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1 Introduction

A TMD factorization [1-3] generalizes the usual concept of parton density by allowing
PDFs to depend on intrinsic transverse momenta in addition to the usual longitudinal
momentum fraction variable. These transverse-momentum dependent parton distributions
(also called unintegrated parton distributions) are widely used in the analysis of semi-
inclusive processes like semi-inclusive deep inelastic scattering (SIDIS) or dijet production
in hadron-hadron collisions (for a review, see ref. [3]). However, the analysis of TMD
evolution in these cases is mostly restricted to the evolution of quark TMDs, whereas at
high collider energies the majority of produced particles will be small-z gluons. In this
case one has to understand the transition between non-linear dynamics at small x and
presumably linear evolution of gluon TMDs at intermediate x.

The study of the transition between the low-z and moderate-x TMDs is complexi-
fied by the fact that there are two non-equivalent definitions of gluon TMDs in small-z
and “medium z” communities. In the small-x literature the Weizsacker-Williams (WW)
unintegrated gluon distribution [5] is defined in terms of the matrix element

>t DUUT (z0) | XHX|[D:UUT(0.)[p) (1.1)
X

between target states (typically protons). Here tr is a color trace in the fundamental
representation, )y denotes the sum over full set of hadronic states and U, is a Wilson-line
operator — infinite gauge link ordered along the light-like line

U(z)) = [oon+ 21, —oon + z1], [z,y] = PedJdu @=y)* Au(uz+(1-u)y) (1.2)



and D'U(z,) = 0'U(zy) — iA%(ocon + 21 )U(z1) + iA*(—ocon + 2z, )U(z1 ). In the spirit of
rapidity factorization, Bjorken x enters this expression as a rapidity cutoff for Wilson-line
operators. Roughly speaking, each gluon emitted by Wilson line has rapidity restricted
from above by Inzpg.

One can rewrite the above matrix element (up to some trivial factor) in the form

aDlenz) =g | Y BIFE e+ ) XXIFEO) (1)

where

Fe(zL +un) = foon + 21, un + 2 |*"n"gFje(un + 21)
fg(zL—l—un) = nHgF e (un 4z )[un + 21, 0on + 2, ™ (1.4)

and define the “WW unintegrated gluon distribution”
D(wp k) = / @2z, 0D ID(zg 2)) (1.5)

(Here (k, z)1 denotes the scalar product in 2-dim transverse Euclidean space.) It should
be noted that since Wilson lines in eq. (1.1) are renorm-invariant asD(xpg, k) ) does not
depend on the renormalization scale .

On the other hand, at moderate = the unintegrated gluon distribution is defined as [6]

D(zp,ki,n) Z/d?ﬂ e FALD (g, 2, ), (1.6)

—T 5
0. D(p, 21,m) = B s [ O Sl )X (XIFE )l
X

where |p) is an unpolarized target with momentum p (typically proton). There are more
involved definitions with eq. (1.6) multiplied by some Wilson-line factors [3, 4] following
from CSS factorization [7] but we will discuss the “primordial” TMD (1.6). The Bjorken
2 is now introduced explicitly in the definition of gluon TMD. However, because light-like
Wilson lines exhibit rapidity divergencies, we need a separate cutoff n (not necessarily
equal to Inxzp) for the rapidity of the gluons emitted by Wilson lines. In addition, the
matrix elements (1.6) may have double-logarithmic contributions of the type (asnlnxp)”
while the WW distribution (1.3) has only single-log terms (as Inzp)™ described by the BK
evolution [8-11].

In the present paper we study the connection between rapidity evolution of WW
TMD (1.3) at low zp and (1.6) at moderate g ~ 1. We will assume k2 > few GeV?
so that we can use perturbative QCD (but otherwise &k, is arbitrary and can be of order
of s as in the DGLAP evolution). In this kinematic region we will vary Bjorken zp and
look how non-linear evolution at small  transforms into linear evolution at moderate zp.
It should be noted that at least at moderate xp gluon TMDs mix with the quark ones.
In this paper we disregard this mixing leaving the calculation of full matrix for future
publications. (For the study of quark TMDs in the low-z region see recent preprint [12].)



In addition, we will present the evolution equation for the fragmentation function

DY (Br, k1 ,n) Z/dQZL e " ®BALDN B, 21, n), (1.7)

_5};1

st =
«Q (ﬂszJ_ﬂ?) 871'2(pn)

/ du eBruem) S O|F2 (21 + un)p + X)(p+ X|F(0)]0)
X

where p is the momentum of the registered hadron. It turns out to be free of non-linear
terms, at least in the leading log approximation.

It should be emphasized that we consider gluon TMDs with Wilson links going to +o0
in the longitudinal direction relevant for SIDIS [13]. Note that in the leading order SIDIS
is determined solely by quark TMDs but beyond that the gluon TMDs should be taken
into account, especially for the description of various processes at future EIC collider (see
e.g. the report [14]).

It is worth noting that another gluon TMD with links going to —oo arises in the study
of processes with exclusive particle production (like Drell-Yan or Higgs production), see
for example the discussion in ref. [15, 16]. We plan to study it in future publications.

The paper is organized as follows. In section 2 we remind the general logic of rapidity
factorization and rapidity evolution. In section 3 we derive the evolution equation of gluon
TMD in the light-cone (DGLAP) limit. In section 4 we calculate the Lipatov vertex of
the gluon production by the F{* operator and the so-called virtual corrections. The final
TMD evolution equation for all xp and transverse momenta is presented in section 5 and
in section 6 we discuss the DGLAP, BK and Sudakov limits of our equation. In section 7
we demonstrate that the linearized evolution equation for unintegrated gluon distribution
interpolates between BFKL and DGLAP equations. In section 8 we present the evolution
equations for fragmentation TMD and section 9 contains conclusions and outlook. The
necessary formulas for propagators near the light cone and in the shock-wave background
can be found in appendices.

2 Rapidity factorization and evolution

In the spirit of high-energy OPE, the rapidity of the gluons is restricted from above by
the “rapidity divide” 7 separating the impact factor and the matrix element so the proper

definition of U, is!
U, = Pexp [ig /

[e.9]

du p A7 (upr + 1)
o0

4 .
Al(z) = /1d6:4 0(e" — |al)e™ T A, (k) (2.1)

where the Sudakov variable « is defined as usual, k = api+8p2+k,. We define the light-like
vectors p; and po such that p; = n and py = p— mT?n, where p is the momentum of the target

! Alternatively, with the leading-log accuracy one can take the Wilson line slightly off the light cone, see
ref. [3]. To pave the way for future NLO calculation we prefer the “rigid cutoff” eq. (2.1) which was used
for the NLO calculations in the low-z case [17-20].



particle of mass m. We use metric g"” = (1, -1, -1, 1) so p-q = (opSBq +gBp)5 — (0, q) L.
For the coordinates we use the notations ze = a:up’f and z, = xupg related to the light-cone
coordinates by x, = \/§x+ and ze = \/gsc_. It is convenient to define Fourier transform
of the operator F!

]:ian(ﬂBJﬁ_) :/dQZJ_ €_i(k’z)lf:im7(ﬁB,ZJ_),
2 .
‘Eqn(ﬁg,zL) = S/dz,k Bz ([oo,z*ﬁmgFf?(z*,zL))n (2.2)

where the index 7 denotes the rapidity cutoff (2.1) for all gluon fields in this operator.
Here we introduced the “Bjorken Sp” to have similar formulas for the DIS and annihilation
matrix elements (fp = xp in DIS and g = fr = # for fragmentation functions). Also,
hereafter we use the notation [00, z]. = [00xp1 + 2.1, 2z.p1 + 21| where [z, y] stands for the
straight-line gauge link connecting points x and y as defined in eq. (1.2). Our convention
is that the Latin Lorentz indices always correspond to transverse coordinates while Greek
Lorentz indices are four-dimensional.
Similarly, we define

F"(Bp. kL) Z/d22¢ B FON (B, 21 ),
. 2 . -
Fo B za) = 2 [den 95 g (B (a2 [, ol2)' (23)

in the complex-conjugate part of the amplitude.
In this notations the unintegrated gluon TMD (1.6) can be represented as

(BB, 2) F(B3,00)|p + Ep2) = D> (pIF"(Br, 20) [ X (X[ F“"(Bp, 0L)[p + Epa)
X

= —47r26(5)63g273(537 21,1) (2.4)

Hereafter we use a short-hand notation

(p|O1...0,01...0,lp)) = Z<p|T{@1 O NXWUX|T{O; ... O}p)  (2.5)
X
where tilde on the operators in the lLh.s. of this formula stands as a reminder that they
should be inverse time ordered as indicated by inverse-time ordering T in the r.h.s. of the
above equation.
As discussed e.g. in ref. [21-23], such martix element can be represented by a double
functional integral

(O1...0,0;...0,)
- / DADY DY) e~Sacn(A9) / DADYDi ¢SecoAV B, 0,,01...0, (2.6)
with the boundary condition A(Z,t = co) = A(Z,t = o0) (and similarly for quark fields)

reflecting the sum over all intermediate states X. Due to this condition, the matrix el-
ement (2.4) can be made gauge-invariant by connecting the endpoints of Wilson lines at



infinity with the gauge link?

(| F5 (B, w1 )F (B y )P
= (pIFF(Bp, 1)1 + oopr,yi + copi] F¥ (B, y1)[p') (2.7)

This gauge link is important if we use the light-like gauge pf'A4, = 0 for calculations [24],
but in all other gauges it can be neglected. We will not write it down explicitly but will
always assume it in our formulas.

We will study the rapidity evolution of the operator

F"(Bp, 1) F;"(Br,y1) (2.8)

Matrix elements of this operator between unpolarized hadrons can be parametrized as [6]

/dQZJ_ e B (p| F (B, 20 ) FLM (BB, 00)p + &p2) = 27°0(£) BB’ Rij (B, k1sm)

2k;k; k2
Rij(Bp.kiin) = —g;;D(Bp, ki,m) + <m2] +9ijwj_2>%(/3B7 ki,m) (2.9)

where m is the mass of the target hadron (typically proton). The reason we study the
evolution of the operator (2.8) with non-convoluted indices ¢ and j is that, as we shall see
below, the rapidity evolution mixes functions D and H. It should be also noted that our final
equation for the evolution of the operator (2.8) is applicable for polarized targets as well.

We shall also study the evolution of fragmentation functions defined by “fragmentation
matrix elements” (1.7) of the operator (2.8). If the polarization of the fragmentation hadron
is not registered, this matrix element can be parametrized similarly to eq. (2.9) (cf. ref. [6])

/ a2y e BN 0| F (=B, 20)Ip + X) (P + Epa + X|F (= Br,01)0)
X

2
= 200(©)60 | - 9D G hin) + (22 4 )M Bk 210)
Note that S should be greater than 1 in this equation, otherwise the cross section vanishes.
As to matrix element (2.4), it can be defined with either sign of S but the deep inelastic
scattering corresponds to g = xzp > 0. In our calculations we will consider g > 0
for simplicity and perform the trivial analytic continuation to negative Sp in the final
formula (5.2).

