article deals with collaborative simulation and op-
timization based on Kriging model.  

In real-life optimization problems, finding the global 
maximum or minimum of a function is much more 

                                                          
*Corresponding author. Tel.: +86-10-82338933. 
E-mail address: Shaopingwang@vip.sina.com 
Foundation items: Aeronautical Science Foundation of China  
(20080751017); Hi-tech Research and Development Program of China 
(2009AA04Z412); Program 111 of China 

1000-9361 © 2010 Elsevier Ltd.
doi: 10.1016/S1000-9361(09)60262-4 

challenging and has been practically impossible for 
many problems so far[3]. With the big difficulties of 
gradient calculation for complex model, the traditional 
gradient-based methods are not suitable in this area. In 
former research, sequential Kriging optimization 
(SKO) algorithm is used to find the best solution based 
on Kriging surrogate model while it is time consuming 
due to its sampling rule, in which only one point with 
the biggest expected improvement (EI) function will be 
added in each iteration[4]. How to design an algorithm 
to fit the model at an acceptable level with fewer 
iterations of optimization during global optimization is 
urgent to solve in SKO[5]. In order to solve the above 
problems, we put forward the modified sequential 
Kriging optimization (MSKO) method with dynamic 
update criterion during the optimization process. 

2. Surrogate Model Based on Kriging 

Kriging surrogate model is considered as the best 
linear unbiased estimation to the real computer model. 
It is a semi-parametric interpolation technique which 
estimates the unknown information at one point ac-
cording to the known information[6]. Nowadays, it has Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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become a popular method for approximating determi-
nistic computer model. 

The approximation of original model can be ex-
pressed as the following formula under the conditions 
of multiple inputs and single output[6-7]:

1
ˆ( ) ( ) ( ) ( ) ( )

k

j j
j

y f Z ZX X X f X X      (1) 

where X =[x1 x2 … xn] is the input, fj (X) the known 
polynomial function chosen by users, j the coefficient 
to be determined, k dimension number of polynomial 
function also chosen by users; Z(X) is a stochastic 
function, which is considered as a normal distribution 
(0, 2) generally. 

Let k = 1 and f1(x)=1, Eq.(1) becomes the ordinary 
Kriging or DACE (Design and Analysis of Computer 
Experiment) model[6-7]:

T 1ˆ ˆˆ ( ) ( ) ( )x x 1y r R Y         (2) 
where T 1 T 1ˆ /( )1 1 1R Y R and 1 denote an n-vector of 
ones. r(x)=[R(x, x1) R(x, x2) … R(x, xn)]T, where 
R(x, xi) is the correlation between an unknown point 
and the known sample points. 

3. Modified Sequential Kriging Optimization 

The SKO method is one of the surrogate model- 
based optimization approaches, in which the calcula-
tion precision is related to the sample points. In order 
to increase the accuracy of the model in Eq.(2), the 
expected improvement criterion was introduced in 
SKO[7]:

min d

min d

max( ,0)
[ ( )] (max( ,0))

I f Y
E I x E f Y

       (3) 

where fmin represents the current best value of the func-
tion at known points; Yd is Normal 2ˆ( , ),sy in 
which ŷ and s are the output predictor and its square 
root of the mean squared error (RMSE) respectively. s
can be expressed as 

T
2 2 T T ( )0( ) 1 [ ( ) ( )]

( )
x

s x x x
x
fFf r
rF R

  (4) 

where F = [f (x1) f (x2)    f (xn)]T=[1  1    1]T.
Then we can get the expected value of the improve-
ment I by calculating the integration as 

min min
min

ˆ ˆˆ[ ( )] ( ) ( ) ( )f y f yE I x f y s
s s

   (5) 

where  and  are the standard normal density and dis-
tribution function respectively. Through inserting the 
maximum EI point as the additional sample point, im-
provement of the model and robust exploration of the 
global optimum can be achieved[8].

3.1. Modified sequential Kriging optimization 

Fig.1[7] gives an example to show how the SKO al-
gorithm works.  

Fig.1  Update Kriging model by EI method[7].

In Fig.1(a), the curve indicates the Kriging model 
constructed by 5 points and the line with peaks indi-
cates the EI with two peaks at x = 2.8 and x = 8.3. 
However, the maximum EI is located at x = 8.8 in next 
iteration as shown in Fig.1(b), then SKO will add the 
second sample point there. The conventional SKO al-
gorithm adds the sample point at maximum EI, so SKO 
algorithm samples the point (point F) at current calcu-
lation because the peak at x = 2.8 is much higher. 
However, the maximum EI is located at x = 8.8 in next 
iteration, then SKO will add the second sample point 
there. It is obvious that only one point is sampled in 
each iteration in SKO, so searching the maximum of EI 
is time consuming, especially in high-dimension prob-
lems. In order to solve the above problem, this article 
presents a modified criterion on SKO through enhanc-
ing the number of sample points in each iteration. Now, 
we use the example shown in Fig.1(a) to describe its 
motivation. 