In the spirit of rapidity factorization, in order to find the evolution of the opera-
tor (2.8) with respect to rapidity cutoff 7 (see eq. (2.1)) one should integrate in the matrix
element (2.4) over gluons and quarks with rapidities n > Y > n’ and temporarily “freeze”
fields with Y <’ to be integrated over later. (For a review, see refs. [25, 26].) In this case,
we obtain functional integral of eq. (2.6) type over fields with n > Y > 7/ in the “external”
fields with Y < 7. In terms of Sudakov variables we integrate over gluons with o between
o =¢"and o/ = ¢ and, in the leading order, only the diagrams with gluon emissions are

relevant — the quark diagrams will enter as loops at the next-to-leading (NLO) level.

2Similarly, this gauge link is implied in eq. (1.1) which is eq. (2.7) at g = 0.



To make connections with parton model we will have in mind the frame where target’s
velocity is large and call the small « fields by the name “fast fields” and large « fields by
“slow” fields. Of course, “fast” vs “slow” depends on frame but we will stick to naming
fields as they appear in the projectile’s frame. (Note that in ref. [8, 9] the terminology is
opposite, as appears in the target’s frame). As discussed in ref. [8, 9], the interaction of
“slow” gluons of large a with “fast” fields of small « is described by eikonal gauge factors
and the integration over slow fields results in Feynman diagrams in the background of fast
fields which form a thin shock wave due to Lorentz contraction. However, in ref. [8, 9] (as
well as in all small-z literature) it was assumed that the characteristic transverse momenta
of fast and slow fields are of the same order of magnitude. For our present purposes we
need to relax this condition and consider cases where the transverse momenta of fast and
slow fields do differ. In this case, we need to rethink the shock-wave approach.

Let us figure out how the relative longitudinal size of fast and slow fields depends on
their transverse momenta. The typical longitudinal size of fast fields is o, ~ Cerlj where [ is
the characteristic scale of transverse momenta of fast fields. The typical distances traveled
by slow gluons are ~ k—Q where k, is the characteristic scale of transverse momenta of slow
fields. Effectively, the large a gluons propagate in the external field of the small-a shock
wave, except the case li < kﬁ which should be treated separately since the “shock wave” is
not necessarily thin in this case. Fortunately, when lf_ < k‘f_ one can use the light-cone ex-
pansion of slow fields and leave at the leading order only the light-ray operators of the lead-
ing twist. We will use the combination of shock-wave and light-cone expansions and write
the interpolating formulas which describe the leading-order contributions in both cases.

3 Evolution kernel in the light-cone limit

As we discussed above, we will obtain the evolution kernel in two separate cases: the
“shock wave” case when the characteristic transverse momenta of the background gluon
(or quark) fields [ are of the order of typical momentum of emitted gluon k; and the
“light cone” case when l2 < k? ‘. It is convenient to start with the light-cone situation and
consider the one-loop evolution of the operator .7: (Bpyxl) an(/BB, y1) in the case when
the background fields are soft so we can use the expansion of propagators in external fields
near the light cone [27, 28].

In the leading order there is only one “quantum” gluon and we get the typical diagrams
of figure 1 type. One sees that the evolution kernel consist of two parts: “real” part with the
emission of a real gluon and a “virtual” part without such emission. The “real” production
part of the kernel can be obtained as a square of a Lipatov vertex — the amplitude of the
emission of a real gluon by the Wilson-line operator F*:

(F(Bp, 2 ) FH B,y )™

/ 2k, (¢ Jim KFH(Bp, w1 )AL (k))(klgglokQAmp(k)]:]‘?(BB,yL)>)lngl (3.1)

Hereafter we use the space-saving notation d"p = (g%ifn.



(a) (b)

Figure 1. Typical diagrams for production (a) and virtual (b) contributions to the evolution kernel.
The dashed lines denote gauge links.

k

(@) (b)

Figure 2. Lipatov vertex of gluon emission.

3.1 Lipatov vertex

As we mentioned, the production (“real”) part of the kernel corresponds to square of
Lipatov vertex describing the emission of a gluon by the operator F{*. The Lipatov vertex
is defined as

L%(k,y.,Bp) = ikl,jglo K (T{AS (k) F} (B yL)}) (3.2)

(To simplify our notations, we will often omit label 7 for the rapidity cutoff (2.1) but it
will be always assumed when not displayed).

We will use the background-Feynman gauge. The three corresponding diagrams are
shown in figure 2.

3.1.1 Emission of soft gluon near the light cone

In accordance with general background-field formalism we separate the gluon field into the
“classical” background part and “quantum” part

cl
Ay — AL+ A}

where the “classical” fields are fast (o < o’) and “quantum” fields are slow (o > o’). It
should be emphasized that our “classical” field does not satisfy the equation D*F),, = 0;
rather, (D“Fﬁ},)“ = —gYy,t™p, where ¢ are the “classical” (i.e. fast) quark fields. In
addition, in this section it is assumed that the slow fields are hard and the fast fields
are soft so one can use the light-cone expansion. We will perform calculations in the

background-Feynman gauge, where the gluon propagator is ( see appendix A.

o)
P242iF ) v’



The first-order term in the expansion of the operator [oco, y*]ZmF (Y, y1 ) in quantum
fields has the form

nm pm st S 9 nm Am
o0yl ™ i (e ys) = 55 -lo0udy AT (s ) (3:3)

—[o00, y4]y 8iA.q(y*,y¢)+z/ d;zi 00, 2]y A (25, y ) [20, ysly " F ol (4, Y1)

*

(to save space, we omit the label @ from classical fields). The corresponding vertex of gluon

emission is given by

i K2 (ARIR) (o0 yly ™ U (ye, 1)) ™) (3.4)
= lim J? [jai{oo Bl AR AT e y1)) = [o0,uJy ™ (AU R)OAT (g, w1))

+ii/oodz* [00, 2]y (AR (R) AQ (2 y 1)) [0, yuly ™ i (9, y.1)

To calculate the r.h.s. we can use formulas (A.47)-(A.48) from appendix A. As we men-
tioned, we need contributions to production part of the kernel with the collinear twist up to
two. However, it is easy to see that the light-cone expansion of gluon emission vertex starts
with the operators of twist one (~ Fg;) since the gauge links in the first term in eq. (A.20)
cancel in eq. (3.4) and the remaining background-free emission of gluon is proportional to
BB+ %) which vanishes for S > 0. Thus, to get the contribution to the production part
of the kernel of collinear twist up to two it is sufficient to use formula (A.20) for Feynman
amplitude and formula (A.23) for complex conjugate amplitude with twist-one (one F;)
accuracy. In this case the quark terms do not contribute and the gluon terms simplify to

K2 )
lim K (A%(k) AN (y)) = —ie a0 0% (00 y, y1 1 k), (3.5)
k2—0

OW(OO, Yss YL k) = g;w[ooa y*}y

& 49
+9/ dz, ( - @kj(z = Y)xGur[00, 2uly Foj (2, Y1) [24, Ysly

Gl = B[00, 2y Pyl ) )
With the help of this formula eq. (3.4) reduces to

Tim k?(Aaq(k;)([oo y*]anm(y*,yi)>ISt> (3.6)

k2—0

k2 4igk [ o
(L) (1= 22 ["tes (o= ). ozl oo oo ocl
Yx

as?

2

ap> ([oo,y*]yp.xy*,yu[y*,ody

(2«
+19 kigpl,u -
zk’Q

* * Foi %y * 9
s dz [00, 2]y Foi (24, Y1) ]2 oo]y>

Yx

2 . . 00 k2 .
+ﬁ(guik] _ 5%?1)/ dz. ([oo, z*]yF.j(z*, yl)[z*, Oo]y)an}ezaigy*—z(k,yh
as



Note that £, x (r.h.s. of eq. (3.6))“ = 0 as required by gauge invariance. Integrating the
r.h.s. of eq. (3.6) over y. we obtain

de_i(kvy)L
~ aBps+k?

"Ly, — -y F oL
X |: ki (asmu QaP1y ) 9; " + ki T CYBBS + ki T OZBBsplu 1 BB + s Y1

Lyi(k,y, Bp) = i im k2 (A% (k) (FY (BB 1)) ™) (3.7)

At this point it is convenient to switch to the light-like gauge phA,, = 0. Since k, X
(r.hus. of eq. (3.7))" = 0 it is sufficient to replace ap}’ in the r.h.s. of eq. (3.7) by apf —kH =

K2 .
—k!l — =£ph. One obtains

L%k, 1, Bp) et =like = ggeilk)s .
KO Gk + Ok — guik! kR guk! + 2kikik! 2
. o 29“ o E— | F [ Bs + =291 | + O(p2y)
kL a/BBS‘i‘kL (aﬁBs‘i‘kL) s

We do not write down the terms ~ pg, since they do not contribute to the production
kernel (~ square of the expression in the r.h.s. of eq. (3.8)).

For the complex conjugate amplitude one obtains from eq. (A.49)

2

. 1s 2/ fa 1b _ —ik—J-m*+i k,x ~Aab .
i gim KAL) AL () = e 5 L O (0, 00, 213 ),

5 o0 4i .
Ouu(fﬂ*a o, T ;5 k) = Guv [l'*a OO]I +g/ dz [CL'*, Z*]m (OKSQ(Z—ZE)*QWF.j(Z*, xL)[Z*, Oo}xkj

T x

4

_@(52;]721/ - 6£p2u)ﬁoj(z*y -TL) [2*7 oo]x) (39)

where O,,,, is obtained from the eq. (A.23) with twist-two accuracy (as we mentioned, quark
operators start from twist two and therefore do not contribute to the production kernel).

Repeating steps which lead us to eq. (3.8) we obtain

i/?ﬁ(k‘, T, ,BB)light_hke - 4 klggo k2<(]_~—zg,(183’ sz)) 1StAZq(k)>light—like — 2g€i(k,$)i (310)

k0 Opki+ ko — guik® kR guik® + 2k kik"

- 2
]:ab é’ O
g k% afps + k% (aBps + k2 )? ] k <BB + as xl) + O(p2y)

The product of Lipatov vertices (3.8) and (3.10) integrated according to eq. (3.1) gives the
production part of the evolution kernel in the light-cone limit. To get the full kernel, we
need to add the virtual contribution coming from diagrams of figure 1b type.



3.2 Virtual part of the kernel

To get the virtual part coming from diagrams of figure 1b type we need to expand the
operator F up to the second order in quantum field

(oo F2f o)™ (3.11)
A [ e [l (oo, 20y (A3 ) o 2 AL D) ) )
gy /:dz*aoo,z*1y<A2<z*,yL>[z*,y*]y)”mAz”%y*,ym

—2%9 dZ*([OO7Z*]y<A(}(z*,yJ_)[z*;y*]y)nmaiATq(y*,yL»

Yx

As we mentioned above, we are interested in operators up to (collinear) twist one. Looking
at the explicit expressions for propagators in appendix A it is easy to see that the only
contribution of twist one comes from (Ad(z,y1)A(ys, y1)) propagator, which is given by
eq. (A.45) with

Guiluppipr) = —22 / 42 (e 2P (22 ] (3.12)

We obtain

([oo, y*]”mFm(ymyL)V“d—gQN/ da[—(yﬂlg\yL)[oo,y*]"mF (Y, y1)  (3.13)
Py

. P2
7
to | d (yo e as ¥y Yoo, 2] F I (24, y1)
Y

where we used Schwinger’s notations

(@ |f(pu)lys) = / d2p. FPTVIf), (zilpy) = P (3.14)

For the operator F(8p, vy, ) the eq. (3.13) gives

da
) = =N [ | Sy )R B (315)

For the complex conjugate amplitude
(F™( .T*,QTJ_ 2., 00Ty 2nd (3.16)

/ dz*/ dzL F™ .'L'*,.ZUJ_)([ZC*,Z*]I<A?(Z*,xl)[2*, ]Aq(z*,:m_»[z;,oo]x)mn

—ig /d&k(Ai (w*,wj_)([l‘*,Z*]mi‘i(.l(z*a%_)[z*voo]m)mn>

L

2‘ & e e mn
429 [ (0T (1,21 A1) 2, o01) ™)
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Again, the only contribution of twist one comes from (A¥(x.,z,)Ad(z.,x1)) given by
eq. (A.46) with

Gia (@ zspr) = = [ dzl ([, 2] Fai(2) [2, )M (3.17)

(see eq. (A.23)) so the virtual correction in the complex conjugate amplitude is propor-
tional to

(Fi(Bpyer)™ = —QQNc/OOOd;(I'ﬂ 3 (@gﬁfipﬁ |20 ) 7' (Bg, L) (3.18)

The total virtual correction is
< ~!1(637 l'J_) (‘1(637 yj_)>virt

— 2PN (Bp, 21 ) FA (B uL) / e fa agifip) (3.19)
1

Note that with our rapidity cutoff in « (eq. (2.1)) the contribution (3.19) coming from the

diagram in figure 1b is UV finite. Indeed, regularizing the IR divergence with a small gluon

mass m2 we obtain

T do afbps T oBps +m?
— [ &2 ~ —In? 222 3.20
I T e e e I L (3:20)

which is finite without any UV regulator (the IR divergence is canceled with the corre-

sponding term in the real correction, see eq. (3.24) below). This feature — simultaneous
regularization of UV and rapidity divergence — is a consequence of our specific choice of
cutoff in rapidity. For a different rapidity cutoff we may have the UV divergence in the
remaining integrals which has to be regulated with suitable UV cutoff (for example, see
refs. [29, 30]). Let us illustrate this using the example of the figure 1b diagram calculated
above. Technically, we calculated the loop integral in this diagram

—pBBs
(B —i€)(B' + Bp — ie)(afs — p3 —m? +ie)(af's — pt —m? + ie)

/ dadpdp'd®p, (3.21)

by taking residues in the integrals over Sudakov variables 8 and 3’ and cutting the obtained
integral over a from above by the cutoff (2.1). Instead, let us take the residue over a:

| 0(5)0(—B') — 0(—B)0(5)
ZBB/ / B G+ By — i) (B =)@ = B) (3:22)

s de / dpap [H(ﬁ)G(—B/)—H(—B)H(B’)+ 0(8') }
Bl m2ep? ] B+ B —ie|  (B—ie)(8 - B) (B—ie)(B — B+ ie)

. a’py apap 0(8) _ d?p.

— ifg m2+m/5’+53—@65—i6)(5’—ﬁ+z‘e)_ﬁ3 m2+pi/o BB + Br)

which is integral (3.20) with the replacement of variable f = =+

- 11 -



A conventional way of rewriting this integral in the framework of collinear factorization
approach is

ad*p. /OO dg B ad*p. /1 dz (3.23)
m?+p2 Jo B(B+ BB) m2+p? Jo 1—2 ’
BB

where z = 72 5isa fraction of momentum (8p+3)p2 of “incoming gluon” (described by F;

BB

in our formalism) carried by the emitted “particle” with fraction Sppe, see the discussion of
the DGLAP kernel in the next section. Now, if we cut the rapidity of the emitted gluon by
cutoff in fraction of momentum z, we would still have the UV divergent expression which
must be regulated by a suitable UV cutoff.

3.3 Evolution kernel in the light-cone limit

Summing the product of Lipatov vertices (3.8) and (3.10) (integrated according to eq. (3.1))
and the virtual correction (3.19) we obtain the one-loop evolution kernel in the light-cone

approximation
Ino
(7 (BBﬁM (534&)) (3.24)
2 i(kx—y)1L Ta k a k2
= 2g"Nc eI Fy ﬂB+ yTL | F ﬁB+ ,yL
" |:(555§ B 25f5§ ki5f5§ + 5§€kzkl+5§/€jkk—(5§k1kk - 5fkj/€l — gklk‘ikj — gijk‘kkl
kX afps+ k3 (aBps + k7 )?
o 200 RAR o SRR 4 OLRRS — Skt — OfRRE kg ]
+ (aﬁBs + k3 )3 (aBps + k%)
Ino
afbps ~
— Fa Fa
ki(aﬂ38+ki) I3 (/BB,.’El) ](/BBuyL)}

where rapidities of gluons in the operators in the r.h.s. are restricted from above by In o’

Let us write down now the evolution equation for gluon TMDs defined by the matrix
element (2.9). If we define Sp as a fraction of the momentum p of the original hadron we
have Bp < 1. Moreover, in the production part of the amplitude we have a kinematical
restriction that the sum of Sp and the fraction carried by emitted gluon % should be less
than one. This leads to the upper cutoff in the k| integral k‘f_ < a(l — fBp)s and we get
the equation

L(}?If‘l(ﬁfs,xl)ff(ﬁg,yL)Ip> (3.25)

dln
k2 kT
gN/d2 { i(k,z— y)¢< |fk<ﬂB+ 1'J_>T'l (BB—i— ,?ﬂ)’p)

X

k2 ofps+k? (oBps + k%)?

o 29 KFK + 0Fkjk! 4 Skik — oFkik! — 0lkikF kg k! ] (1 By — "f?)

iR (UﬁBS‘i‘ki)g (U,BBS‘i‘ki) B gs
oBps

ey 0V 85,2 )7 )l |

(there is obviously no restriction on &, in the virtual diagram).

- 12 —



If the target hadron is unpolarized one can use the parametrization (2.9)

PIFH(Br, 2L) FL(Bp, 0.L)|p + Ep2)”

= 21%5(¢) By’ [ = 9i5D(BB,21,n) — %(2@'5’]‘ + ;01 )H (BB, 2., T})]

= 27%5(¢) Bpg” [ —9i;D(BB, 21,m) — %(%izj + 927 )H" (BB, 21, 77)] (3.26)

where n = Ino, H(BB,z1,n)

= fd_QkJ— € ij)lH(BBakLan) and H”(ﬁBsz_an) =
(%)27{(53,217 7). Rewriting eq. (3.25

. k2 .
5) in terms of variable 3 = ~L one obtains

a
dn

1-8p
— airNc/ g {gijJ0(|zJ_‘\/TBS)O‘S,D(BB +68,21,m)

4
[gzjasp(ﬁB, z1,1m) + W@Zizj + 922 )asH" (B, 21, 77)] (3.27)

{53 +8 2 N 33 B 28 n B3 }

88 Br  Be(Bs+B) Be(Br+B)? Bp(Bs+pH)>?
ZiZj B

+J2 |ZJ_‘\/ 0/83 < +ng> (BB+/87ZJ_777)5B(5B+5)

Pe+pB 2 s ]

7J0(|2L‘\/073)(22i2j + gij21 ) asH" (Bp +6,z¢,n)[ BB  Bg + B(Bs+8B)

4913 2J2(’zl|\/rﬁs)as 634—5,2&777)

[ B 22 B3 ] }
BB( /BB + B) 53(53 + 6)? 53(@9 + 6)3
ozsN

4
5 + 5 [QijasD(BB, z1,1m) + W(sz‘zj + gij21 )asH" (BB, ZJ.J?)]

where we used the formula

1

5 Zizj + gz]> (3.28)

/dee R L 2kik; + k2 giy]) = J2(kz)kL< 2
J_

The evolution equation (3.27) can be rewritten as a system of evolution equations for D

~13 -



" ; I = _BB ).
and H" functions (2 = z75-):

d
d—nasD(ﬂB, Z1,1m) (3.29)

N, ['d -2 1 1 r5
_ Qstke —Z/ {Jo(]zﬂ osfp ,Z > [( ,> -2+ Z,(l—zl)} OCSD<B?’ZL77>
s BB z z 1-z + < z

4 1—27 BB
+W(1 - Z’)Z/ZiJ2<|ZH osPp 7 >055/H//<Z,72L777) },

d

%QSH,/(BB7 Z1,1m)

asN, [1d 1—2 1
= /{Jo<]zl| osfp— >[< /> —1}a37-l'/<@/3,zl,n>
T Jay Z z 1—=2 n z

2 /
m*1—z 1—2 6B
+ J2<|ZJ_ osBp—r7 >045D<, ,ZJ_,T])}
4z =z z z

where f; dzf(2)g(z)+ = f; dzf(2)g(z) — fol dzf(1)g(z). The above equation is our final
result for the rapidity evolution of gluon TMDs in the near-light-cone case.

It is instructive to check that the evolution equation (3.29) agrees with the (one-loop)
DGLAP kernel. If we take the light-cone limit ; =y, (< z; = 0) we get

d g Lz 1 1 BB
%QSD(BB7OL7 77) - ﬂ_NC/ VR |:(1—Z,>+ + ? —2 + Z/<1—Z/):| aSD(z,v 0L777> (330)

BB 2!

One immediately recognizes the expression in the square brackets as gluon-gluon DGLAP
kernel (the term %5 (1 —2') is absent since we consider the gluon light-ray operator mul-
tiplied by an extra ay). It should be mentioned, however, that eq. (3.30) is not a proper
DGLAP equation since the latter is formulated for the gluon parton density on the light
cone defined by

1

2\
dg(LI?B,ln,u ) - _871'2045(])' TL)Z‘B

[Jau e i E ) F Ol (330

where the light-ray gluon operator F¢(un)[un, 0]F*(0) is regularized with counterterms at
normalization point p? (recall that on the light ray T-product of operators coincide with
the usual product).