The main idea of MSKO is to add the points at 
x = 2.8 and x = 8.3 at the same time in the first itera-
tion, viz. we change the twice optimization problem 
into once, which could decrease the searching times of 
maximizing EI obviously. Comparing with the SKO 
that inserts the sample point at x = 2.8 and x = 8.8 step 
by step, the sample points of MSKO are x = 2.8 and 
x = 8.3 in one iteration, so MSKO is faster.  

Before re-fitting the Kriging model, the new sample 
points should be verified according to the following 
equation:  

0 LB UB( , ) 0.001 ( , ) ,
...1,2, , ,

i

i

x x x x
i n x

R R
       (6) 
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where xLB and xUB represent the lower bound and upper 
bound respectively. Eq.(6) can ensure that the new 
sample points do not overlap the previous one and the 
distance between two sample points is not too small.  

Since EI function values are all positive in the range 
of minˆ [ , )y f , in which the algorithm can guaran-
tee the new sample point is different from previous one 
as long as there are unsampled points. Since the num-
ber of points is finite, the algorithm will sample all 
points and the global minimum will be found[9].

With respect to the termination criterion in Ref.[7], 
the algorithm will terminate if the expected improve-
ment is less than 1% of the best current function value. 
Considering the influence of RMSE, it is necessary to 
keep the RMSE to an acceptable level, so the double 
stopping criterion is exploited in MSKO as 

max minEI 0.01 and | ( ) ( ) | 3/ i
i i

xf y x f x s   (7) 

In MSKO we utilize optimization algorithm DIvid-

ing RECTangles (DIRECT) to find the maximum EI. 
The DIRECT is a searching method based on previous 
collected data without knowing gradient information. 
Its global convergence property has been proved in 
Refs.[10]-[11]. 

3.2. Properties analysis of MSKO  

We select a classical mathematic model to describe 
its properties as 

2 4 6 2 41 1(4 2.1 4 4
1 000 3
2 500sin 2 500sin ) , [ 5,5]

z x x x xy y y

x y x y  (8) 

Ref.[12] gave the optimal solution of this problem: 
the global minima is 5.208 5 which is located at 
( 1.635 7, 1.153 8) and the local minima are 2.082 2 
located at (3.717 9,4.743 6) and 3.556 3 at (4.230 6, 

1.563 4) shown in Fig.2. 

Fig.2  Optimization process and new sample points. 

The small dots in Fig.2 represent the initial 25 sam-
ple data according to the Latin hypercube strategy 
while the central textbox is the global optimal solution 
after optimization. The right two textboxes represent 
the local optimal solution. The rectangle points and 
round points indicate the sample points added to the 
updated Kriging model in MSKO and SKO. The num-
ber 26 to 36 near them indicate the sequence of added 
sample points.  

In MSKO, we need 6 iterations, in which the first 
fifth ones insert 2 points in each iteration and we add 
one point in last iteration. We can observe the sequence 
of the added points in MSKO that at first sample points 
are added in the most uncertain area of the initial 
Kriging model (upper area) in order to increase the 
model accuracy. Then the algorithm once finds two 

local minima and updates the model but it does not 
stop there. In the update process, the algorithm cal-
culates the EI according to Eq.(5) gradually to find 
the larger EI until the convergence condition is satis-
fied.

On the contrary, the SKO algorithm needs 10 itera-
tions, so the MSKO is faster than SKO even consider-
ing the model update.  

After giving the computational performance com-
parison of adding new sample points, now we compare 
the accuracy between using SKO and MSKO. Fig.3 
shows that there is no clear difference in convergence 
times and optimization value between the two.  

In order to verify the global optimization capability 
of SKO and MSKO, we start the optimization with the 
initial point (0,0), (4,3) and (4, 2), which are close to 
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the local minima shown in Table 1. 

Fig.3  Iterations of SKO and MSKO.

The assessment metrics are selected according to 
Ref.[5] as follows: 

If: The number of iterations required before a point 
is sampled with an objective function value within 2%
of the true solution. 

Ix: The number of iterations required before a point 
is sampled within a box with the size of 2% of the 
design space range centered around the true solution. 

TN: Total number of iterations when converged. 
FS: Final solution of (x, y).
Dx: The distance from the final solution to the global 

minima. 
RMSE: The global modeling error of final Kriging 

model. 
If, Ix and TN indicate the efficiency of the algo-

rithm; FS and Dx express its accuracy and RMSE de-
notes the precision of Kriging model. Except FS, the 
lower the values are, the better the performance is.  