Comparing egs. (2.4) and (3.31) we see that dy(zp) = D(zp, 21 = 0) modulo differ-
ent cutoffs: by counterterms for dy(zp, u?) and by “brute force” rapidity cutoff Y < n in
D(zp,z; = 0,7 = Ino). However, with the leading-log accuracy subtracting the coun-
terterms is equivalent to imposing a cutoff in transverse momenta of the emitted gluons
k:i < p?. If we would calculate the leading-order renorm-group equation for the light-ray
operator ]:"f(ﬁB, z 1 )F (BB, 1) we would cut the integral over k2 from above by p? and

— 14 —



leave the integration over rapidity («) unrestricted. Thus, we would obtain

(p|F (B, @) F" (BB, 1) |p)" (3.32)

oy [Cda [h .ol 28p B%_B%]
- a/g:dﬁ{e“ 955~ G ap * GatFP o th

< (Dl FP (B + B2 ) F (85 + By )|} ﬂ(/f LA G m(ﬁB,mpw’}
o [Taa [ (g o[ 26 5?95%]
=S| dﬁ/ﬁ e 008§ s (g

X (p|FF (B +B, 21 ) F " (Bp+B, 1) |p)* — Wi%@\ﬁﬁ(ﬂfs, x1 ) F" (B, mrp)“’}

which should be compared to eq. (3.24) with ; =y,

(p|FI (BB, x 1 ) F (B, L) |p)™°
do . 1 9 82 83, }
N/ /dﬂ{ (1=85 - 5)[5 B+ B2 Gn+BP (ot B)

~ . / -1 ~ . /
< I (BB, L) F (B 4B, ) )™ — gjﬁ DI (B ) B )l }

In the leading log approximation 8 ~ g = xp so one can replace the cutoff g—z in eq. (3.32)

by the cutoff m"—; = o and hence dy(zp,Inp?) = D(zp, 2. = 0,In0s) with the leading-log
accuracy. The equation (3.32) can be rewritten as an evolution equation

2%<p|]}z‘n(ﬁ3a$L)]:m(537$i)‘p>“ (3.33)

o N 8 B ]
. {0(1 or B)[B G+ 82  Ba+BP  (Bu+ B
< (P E (BB + B, 21) F(Bp + B, w.1)|p) — ﬂ(ﬂi%@\f,”(ﬁ& 1) F (85, m\pw}

which can be transformed to the standard DGLAP form [31-33]
5 d

H d 2 (H)dg(valn:u’z) (334)
- NC 537 T ++g—2+z’(1—z’) as(p)dg 7,lnu

There is a subtle point in comparison of our rapidity evolution of light-ray operators to the
conventional ;2 evolution described by renorm-group equations: the self-energy diagrams
are not regulated by our rapidity cutoff so the §-function terms in our version of the DGLAP
equations are absent.? Indeed, in our analysis we do not change the UV treatment of the
theory, we just define the Wilson-line (or light-ray) operators by the requirement that

3For eq. (3.34) the absence of these terms is accidental, due to an extra « in the definition (2.4).
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gluons emitted by those operators have rapidity cutoff (2.1). The UV divergences in self-
energy and other internal loop diagrams appearing in higher-order calculations are absorbed
in the usual Z-factors. So, in a way, we will have two evolution equations for our operators:
the trivial p? evolution described by anomalous dimensions of corresponding gluon (or
quark) fields and the rapidity evolution. Combined together, the two should describe the
Q? evolution of DIS structure functions. Presumably, the argument of coupling constant
in LO equation (3.30) (which is 2 by default) will be replaced by o8ps in accordance with
common lore that this argument is determined by characteristic transverse momenta.* We
plan to return to this point in the future NLO analysis.

4 Evolution kernel in the general case

In this section we will find the leading-order rapidity evolution of gluon operator (2.8)

(Fe(Bpy 21 ) F(Bpyy)) ™"

with the rapidity cutoff Y < n = Ino for all emitted gluons. As we mentioned in the
Introduction, in order to find the evolution kernel we need to integrate over slow gluons with
o > a > ¢’ and temporarily freeze fast fields with o < ¢’ to be integrated over later. To this
end we need the one-loop diagrams in the fast background fields with arbitrary transverse
momenta. In the previous section we have found the evolution kernel in background fields
with transverse momenta [ | < p| where p | is a characteristic momentum of our quantum
slow fields. In this section at first we will find the Lipatov vertex and virtual correction
for the case I, ~ p; and then write down general formulas which are correct in the whole
region of the transverse momentum.

The key observation is that for transverse momenta of quantum and background field
of the same order we can use the shock-wave approximation developed for small-z physics.
To find the evolution kernel we consider the operator (2.8) in the background of external
field Ae(x4, ) (the absence of x4 in the argument corresponds to = 0). Moreover, we
assume that the background field Aq(z4, ) has a narrow support and vanishes outside
the [—oy, 0] interval. This is obviously not the most general form of the external field, but
it turns out that after obtaining the kernel of the evolution equation it is easy to restore
the result for any background field by insertion of gauge links at +ocop;, see the discussion
after eq. (5.4).

2
Since the typical §’s of the external field are Bp.s ~ afl:st 3

wave o, is of order of ﬁ ~ ‘I’T,S This is to be compared to the typical scale of slow fields
as’ 1

the support of the shock

1, as
leow pi
shock wave. In the “pure” low-x case Sp = 0 one can assume that the support of this shock

> 0, so we see that the fast background field can be approximated by a narrow

wave is infinitely narrow. As we shall see below, in our case of arbitrary Sp we need to

“Note that while in the usual renorm-group DGLAP the argument of coupling constant is a part of LO
equation, with our cutoff this argument can be determined only at the NLO level, same as in the case of
NLO BK equation at low z [17-20]. This is not surprising since we use the rapidity cutoff borrowed from
the NLO BK analysis.
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(@) (b)

Figure 3. Typical diagrams for production (a) and virtual (b) contributions to the evolution kernel.
The shaded area denotes shock wave of background fast fields.

look inside the shock wave so we will separate all integrals over longitudinal distances z, in
parts “inside the shock wave” |z,| < o, and “outside the shock wave” |z.| > o, calculate
them separately and check that the sum of “inside” and “outside” contributions does not

depend on o, with our accuracy.

4.1 Production part of the evolution kernel

In the leading order there is only one extra gluon and we get the typical diagrams of figure 3
type. The production part of the kernel can be obtained as a square of a Lipatov vertex -
the amplitude of the emission of a real gluon by the operator F¢ (see eq. (3.1))

()

~ . ln /
(F(Bp, a1 )T (Be,yL )™ = / Lk, (LY (k, 21, B)Lis(k,yo, Bp)) "7 (4.1)
where the Lipatov vertices of gluon emission are defined as

Lal{(kvyL,ﬁB) =1 hm k2 (A% (k)F} (B, yL))
LYk, 1, Bp) = —i hm K (F (B, v L) A% (k) (4.2)

(cf. egs. (3.2) and (3.10)). Hereafter (O) means the average of operator O in the shock-wave
background.

4.2 Lipatov vertex of gluon emission in the shock wave background

As we discussed above, we calculate the diagrams in the background of a shock wave of
width ~ %2 where [ | is the characteristic transverse momentum of the external shock-wave

field. Note that the factor in the exponent in the definition of F(f5p) is ~ ﬂB" 5 which
is not necessarily small at various B and I3 and therefore we need to take into account
the diagram in figure 4c¢ with emission point inside the shock wave. We will do this in a
following way: we assume that all of the shock wave is contained within o, > z, > —oy,
calculate diagrams in figure 4a—d and check that the dependence on o, cancels in the final
result for the sum of these diagrams.
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(a) (b)

@

Figure 4. Lipatov vertex of gluon emission.

We start the calculation with the expansion of the gluon fields in F(8p, 2, ) in the first
order in slow “quantum” field:

1st 2 ; .S
FBr,yL) = g/dsy* e'Pry- [ — i58B[o0, gl AT (Y y1) (4.3)
nm qm 2Zg > q nm pm
_[Oovy*]y 0;Aq (y*7yl_)+? dZ*[OO,Z*]yA.(Z*,yJ_)[Z*,y*]y Foi (y*’yJ_)
Yx
where the gauge links and F,} are made of fast “external” fields. The corresponding vertex

of gluon emission is given by

k2—0
2

S

i 12 (AL06) 77 (B 000 ) =t K [ d. €50 A0 iBnlo0. 5 A7)

(00, 5T ATy 1) + %9 / "z ([0, 24 A%z ) e ) EI :u)}) (4.4)

*

The diagrams in figure 4a, 4b, and 4(c-d) correspond to different regions of integration over
Ui 0 eq. (4.3): yu > 04, —04x > Ys, and o, > Yy, > —0,, respectively.
The trivial calculation of figure 4a contribution yields

i lim K2(A%(k)F7 (BB, y1)) fgure 4a (4.5)

k2—0
o
. 2
= ig/ dy, "BV 00, y,]"™ lim k*(A%(k)| — iBeAT (ys,y1) — —0:AT (Y yL) |)
O k2—0 S

_ ggon 0P85 +20KiD1 iy Ko itk
aBps+ k2

4.2.1 Diagram in figure 4b

Next step is the calculation of figure 4b contribution. Using the vertex of gluon emission
from the shock wave (B.30) one obtains

J i o i a nm . m 2 m
ig lim Ay TP REA R ooy {— iBBAT sy y) — S0V (b yL)}>
- . ’ 4p2
:g/ dys eZﬁBy*/szJ_ e*z(k,z)L{ — iﬁBOui(oo’y*aZJ_; k)(z”ezaféy* 1)
20 iiy am fymn
= Oue(00, 5y 21 K) (21 [pie” =" [y 1)} (Uy) (4.6)
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where O is given by egs. (B.31):

b AN Sl b
Ogu(oovy*azL7k) - g,ul/Ug

o0 2 . . ab
+g/ dzy <[OO, Z*]Z |:— 122 ;W(ij - ZD]) + 7(5]]321/ - 5ip2,u):| Foj(z*a ZJ_)[Z*, —OO]Z>

—0o0

4 , .
+ang 3 dz*<[oo,z*]z{ — ip2up2u D? Foj (24, 21 )24, —00) 5

o0

Zs 4 ab
+g/ dz:k I:Qiaguusz - p2up21/:| Foj(z*;ZJ_)[Z*7 ] F, ](Z*7zj_>[ ! _Oo]z}>
O[S2 {/ dz*/ dz*i/f Z*,ZJ_)[Z*, ] U tb[ 0, 2 ]27u %171/ (Z*7ZJ_)
I Oy R SRS R A e R (4.7)

where we replaced y, by —oo since we assumed that there is no gauge field outside the
[—04, 04] interval.

Let us compare relative size of terms in the r.h.s. of this equation. The leading g,
term is ~ U, ~ 1 and it is clear that all other g,, terms are small. Indeed, the first term
in the second line is ~ ﬁfdz* 2 (27 — iDj)F.j ~ %k]ﬁjU ~ %0* < 1 since the width

of the shock wave is ~ Z%/ and « > ¢’ (recall that in this section [} ~ k). Similarly, the
1

first term in the fourth line is ~ a%fdz*dsz 2L Foj(2) Fa? (2) ~ Z=QIUO;U ~ 0*% < 1.
Next, let us find out the relative size of quark terms in eq. (4.7). The “power
counting” for external quark fields in comparison to gluon ones is % J dzp Priv(z.) ~
% f dz*DiF.i(z*) ~ kiU ~ ki and each extra integration inside the shock wave brings
extra o,. Thus, the two last terms in eq. (4.7) are ~ g/fl, T f2 <10
After omitting small terms the expression (4.7) reduces to

o0
Opur(00, =00, 215 k) = G Uz + —5 (6Jp2y 5Jpgu)/ d2x [00, 24] s Faj(2e, 21 ) [20, —00]
—0o0
4g o0 L
"‘4&253]72/1]721/ 7OOdZ* [OO,Z*]Z —1D Foj(z*yzL)[Z*7_OO]z

g9 [* ’ Gt /
_? dz* F'j(z*vzl)[z*vz*]zFo (Z*sz)[Z*v_oo]Z

, 2 .
= guU: + (5jp2u—5ip2u)5jUz p2up2 01U, (4.8)

where we used the formula

oru, :g/ dzy [00, 2] (4.9)
21 G 8g [* . ] ’ G /
X —D? Fy;(24, 21 )24, —00] s + - Az, Foj (2,21 )24, 202 F8? (25, 21 ) (25, —00]
s s? )

5No‘ce however, that the quark term ~ o 3p2up2,,fdz*D F.J (2) ~ P2uP2v 2 s U is of the same order
of magnitude as the gluon term ~ a234p2up2,,fdz*dz*F.] (z)FJ7 (2).
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Using eq. (4.8) one obtains for the r.h.s. of eq. (4.6)

7 lim k2<AZq(k')f;n(BBayJ_)>ﬁgure 4b (410)
k2—0
2
:g/dQZJ_ e_i(k,z)L{ — Opi(00, —00, 21 ; k‘)(zﬂ%‘sze—i(ﬁB—i—%)a*wL)
aBps + i
2 X pPis —i(8 +i o am .
_EOM.(OO, _oogzl;kj)(ZJJWG ( B oes) |yL) (UJ)
) 92
= _ge—ZBBO'* (kJ_| {gmU _ 21pay o.U
as
+i(p1 U+ lalU - @82 U)p~ ﬂUTIyL)“”
Bps =M atT s T M apps +pY

2
where we used the fact that %5‘7* < 1 when all the transverse momenta are of the same

order.

4.2.2 Diagrams in figure 4c,d

Next step is the calculation of figure 4 c,d contributions. Using the vertex of gluon emission
from the shock wave (A.47) and egs. (B.6), (B.7) one obtains

lim k:2ig/ ) dy, €Y (AR (E){—iBBloo, yuly ™ AT (Y, y1) (4.11)

k2—0 — 0
2 nm mq 4Z-g * q nm rm

=100 Y0 AT e i) + —5 | dae ([00, 2y ALz y ) [z wely) T E (s y1) )

o B+ 5h) : 2 (30 2
=g [y {0 @ | 08 oo ish) - 2 (ih+ o )0 oo i)
Ox
47’9 > iBBY +iiz* am mn _—i(k,y) 1L
+872 dZ* e T as (Oﬂ.(oo,z*,ygk:)[z*,y*]yF.Z-(y*,yL)) [y*,oo]y € ’
Yx

—i 7 i , 2
= ge (’Wﬂ/ dys [e BBy (— Z{ﬂBOm(oo,y*,yL; k) + ~kiOue(00, 4 y 15 k)}[y*, ooly
290
s Oyt

4ig [ : Ll o
oy ) 4 8 [ s €O Oy, 5 K)ol Fas ) 0
Y

dig [
(O#.(OO, Yies YL k) [y, Oo]y) + 82/ dz O#.(oo, Yir Y15 K) [Yss Z*]yF-i(Z*a Y1)

*

where Oy = Gy + Quu + 9y and G, Q and Q are given by egs. (B.6) and (B.7). As
we mentioned above, the contributions with extra (z — o). are small and so are the quark
terms (except term ~ DJF,;). So, we have Q,; = Q,; = 0 and

49[)2“ >
O (00, Y, Y15 k) [y, 00y = Gui — dzx [00, 2x]y Fei(2x, Y1) [2x, 0]y,

as? J,.
b 2
OM.(OO,y*,yJ_;k)[y*,OO]y = Pip "‘9/ dz*[oo,z*]y{aSF.u(z*,yJ_)[Z*,OO]y (4.12)
2ipay, _ 8gp2y

DjFOj(Zw?/L)[Z*,OO]y

Zx X
/ dz;F.m,yL)[z*,z:k]yF.J(z;,yL)[z;,oo]y}

a?s? a?s3
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After some algebra the r.h.s. of eq. (4.11) reduces to

7 lim k‘2<Aaq( )]:in(ﬁB,yJ_))ﬁgure 4c+d

k2—0
2 2
_ _gmaﬁBs + 2ak:iplu [ei(ﬂB-l-’jj;)U* B e—i(ﬁB-"-it)a*} e*i(kvy)J-g(S‘m
afps+ k2
] 2 ] j j . —ifgo
+ge ) { oBos (ap1u8] + Bopeud] — kad,) [F(Bp.y1) — i0;U,Uje™ %]
2ap; 2po, ki — i8R0
- k‘iﬂﬂ(ﬁB’yl) 2 ;5 [ (BB7yJ_) —e€ Pa 8inUJ]

2 | o o
+O[,83885J{FM(Z/J_”8B) — laquUJe BRox _ @[V(/BBayJ_) —e BB *aJQ_UyUJ]}

as
4g 1 ifpmin(zs,z))
52 dz.dz, e"8 o
BS

2 2ipo
><[oo,z*]{wF.u(z*,yL)[z*,zi]y aQSgD F (z*,yl)[z*,zi]y}F.i(sz,yJ_)[zi,oo]y
32¢° ,
. 9 P2u dz dZ dZ” 9( ) iBpmin(z},z/ )[OO,Z*]yF.j(Z*,yJ_)[Z*,Z;/]yF.J(Z;I,yJ_)
a?s5fp

X[, 2Ly Foi(2, 1) [, 00y — —2—e 5% (8@6@-@ + ﬁ@inazUJ) } (4.13)

afbps
where
V(Bp,yL) =g dz. PP ;[OO,Z*]yD Foj(2e,y1)

—0o0

8g ;
58 [ o B et s F ) oy (414)

4.2.3 Lipatov vertex
The sum of egs. (4.5), (4.10), and (4.13) gives the Lipatov vertex of gluon emission in

the form

; + 2ak;p1, s .
Lab k‘, 7 _ 6abgl”aBBS 1P lp e iBpox—i(ky) L
m( YL BB) g OKBBS‘FIC%_

iBno 21 1 i apps a
—ge P “(k1| [gm-U — fjuaiU-l- (pluU—i— &QfU _ b 6J_U) 2p ] L T’yJ_) b

Bps] aBps +pJ_

i 2 . . . . —q o
+ge s { oBps (o187 + Brpoud] — kid) [Fi(Bp.y1) — i0;U,Uje 7]
 2apiu 2pa, ki 2 —iBpo.
K2 Fi(BB,yL) + 25205 V(BB yL) — 0T U,Ufe 077"]
21 0,U,Ute10s0r _ P2y ~iB5o- 92 U7, U
Oéﬁ (5Bayl_)_2 _g[ (BB7yJ_)_€ 1Yy y]
4g ifpmin(zs,z.,
+ Gps? /dz*dz; ePpmin(z:,2.)
2 2ip
o, 2} 2Py ) o 2y 2 DI s 21y [ Py o0,
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_3292p2u
a?s°fp

/dz*dzidZi/ 0z — 2)ePPmn ) 00, 2]y Faj (2, y1 ) 2 24Ny Fo? (2191

ab
X[, 2L]y Fei(2L, y1 )7L, o0y — —s—e ™~ PBo (a U,0.U; + Zp2“aﬂf ;U )} (4.15)

aBBs

This expression explicitly depends on the cutoff o,. However, we can set o, = 0 in the
r.hs. of eq. (4.15) (and eliminate few terms as well). To demonstrate this, let us consider
two cases: g K U—l* and Bg > G% In the first case

£ . 2 afBs + 2ak;
L%(k,y..BB) PRl _geilhw) 2081 b5, g ) 4 gk | 24D Pl (4.16)

k2 afps+ k3
9(k1|gui <a5afispi - Uaﬂifispi UT> + 2apiy <aﬁB§i+ pi a UaﬁBfi-i- Pi UT)
B - Sotun + U et - ER o)

and all other terms are small since they contain extra factors 8% — ¢=#8%+ ~ (2 — g),
(or 2 — o, or z!! — 0,) in the integrand.

In the second case o'3gs > pi so afips > pi_ and we get

Le(k,y1, BB)

_ ilky)s (o P2 _ P £ _ %k _2
€ < (as ki E(ﬁB)yL) OZ,BBS‘FM(IBB’yL) + OéﬁBSaZ ‘Fu(ﬁvaL)
ab

8g? P ,
g /dz*dsz iBBmin(z,2L) [oo,z*]F.“(z*,yL)[z*,z;]yF.i(z;,yL)[z;,oo]y> (4.17)

+a6353

where we used the formula

afps afps pi pi
kil -U U + 2a ( -U UT)
(k1 lgp <aﬁBs ) oBps + 12 > Pip aBps+p? aBps+p? ly.L)

aﬁBsgui + 204]91“]?1
afps + k‘f_

= (k.| (2ik70,;U — 03 U)

U + 2iap,0;U UT]yL)

afBps+p afps +p?

(4.18)

Let us now compare the contributions of various terms in the r.h.s. of eq. (4.15) to the

production part of the evolution kernel defined by the square of Lipatov vertices (4 15). It

is clear that the square of the first term ~ (@ -2 1“)ﬂ is proportlonal to ]-"’ .7-"Z and

as

contributions of all other terms are down by at least one power of - 6 - Thus, With our
accuracy

a afBps> 2 —q (6 a
Lo(k,y1, Bp) =" 2em i) (1;2;‘ ]f;“>fb(53,yg (4.19)
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We see that in both cases (4.16) and (4.19) one can replace o, by 0. Moreover, with
our accuracy the Lipatov vertex (4.15) can be reduced to the “direct sum” of eqs. (4.16)
and (4.19):

a —1 p ap a
L (k,y., Bp) = 2ge " (F¥)L <Of: - k{“) [Fi(BB,y1) — Ui(yo)]® (4.20)
+9(1€¢|gm< aPps gy Ops UT) + 2@101#( 5 —U—2 UT)
aBps+pt afps+ pt aBps+p? afBps+p?
2po 1 2apq
+12 O;U — 2i0,;Up; “a U Ut — LUy )
|: ZBBPQu ? pi + 1YUDi :| OCBBS —i—pi_ p%_ |yJ_)

where we introduced the notation U; = F;(0) = i(9;U)UT. Tt is clear that at Bpo, < 1 the
first term in the r.h.s. of this equation disappears and we get the r.h.s. of eq. (4.16). On

the other hand, as we saw above, at Sgo, > 1 all terms in the last two lines in the r.h.s. of
2p2u U 20471”

eq. (4.20) are small except (k1 |~ Ui|y1)® which cancels the second term in the
first line of eq. (4.20) so we get the r.hs. of eq. (4.19). It is worth noting that at S = 0
eq. (4.20) agrees with the Lipatov vertex obtained in ref. [34].