From the algorithm accuracy points of view, MSKO 
can ensure global optimization no matter where the 
initial point is. From the algorithm rapidity points of  

view, the Kriging model can approach the global opti-
mization quickly based on MSKO. 

Table 1  Detailed information of SKO and MSKO 

Initial 
point If Ix TN FS Dx RMSE

SKO 7 11 33 ( 1.410, 
1.154) 0.044 2 0.154 7

(0,0)

MSKO 3 8 29 ( 1.571, 
1.542) 0.048 4 0.102 8

SKO 10 7 46 ( 1.163, 
1.568) 0.155 9 0.298 2

(4,3)

MSKO 5 11 35 ( 1.685, 
1.465) 0.002 9 0.206 5

SKO 11 15 40 ( 1.236, 
0.641) 0.342 7 0.441 8

(4, 2)

MSKO 5 12 32 ( 1.666, 
1.465) 0 0.316 2

4. Application to Active Suspension System 

We apply the proposed MSKO method to the design 
of the active suspension system based on elec-
tro-hydrostatic actuator (EHA) which originates in 
aviation field. EHA is an electrically powered actuator 
incorporating a controlled direction electric motor and 
hydraulic pump. Active suspension based on EHA has 
the characteristic of compact structure, large delivered
power and being easy to control. 

4.1. Active suspension and its subsystem 

Active suspension system is a typical mechanical- 
electrical-hydraulic multidisciplinary complex system. 
We divide the active suspension system into four sub-
systems that are mechanics subsystem (Me, rectangle 

), control subsystem (Co, rectangle ), electronics 
subsystem (El, rectangle ) and hydraulic subsystem 
(Hy, rectangle ). Fig.4 indicates the relationships and 
interface among the subsystems. Here, some factors 
such as tire deflection, damper behavior are neglected.  

4.2. Optimization problem modeling 

Although there are lots of design variables in real 
active suspension, we just select the following 8 pa-
rameters to model the system for simplicity. We model 
the optimization problem as follows: 

s f a u d k p

f a u d k p

f a u d k p

s f a u d k p

Find [ ]

min %( , , , , , , , )

s.t.     ( , , , , , , , ) 5 mm

( , , , , , , , ) 0.3

D d K K l l l l

D d K K l l l l

l D d K K l l l l

T D d K K l l l l

X

(9)
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Fig.4  Modeling of active suspension.

where Xs=[D d Kf  Ka lu ld  lk  lp] is design vari-
able, in which D is the external diameter of the piston; 
d is the internal diameter of the piston, Ka the coeffi-
cient of amplifier and Kf the coefficient of displace-
ment sensor. The above four variables are from hydrau-
lic subsystem. And lu, ld, lk and lp are the length of up-
per and lower wishbone, kingpin and knuckle which 
are from mechanical (dynamic) discipline. The pa-
rameters Kp, Ki and Kd of fuzzy PID controller from 
control subsystem are not considered as design vector.  

As for the constraining condition, the slip displace-
ment of wheel l from mechanical subsystem could not 
be more than 5 mm viz l  5 mm and the settling time 
Ts is less than 0.3 s. 

The object function is to minimize the overshoot 
% of the vertical displacement of car body. In order 

to make the optimization problem unconstrained, we 
merge the constraints into the object function as pen-
alty functions as follows: 

s f a u d k p

2
s s 1 s

Find [ ]

min ( ) ( %( ) Max( ( ) 5,0)

D d K K l l l l

M l

X

y X X X
2

2 s sMax( ( ) 0.3,0)M T X           (10) 

where M1 and M2 are penalty coefficients. With the 
proposed MSKO method, we can obtain the surrogate 
model of the system optimization as 

s f a u d k p

T 1
s s

Find [ ]
ˆ ˆˆmin ( ) ( ) ( )

D d K K l l l lX

y X r X R Y 1       (11) 

In Eq.(11), sˆ( )y X is updated dynamically during the 
optimization process according to the augment ex-
pected improvement rule. 

4.3. Analysis modeling  

To calculate l, Ts and %, we need to conduct hy-
draulic, dynamic and control analysis. 