It is instructive to check the Lipatov vertex property k“LZIZ? (k,y1,Bp) = 0. One obtains

E* x (r.h.s. of eq. (4.20)), (4.21)
aBps aBps T) 2 < k; pi T>
= g(k_|k; -U U'|+k -U U
gtk (aﬁBerki aBps+p? \aBps + k2 aBps+p?
1
+(aBps[pi, U] + [p1 + aBps,Ulpi)——5UT = Uily.) =0
aBps+p]

4.3 Lipatov vertex for arbitrary transverse momenta

Let us demonstrate that for arbitrary transverse momenta the Lipatov vertex of gluon
emission is given by the following “interpolating formula”

LZIZ)(ka Yy, BB)
afpsgu; + 2apuki . 1 1 ot

=gk 2ik?0;U — 03U UT + 2iap,0;,U
g(kd| OéﬁBS‘Fki ( J L )045384-1% Plu By S+pi
2 afps ) 2p9 i 2ap1
o U ——"— U — (200, U - "L U Ut— iUt
b aBps+p? [ L0y, as L+ |aPps + 00 ) i) Uy )™
2geiky)L 4 2ak; ki py aBpsguk’ ofips
- — ? |4 i 5
afps + ki aBps + ki afps+ ki + ﬁBpQ“ TPl k2 i
k? ab
[ (BB +—= ,yL> Uj(yL)} (4.22)

Let us consider at first the light-cone limit corresponding to the case when the char-
acteristic transverse momenta of the external “fast” gluon fields are small in comparison
to the momenta of “slow” gluons which we integrated over. As we discussed above, the
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higher-twist terms ~ D;Fo; or ~ F,;F exceed our accuracy so we can eliminate terms

~ 02U and commute operators 9;U with m resulting in
1
hght cone ) OZBBSQM, + 2apluk' aP1p
.h.s. of 4.22 ko |k
r.n.s. or eq. ( ) ( ‘ (aﬁBS+k2) a/BBS_I_ki
pZMBB k; APip
U; — U, — Ui;
afps+k ' afps+ k3 M k2 ly1)®
2ge*"(k’y)L j Qakikjpm aBBsgmk: afps
_ . d
afps B2 | M GBps 1 k2 T afps + k2 T Bispapd! — vy K2 %
k2 ab
X []:j (53 + OT;, yJ.) - Uj(yJ_)} (4.23)

It is clear now that the first two lines in the r.h.s. cancel the last term in the square brackets
in the last line so we recover the light-cone result (3.8).
Next we consider the case when the transverse momenta of fast and slow fields are

comparable so the Lipatov vertex is given by eq. (4.20) above. The difference between the
r.h.s.’s of eq. (4.22) and eq. (4.20) is

2967i(k»y)i_ . 20{]{71@‘7]91 CV/BBSQ lkj k2 ab
29¢ T sl i AT wt |\ F o) - 4.24
afps + k3 uhi aBps+ k2 * aBps+ k2|77 P+ g UL )] (424)

where we used eq. (4.18). It is easy to see that the expression (4.24) is small in both
B < 0—1* and Bp > U% cases. Indeed, when B < é the integral representing ]-'j(BB +

2

2 . k 2
%,yj_) — Uj(y1) contains an extra factor ePBtss)e 1 ~ (Bp + %)U* < 1 in the

2
integrand and in the Sp > U% case the eq. (4.24) is ~ algés < 1 in comparison to the
leading term in this limit (4.19).
As in the light-cone case, for calculation of the evolution kernel it is convenient to go
to the light-like gauge ph A, = 0. Since k, x (r.hs. of eq. (4.22))“ =0 (see eq. (4.21)) it is

sufficient to replace ap!’ in the r.h.s. of eq. (4.22) by ap) — k* = —k/ — %pg One obtains
Lt (k,y, Bp)"Eh e (4.25)
aBBsgui — Qkﬁki L ) 1 . 1
=g(k 2ik70;U — 3U)————5 U' — 2ik;- ;U ———5 U
g(k.| afps+ k2 (2ik70; + )a538+pi P afps +p
2i0,U—P_yt 4 2kLU| yab
o aBps+pt k2 L
2geithn: [kj&ﬁ - ki + 61k — gk K gk + 2k ik
k2 afBps+ k2 (aBps + k2 )?

[ (53 + == i ,yL> Uj(?ﬂ)} "’ + O(p2u)

As usual, we do not display the term ~ py, since it does not contribute to the evolution
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kernel. Using [p?,U] = —2ip’0;U + 9> U one can rewrite this vertex as

Ly (kg o, Bp) I = lim k2 (AR (k) F7 (B, y)) e e (4.26)

2 1 2 1 2

D Gui + 2pﬂpi t k]_gm' + 2]’5” k; b 29]‘:# —i(ky) b ]ﬁ_

=gk |U U'" — @ YL F —,
gl afBps +pt afBps + k1 )™ + k2 i (e as’
J 1. Jr.L 1] 2 s 2
_gge-itkun [%kz + 6k — guik? gk K 4 2k kg kﬂ] (ﬁB N k,yL> L O(pa)
afps + ki (afps + ki) "
where we introduced the notation
k2 kzi

il BB +tos ,yL = F;| B + POt Fi(0,y1) (4.27)

(recall that F;(0,y,) = U;(yy) = id;U,Uy).

It should be emphasized that while we constructed the Lipatov vertex (4.22) as a
formula which interpolates between the light-cone result (3.8) for small transverse momenta
of background fields and shock-wave result (4.20) for comparable transverse momenta, we
have just demonstrated that with our leading-log accuracy our final expression (4.22) is
correct in the whole range of the transverse momenta.

It is convenient to rewrite the Lipatov vertex (4.26) in a different form without explicit
subtraction (4.27). Starting from eq. (4.25) we get

Ly(k,y ., Bp)" et (4.28)

K2\ [ oBBsgui — 2k; ki 1
ki |F7 ~L kj T
= g(kL|F (ﬂB—l- S){ aﬂBs—i—ki ( U+Up])a538+piU

L

. 2k
aﬁBs+pJ— 9uj B S+pJ_ k2 9ij |yL) (P2u)

where the operator F;(f3) is defined as usual

2 o
(kL Fi(B)lyL) = - /dy* Py =ik L Fo(y, g ) (4.29)

Let us prove that eq. (4.28) coincides with eq. (4.26) with our accuracy. First, as
we discussed above, in the light-cone case (lf_ < pi) we can drop higher-twist terms and

commute operators U with p; and which gives us eq. (3.8). Second, consider

1
pi +aBps
2
the “shock-wave” case li ~ pi. When fp <« Ui the integral representing F; (63 + %)

. . L (8L . :
contains an exponential factor eP+35)% o iBB+55)7+  This factor can be approximated

2
by one, since %0* < 1 in the shock-wave case (see the discussion above), so we can replace
k2
F;(Bp + %) by U; and get

LZ?(k,yL,ﬁB)light_like (430)
aBpsgu — 2klfk:¢ . . 1 1. 1
k kjid’U +id'Up;) ———-U' — 2ktio,U ———UT
( L‘{ afBps+k? (ky e p])OtﬁBS—Fpi w! aBps+p%
bi Py QkL ab
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which gives the first two lines in the r.h.s. of eq. (4. 25) As it was shown above, the last two
lines in the r.h.s. of eq. (4.25) are small at Sp < _- so eq. (4.28) coincides with eq. (4.25)
at fp < é with our accuracy. Finally, in the 8p 2 5 case afps > pi and therefore the
eq. (4.28) reduces to

o 2kt k3
L (k,y., Bp)leh ke ~ ?{e iky)L g Fab (ﬁB + a??ﬂ) + O(p2y)
which is the same as eq. (4.25) in this limit.

Similar calculation for complex-conjugate amplitude gives

E?Z(k?,-fj_,ﬁB)light_like ] hm ]{72< (BB,QS‘J_)Aaq(k‘»hght_like (431)
2 1 1 2
~ D1 Gui + 2Py Pi P2 Gui + 20505 i), Fu ~ba< k7 )
=g(x |U U’ — k + 2ge"\HT L - F +—=,z
9(wi aBps +pt aBps +pt kL) g ki b5 as’ Tt
, 6l ki + k-67 — gk ik2 kI + 2Kk kL] 20 k2
afps + ki (afps+k1)?
where
° ki - k‘i -
Similarly to eq. (4.28) we can rewrite the above expression in the form without subtractions
igg(hll’ BB)light—like (4'33)
1 aBpsgu — 2kik; - 1 .
= g(x — (UK 4+ p,;UT L okt U———UT
9 L’{ aﬁBs—i-pl( PiUY) aBps+ k2 i aBps+pt
B p—— (7*+2kL Fip +k2 |k1)" + O(pay)
Guj afBps +pJ_ k‘2 Gij B b2y

The production part of the evolution kernel is proportional to the cross section of gluon
emission given by the product of eqs. (4.26) and (4.31) integrated according to eq. (3.1).
To find the full kernel we should calculate the virtual part.

4.4 Virtual correction

To get the virtual correction shown in figure 5 we should use the expansion (3.11) of the
operator F up to the second order in quantum field. From eq. (3.11) one gets

( n(ﬁB, yi))* (4.34)

2 & nm m
= g dy. €'’y [BB/ Az, ([00, 2]y (AL (ze, Y L) 20, Uely) T AT N (Yss y1))

21 nm m
_g dz*([cx%Z*]y<A?(Z*7yL)[z*uy*]y) 0i AT Y, yL))

4 oo Zx
- / s [ 72 (0,20 (A3 ey )l 2Dy AL ) Lyl ) S )

As in the case of production kernel we will calculate the diagrams in figure 5a, 5b, and 5c¢
separately and then check that the final result does not depend on the size of the shock
wave o, (it is easy to see that the diagram in figure 5d vanishes in Feynman gauge).
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(b) (c) (d)

Figure 5. Virtual part of the evolution kernel.

4.4.1 Diagram in figure 5a

Let us start with the diagram in figure 5a. Using eq. (3.11) and (B.27) we get

2 o 7 nm m ure 5a
/ dy* € Peys <[OO7 y*]y gFoz (y*7 yl_»ﬁg ° (435)

$J—c0

2 2 —0Ox ) [e's) m om
e ezﬂsy*[ﬂB / Ao (AL 2y )U,) "™ A 1 )

oo ;
2 [*°

2 [ (A3 )0 " BAT )

S O
. 9 00 —0 00 2
7 do * —iPL
— _gf”’fl/ / dy*/ dzi(yLle " as Z*{ﬁBg-z‘(OO,—OO;pL)
S 0 « —00 [e

2 . »3
+ 21000, =001 + Qun (o0, —ocip )l b+ Uy )

- 2 enkl < 1 —iia
=1ig°f da(yL|7€ os *{aﬂBsg-i(OOa—OO;pL)
0 Y

1

2

. P
76—1(5B+;)0*UT m Kl
afps+ p? lys)

+20[Gee (00, =005 p1) + Qee (00, —00; p1 )|pi }

(as usual we assume that there are no external fields outside [0, —0o,] interval). Moreover,
from eq. (B.25) we see that Ge;(00, —00; p1 ) = —L8;U and from egs. (B.25), (B.7) and (4.9)

that Gee(00, —00; D1 ) + Qee(00, —00;p1 ) = —TiQ(‘)iU so we obtain
2 — O x . ﬁ 5
R R R (4.36)
o ¢ 1 .2 1 . 2
= ng”kl/ L (Y| e o [aBpstU — 07 Upy| ———— e~ Bot 5oty M
0o « Y afips + P
— g2 frileiBpo- / T 1 st — iR Up)—— Uy ¥
0« p? aBps+p?

2
(recall that %U* < 1 if the transverse momenta in the loop are of order of transverse

momenta of external fields).
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4.4.2 Diagram in figure 5b

To get the contribution of the diagram in figure 5b we need the gluon propagator with one
point in the shock wave (B.8), which we will rewrite as follows

0

(Ao )AL o)) = [ GGyl 0 (437)

700
2
X [GU (s, 201 ) + Q0 (Y 23 1)) 121) + (21| Q5% (s, 2e5p1 Y s W72y )}

with G and Q given by eqgs. (B.6) and (B.7)

2 _
Gl (Y, 245 pL) = ai/ A2, ([2, 2] Foi(2)[20, )™ Qe (s 2 pL) = Qin(y 243 p1) =0,
Gex (s 2ip1) = a282/ / Az ([, 2] Foj(20)[2h 2V FV (2 [, 9™ (4.38)
Qlo)o(y*wz*apL) 05298/ dz, ([2*7 ]D F']( )[ *ay*]) ; QOO(y*aZ*;pL) =0
Y

and therefore from eq. (4.34) we get

2 [0
/ dy.e"8Y (00, y. ]y g FoT (g, y 1)) 18 O (4.39)

w
- S
- dZ*([OO, Z*]y<Ao(z*>yl)[z*:y*]y) 81‘40 (y*7yJ_)>

S J 0.

dy*eiﬁBy* [/BB/ dzy ([Ooa Za)y (A (24, Y1) [24, y*]y)nmA;‘ﬂq(y*a yi))

—00

First, let us show that the second term in the r.h.s. of this equation vanishes. From
eq. (4.37) we see that

(A3 (2, Y1) 0 AL (Y Y1) (4.40)

: 0 da 7ii —z a a
:—Z/ o WLlpie as =2 [Gb (g, 21 ) + Qs 25 p1)] [y 1) = O

2
because operators in eq. (4.37) do not contain p and (y \piefi%(yfz)* ly1) = 0.
Now consider the first term in the r.h.s. of eq. (4.39). From eq. (4.37) we get

a da —zi z—
(AsGer) A ) =2 [ e T [Tl o G )

(4.41)
and therefore

29 [T figure 5b 09 bt [0 el
« . ! !
5 dys e’y ([oo, y*]anm(y*vy ) 2P = 273 if" / dzy Fi' (25, 91)
o

—0o0

2 2 2
[ o - ] OB
0

p? (aBps+p?) ) (4.42)
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2
where F (2, y1) = g([00, 2]y Fei(2h, y1)[2h, 00]y)F!, see eq. (1.4). Since ZLo, < 1 the
r.h.s. of this equation can be simplified to

—0x

2
Sy (oo, gy F (g, ) P (4.43)
—00
2 o0 Ox
oY inki_—iBgo. / da Be / / ki
= 2= e 'PB —— _— dz, Fi (24, ~ 0
Sf . o (Y1 |045 - ly1) . (7' = o) Fi (2 y1)

2
because it is O(%U*) in comparison to eq. (4.36).

4.4.3 Diagram in figure 5c

As in previous sections, we start from rewriting eq. (3.11)

2
29 [ 4y, 659 (foo, yu "™ FR (g, 1)) P80 5 (4.44)

S J_o.

=2 [ g o[ 3 [ e [T o ANy o 0, AN )

X [2h yuly) " EG (y*,yL)JrﬁB/ dzi([00, 24y (A3 (2, y 1) 20, 9ly) " AT (g Y1)
—% dz*([oo,z*]ym‘}(z*,yL)[z*,y*]y)"maiATq(y*,yl)>
Y

Using the propagator (B.8) with point y inside the shock wave (and point z anywhere)®
we obtain (hereafter 0;(C) = —i[p;, C))

2
20 [ e 050 oo, .3 FL gy )0 (4.45)

o d
zf"kl/ dys elﬁBy*/ dz*/ a{ yL|6727 y)*[_ﬂB([OOaZ*]

X Gai (24, Yu; P1L) [y, 00]) M + ;{@‘([wa 24]Ose (24, Y3 DL ) [y, )

—0;([00, 2:]) O (24, Ui 1) s 0] — [00, 2] O (2e, 3 P21 )i ([ 00]) } ] 1)

g [* A

t | e e S >*([oo,z*]o..e*,z;;pe[z;,y*w.xy*)[y*,oo1)“|ye>}
Y

where G,; is given by eq. (B.6)

2 L
Goi(Ts, ys;pL) = _g/ Az [Ts, 2 Fai(24) [ 24, Ys) (4.46)
as J,,
and O.. = goo + Qoo by €gs. (B 6) ( )
Oee (s, Ys;p1) = / dzy [T, 2] { —iDjF.j(z*)[z*,y*]
—4—9 dz' Foj(24) [z, 2 F7 (20) 20, y4] } (4.47)
s y * ®) \ <% *) “x]" e * *7y* .

6Strictly speaking, one should depict eq. (4.44) as several diagrams with points z (and 2’) inside and
outside the shock wave.
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Using these expressions, one obtains after some algebra

29 1 nm m ure C
= dy €'Y ([0, Y F o (s, y1 ) 18 (4.48)

S J_ o,

O %

“da 1 . .
_ 2 rnkl 8B W —iBBox
=g°f / Y1 YL {/ dw, (e —e

0 o p? (afBps +pL)’ ) — o ( )

. 21
X < — 2iafBpFi(wy,y1) — *3E/V(w*,yL) + 2V(w*,y¢)/ dz, Fi(z *7y¢)>
219 2ig BBz —iBpo
dw* [oo W]y D? Foj(wy, y 1) [wy, o0l [e7B% — e8]
8g2 s / ]
+ST ) dw*[oovw*]yF°j(w*7yJ-)[w*7 ] F, ( )[w*voo]y
o } Kl
< [e0 - ) ) Al )}
where, as usual, ' = g([00, wi]y Fei(ws, Y1 ) [ws, 00],)* and
V(ws,y1) = 2ig[oo, w*] D Foj(ws, y1)[we, 0]y
] .
+% dw; [oo,w;}yF.j(wfk,yl)[w;,w*]yF,J(w*,yL)[w*,oo]y (449)

(cf. eq. (4.14)).

4.4.4 The sum of diagrams in figure 5

The total virtual correction coming from figure 5 is given by the sum of egs. (4.36) and (4.48)

2 7 nm m ure
29 [y oo,y <y*,y¢>>ﬁg s (4.50)
2 rnkl —iBpo. Fda 2 T Kl
=g f"e (yll e laBpsdiU —i01 Upi|———U'|y1)
0 by afps +p]
Cda 1 T+ 4 .
+ 2 nkl/ {/ d . iBpws« _ ,—iBROx
R (aﬁBHpL)wu | dwn (e ene)
. 21
X < - QZaﬁBE(w*ayL) - 78?V(w*>yJ_) + ?V(wﬂwyl_) dZ *F( *?yl)>
2 o )
zg/ / ( [0 w*] D’ F.](w*,yL)[w*,oo]y [elﬂsz* _ 6—zﬁBo—*]
Sg j
t7 ,dw (00, Wiy Foj (Wi, Y1) [we, wily Fy? (w),) [wl, ol

z

kl
% [eiﬁBZi _ e_iﬂBa*}>E(zi, yj_)}
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Let us prove that with our accuracy it can be approximated as
2 A
% dy*e’ﬂw<[oo,y*]sz.z@<y*,yL>>ﬁgure : (4.51)

da .
= ng"'“l/ To ) L 7 laBpsdU — i0i Upi Utly,)*
0

afips —l—pi

. a p '
—ig*f kl/o aa( 1 2(042 inmﬂyﬂ[ Fi(Bp,yL) — i0iUyUJ)

To this end we compare the size of different terms in the r.h.s. of equations (4.50) and (4.51)
at fpo. < 1 and Bpo, > 1. In the first case (at Spo,. < 1) the only surviving terms in
the r.h.s.’s of these equations are the first terms and they are obviously equal.

In the second case let us start from eq. (4.51). Since Spo, ~ ﬁBZ—;f > 1 we have

afps > pi SO

. do
rhs. of eq. (451) = —ig* /"™ / T |y ) FH B ) (4.52)
0o « pJ_

Let us now compare the size of different terms in the r.h.s. of eq. (4.50). Since 1 [dw.V(w.)
~ 8JQ_UUJr the first term in the fourth line ~ [dw.aBpFei(wi,yi) ~ aﬁBsﬁinUJ is
much greater than the second term ~ %fdw*aiV(w*, yp) ~ &BinUJ or the third term
~ & [dw, 0V (wi,y1 ) [dw] Foi(w]) ~ ainGiUJ. Moreover, it is easy to see that the terms
in the last three lines in eq. (4.50) are of the same order as the terms ~ V in the fourth
line so they are again small in comparison to the term ~ F;. Thus, we get

. d
r.h.s. of eq. (4.50) = ng”klelﬁBU*/ a(yJ_\ [OiU — —
0 L afps

. n da 2 [ iBpw —ifgo
_Zng kl/o - (yﬂ ‘yL)S/ dw, (e BB wx —_e BB *)szl(w*,yL) (453)

AU Uy, )*

which coincides with the r.h.s. of eq. (4.52).

Last but not least, let us prove that one can use the formula (4.51) in the light-cone
limit 12 < p% where it coincides with eq. (3.15). First we notice that the term ~ 82 U has
twist two and so exceeds our twist-one light-cone accuracy. Next, since the commutator

%, 9;U] consists of operators of collinear twist two (or higher), one can rewrite the first
term in the r.h.s. of eq. (4.51) in the form

afps
aBps+p?7)

1
(YL|—5aBpsoiU

S — o,U, Ul 4.54
=~ Bps+ 1% [y ) U, U} (4.54)

Ullyy) ~ (y| 2

so it cancels with last term in the r.h.s. of eq. (4.51) and we obtain

2
g/dy €78 ([00, yuJy ™ Ful (s y 1)) B (4.55)

_ 2 nkl @ afps ki
= —ig? [ Bty ) )

which is the light-cone result eq. (3.15).
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Thus, the final result for the sum of diagrams in figure 5 is eq. (4.51)

a
(FI'(Bp,yu))iewre ® = —ingnkl/al aa{(yﬂ i[aﬁBS’La U +3LUPZ]WUT\2/L)M
+(yL| e (agﬁiipl) ly ) Fi(BB,yL) — Uz‘(yl)}kl} (4.56)

9 Tda » 1 aBBsp_2
= —ig’f kl/, U(?/Hg(?@aﬂ] + gz‘jaiU)mUT + mfi(53)|yL)kl

where we imposed our cutoff & > a > ¢/. Again, let us note that the above expression is
valid with our accuracy in the whole range of transverse momenta.

Similarly to eq. (4.28) we can rewrite this formula in the form without subtractions

FrEman)) e = —igt ™ [T5 ) - By Ao +00) (457)

afigs

x (2656) — g9 U

U + .7'—1(,33)

)‘yl_)kl

afps —l—pi

where Fj, 5;5 O\ F = —i[pi, Fi). Indeed, in the light-cone case li < p%_ one can neglect
the operators with high collinear twist so both equations (4.56) and (4.57) reduce to the
last terms in the r.h.s’s which are the same. Also, as we discussed above, in the shock-wave
case (12 ~ p?) and Bp small one can replace F;(8g) by U; so the r.h.s’s of eq. (4.56) and
eq. (4.57) coincide after some trivial algebra. Finally, if li ~ pi and fg > U% we have

aBps > p% so again the equations (4.56) and (4.57) reduce to the last terms in the r.h.s’s.