Considering the motor and pump are connected di-
rectly, the expression of torque is[13]

m p v f DB P a b( ) ( ) ( )T J J K K T D P P  (12) 

where Jm and Jp are rotary inertia of motor and pump, 
Kv and Kf viscosity and friction coefficient of motor 
respectively, TDB is torque loss cause by friction and DP
pump delivery. We can obtain the expression of the 
angle velocity of pump as[14]

c P a b DB

P m v f E

( )
( ) ( )

CGV D P P T
J J s K K C CG

      (13) 

where CE and Vc are motor back electromotive force 
(EMF) constant and motor input voltage respectively, C
and G are torque constant and transfer function sepa-
rately. The hydraulic pump and actuator equation can 
be expressed as[13]

o 1 2
P 1 2 pipe

e

d d( ) ( /2)( ) 2
2 d d
V P PD Ax L P P P

t t
 (14) 

where A = (D2 d2)/4 is cylinder force area, e oil 
equivalent volumetric elastic modulus, P1 and P2 are 
entrance and exit chamber pressure of the cylinder re-
spectively,  and L are internal and external leak coef-
ficient of pump and Ppipe is the pressure drop between 
pump and cylinder. Then the load force of hydraulic 
cylinder can be described as 

1 2 L( )F P P A Mx Bx Kx F    (15) 

where FL represents the external interference force of 
hydraulic cylinder. 
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Substitute Eq.(14) by P1 P2 and ignore elastic load, 
then we can get the transfer function of hydraulic 
component[14]

P pipe 0
L 2

e

20 0
2 2 2

e e

2 / 2 1
2 ( / 2)

( / 2) 1
2 2

D P VLF s
A LAx

V M V B M Ls s s
A A A

(16)
Ref.[15] shows the double wishbone suspension 

structure. The height of the wheel is h. We need to 
measure the angle of wheel plane  and horizontal slip 
of the wheel l.

4.4. Collaborative simulation and optimization

The design software that we choose in our platform 
includes ADAMS for Me subsystem, MATLAB for Co 
subsystem and Simulink for Hy subsystem. The inte-
grated design platform is based on Simulink.  

With MATLAB, the Simulink simulation model is 
described in Fig.5. The rectangle part in Fig.5 is the 
model created by ADAMS, which is exported as the 
“adams_subsystem”[16]. The input of the whole system 
is the height of the ground which is a step function. 
Through collaborative simulation, we can get the set-
tling time Ts and overshoot % from Simulink and 
horizontal slip l from ADAMS. 

Fig.5  Collaborative simulation of active suspension.

We list the optimization information of the parame-
ters in Table 2, in which the unit is SI except millimeter 
for l.

In Table 2, Para represents the parameter, Ini repre-
sents the initial values, LB and UB denote the lower 
bound and upper bound, Opt and OptS the optimization 
results of MSKO and SKO; DeV, Cons and ObjF are 
the design vector, constraint vector and objective func-
tion respectively. 

If, Ix, TN show the efficiency of SKO and MSKO, 
and RMSE indicates the accuracy of the final Kriging 
model. It is obvious that the MSKO converges faster 
than SKO with small RMSE. Fig.6 shows the iteration 
process of Ts, l and %.

In Fig.6, the straight lines y = 5  and y = 0.3 repre-
sent the upper bounds of the double constraints respec-
tively. Since the constraint variables are under the up-

per bound finally, the dynamic and control perform-
ances of the system are greatly improved. 

Table 2  Optimization result of active suspension 
Para Ini LB UB Opt OptS 

D 0.20 0.10 0.30 0.142 0.176 
d 0.10 0.01 0.15 0.130 0.124 
Kf 1.10 1.00 1.20 1.025 1.342 
Ka 130 120 150 125.6 119.8 
lu 0.30 0.26 0.38 0.347 0.356 
ld 0.48 0.40 0.58 0.390 0.412 
lk 0.31 0.28 0.40 0.298 0.328 

DeV

lp 0.27 0.20 0.30 0.293 0.275 
Ts 2.12  0.3 0.26 0.29 Cons

l 12.5  5 1.8 1.97 
ObjF % 8.57   1.43 1.69 

 If Ix TN RMSE 
SKO 8 25 32 0.544 8

MSKO 12 16 26 0.343 1 
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Fig.6 Iteration of constraints and objective function.

5. Conclusions 

The contribution of this article is to use surrogate 
model-based global optimization method to deal with 
the complex product optimization problems which in-
volve multiple computer simulation tools. The detailed 
contributions are summarized as follows: 

(1) The drawback of EI function in SKO is time con-
suming due to that one new point is inserted at the 
maximum EI in one iteration. This article proposes the 
MSKO algorithm, in which we change the twice opti-
mization problem into once through adding more than 
one point at the same time. 

(2) Before re-fitting the Kriging model, the new 
sample points are verified to ensure that they do not 
overlap the previous one and the distance between two 
sample points is not too small. 

(3) This article presents the double stopping criterion 
to keep the RMSE of the final surrogate model at an 
acceptable level. When the algorithm converges, the 
Kriging model is accurate enough. 

Application of active suspension system optimiza-
tion indicates that MSKO could improve the conver-
gence speed under small RMSE, so it is suitable to the 
engineering problem based on collaborative simulation. 
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