4.4.5 Virtual correction for the complex conjugate amplitude
The calculation of the virtual correction in the complex conjugate amplitude is very similar

so we will only outline it. As in the previous section, we start with the formula (3.16) which
can be rewritten as

9 . .
/da:* e~ BB (F (g, 1) )|, oo]mm)20d (4.58)
s

— i/dx* e—iﬁBx*{ﬁB/x* Az (AT Y@, 1) ([T4, 2] AL (20, 21 ) 20, 00]2) ™)

& dZ*<8A ([l’*yz*] A(.l(z*yxj_)[z*yoo]w)mn>

32/ dz*/ dz, Fif x*vxi)([$*7Z*]m(l‘i?(z*,xL)[z*,zi]xfl‘}(z;,xl»[zi,Oo]w)mn}

~32 -



Using eq. (B.28) we get

2 4 -
/ da, e 5% (B (., 01 [, oc]pm) e 2 (4.59)

S

d _U* >
_ Zg nkl/ a/ / dZ* .’,UJ_|U€ BBJ'_ *{BBgi.(—O0,00;pJ_)

2

+= pz[g..( 00,00;p1) + Qee(—00 OO,pJ_)]}e e )M

+ fnkl *de‘* —Z/BBI*/ dz*/ { xL| ,BB([OO,Z'*]gNio(l’*,Z*;pL)[z*aOO])kl

—;{ai([oo,ﬂc*]@--(w*,z*;m)[z*,OO]) — 0i([00, 2]) Ous (@4, 2 p1 ) [25, 00

—z—(:v Z)x

k:l] e

Ouae (s, 25 1) 0y([24, 00]) } 1)

—[00, 4]
2
g [k (0l P21 0un(o i )L o0]) e )

Similarly to eq. (4.50) it is possible to demonstrate that the last three lines in the r.h.s. of
this equation exceed our accuracy, and moreover, one can neglect factors e 8%+, Using
formulas (B.29) for G,,, and (B.10) for Q,,, we obtain the virtual correction in the complex
conjugate amplitude in the form

- 92 . -
Fr ) =2 [doe e (B o, ool

.okl [T 1
:—zg2f kl/g, a{(xH m{—mﬂgsa UT+p,3LUT} |:cl ki
~ A T T afps
+(Fi(Bp,ay) — 00,00 (x| 7 (B f+p )m)} (4.60)
L

where we have imposed our cutoffs in « and used the formula

OJQ_U;[:g/ dzy [—00, 2]
—o0

2 j 8g [, / Gt !
x| — ;D Foj(24, 21 )24, 00] + 2 Az, Foj(24, 21 )2, 24) 2 Fo7 (24, 21 ) 25, 00]
Zx

Similarly to eq. (4.51) this expression is also valid in the light-cone case (3 < p? where it
coincides with eq. (3.18).
Alternatively, one can use the expression without subtractions (cf. eq. (4.57))

n o _ ;.2 enkl U@ & 1 rt
Frpm)y = =gt [ Sl O (161)
k ¢l Kl _ ﬁ = aBps Kl
X(26i 5j — 9i39 )(Zak: Uk‘)]:l(ﬂB) i ]:Z(BB)pi(OéﬁBS +pi) |5L‘L)

5 Evolution equation for gluon TMD

Now we are in a position to assemble all leading-order contributions to the rapidity evolu-
tion of gluon TMD. Adding the production part (3.1) with Lipatov vertices (4.28) and (4.33)
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and the virtual parts from previous section (4.57) and (4.61) we obtain

(ﬁa(ﬁBvxL)}—j@(ﬁvaJ_))lna (5.1)

? da . N N
— _92/, 20[/(1:3’1@- Tr{Li”(k:,xJ_,BB)hght hkeLuj(k’yJ_’BB)hght hke?r

“do ~ P = 1
—¢* | —T3F — U) (205,68 — gjmg™ ) U———5UT
g9 /(,/ 5 {]'—(BB#UL)(M pi}—k(BB)(Zal +U1)(26,,05 — gjmg™) Bps + 72

L F (BB o)

p% (aBps +p%

~ 1 ~ o m

Hz U SUT(2656%, — gimg™) (i0k — Ux) Fi(B5)

O‘ﬁBS +pJ_ b
~ afps 9
7 i (8s, O(a?
+ (ﬁB)pi(aﬁBsﬂLpi)'gjL) (BB yi)} +0(a3)

where Tr is a trace in the adjoint representation. In the explicit form the evolution equa-
tion reads

d
dlno

~ 1 ~ ~ aﬁBsg i — QkJ‘ki
= —a,Trd [ @2k () | U———(U'ky 4+ ppUT o a
{/ 1 L'{ aﬁBs%—pi( b+ ouUY oBps+k?

Fi(Bpyx 1) F(Br,y1) (5.2)

okl gl —— gt g, TP U*+2kig- Fr( B +ﬁ k1)
n ik oBps+p7 e oBps+pi k2 i BT s )M
k2 > {05335§L — ijb_k:j

ko |F! -
x(ku (BB+05 oBps+k?

1
kU + Up)——UT
(K pl)o_ﬁBs+pi

1 ; kM
—Qk’igﬂUiUT - 2(5“U]97]2UJr + 291 L }]yL)
1

oBps+pt ' oBps+p K
> P - k sl ki 1 f
+2Fi(B, 2 )Ll = 5 Fi(B) (i 01 +U1)(265,0; — gjmg™ )V ————5U
b oBps + by
ofBps
+F;
1 ~ ) ~ = p™
221 |[U————5 U250}, — gimg™)(i0r — U —
+ (mj_’ O'ﬂBS _’_pi ( i Om — 9im9 )(Z k k>]:l(ﬁB>pi
~ ofBps 9
+F; F;(BB, + O(o;
(30) o sl 7 (8.1 | + OLc)
The operators JF;(3) and F;(3) are defined as usual, see eq. (4.29)
- 2 - , :
@B B = [, o ettt
2 o
(es F(B)lg) = - [dy. 001 7 ) (53)

The evolution equation (5.2) can be rewritten in the form where cancellation of IR and
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UV divergencies is evident

O (8,2 (Bp.u) (5.4)

1 oBBSgui — 2k;rki
= —qa1r &k, (z - Uk + peU* £
’ {/ 1 L’{ UﬁBS-FPL( bt Pl oBps+ k%

~ 1 i k2
2kt gy U———5 U 2 UT}]-"“< + > k
w9l o P 9uU Bps+ 10 Be k1)

k 0&35(5“ 2]{:“1{: 1
x (ko |F (B + L){ U +Up)——— UT
<] (ﬁ os )\ oBps+k: (i P st 7

1 p; i
—QkigﬂUWUT 201U P UT}\ZA)H/@‘ kl(m\f<53+>\ki)

k; UﬂBs+2k2 1
ko |F — 222 L (U + Up)) ———-Ut
<kl (B " >{k2 ofps+ k3 - (WU + pl)UﬂBS—i-pi

gji T ky pj T}
+2U———-U 2—- U7U
oBps + P2 2 VoBps 20 Jl)

1
2 [ a2k - _(U'k Ut
* / l(“‘{ z (Uhe + )k2 0638+k2 oBps + p2

o P gt Ve (g By 7 (8 4 L ) )
oBps -HOJ_ /ﬂz os J os
m —
+2F;(Be, 1) (yL| — Tfk(ﬁB)(ial +U1) (260,05 = gjmg"™ U

—————Ulyy)
p? oBps+p?

S UT(26F6L, — gimg™) (i0), — Uk)]}l(ﬁB)meL)}—j(ﬁB, Y1)
O-BBS+pJ_ Py

a’k k2 kQ
_4/ kzL [ <BB + = > <,BB +—= Jﬂ) ko).
il

_ffﬁgfis’ﬁé(ﬁlg’“)fj(ﬁl%yﬁ]}+0(a§).

+2(1l|0

The evolution equation (5.4) is one of the main results of this paper. It describes the rapid-
ity evolution of the operator (2.8) at any Bjorken xp = g and any transverse momenta.

Let us discuss the gauge invariance of this equation. The L.h.s. is gauge invariant after
taking into account gauge link at 400 as shown in eq. (2.7). As to the right side, it was
obtained by calculation in the background field and promoting the background fields to
operators in a usual way. However, we performed our calculations in a specific background
field Ae(x., ;) with a finite support in z; and we need to address the question how
can we restore the r.h.s. of eq. (5.4) in a generic field A,. It is easy to see how one can
restore the gauge-invariant form just add gauge link at +o0op; or —oop; appropriately. For
example, the terms U, (z|

5s+p2 |2’ )UT, in r.h.s. of should be replaced by U. [z —oop1, 2| —

oop1|(z |U Boip? |2 U, . After performing these insertions we will have the result which is (i)

gauge invariant and (ii) coincides with eq. (5.4) for our choice of background field. At this
step, the background fields in the r.h.s. of eq. (5.4) can be promoted to operators. However,
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the explicit display of these gauge links at oo will make the evolution equation much less
readable so we will assume they are always in place rather than written explicitly.

When we consider the evolution of gluon TMD (1.6) given by the matrix element (2.4)
of the operator (2.8) we need to take into account the kinematical constraint k% < (1 —
Bp)s in the production part of the amplitude. Indeed, as we discussed in section 3.3, the
initial hadron’s momentum is p ~ po so the sum of the fraction Sgp2 and the fraction %pg
carried by the emitted gluon should be smaller than ps. We obtain (n = Ino)”

d -
%<p|ﬂq(ﬁ3,$ﬁff(53, yo)lp)" (5.5)

k2 1
= —ag(p|Ted [d@%k, 01— B — L U————(U'k Ut
ostole{ [a%,0(1= 3~ 22 [0l (U W4 i)

oBpsgui—2kiki | 1 T (R
-2k, 9igU————=5U"— U7UT F L)k
UﬁBS + k2 w ik UBBS +pi guk 06 s+pL 6 oS | J_)

i . B 05385“ —2]{:“]{: LU U 1 -
x (k1| F +— +Up)————
(k] < >< oBps+ k% ( ! pl)aﬁBs—Fpi

1 Pj
2kt g U— U — 26“UUT>
195t 0'6334-]92L 05354-]% lv1)

2 2
+2(r | Fi <BB + I;t) |k¢)(kﬂ]:l<ﬁ + > <k M(MU‘FUPZ)éUT

k2 0B35+kz2 O'BBS-f-pi
gii - pj T>
42U—  _pyt—o o U— U
oBps+pt k2~ oBps+p? lv.)
k UBBS+2]C2 ik
+2 —————— (U'ky + pU' Ut
e e
Dbi kk L ]432 ]{72
—U—2 _pte ZL) k) (k 2L
Ua/stpiUki)f (B4 £ Y )l (B + 22 )
~ —
2.F; - ' 268 6L — gjmg"™ U ———— Ut
+2F;(BB, v1)(yL| pQ fk(ﬁs)(z o1 +U1)(26,,05 — gjmg )UUBBSeriU Y1)
1 m
+2(2 1 |U————5 U (2856L, — gimg™) (101 — Un) Fi(Br) g |21 ) F (B, 1)
ofps +pL Yo

d2k k2 ~ k? k2 -
_4/ 2J_|:9<1_5B_L>fi<BB+J-)$J_>]:j<BB+,yJ_>€Z(k’x_y)l
]ﬂ s o] oS

_Oﬂ:fi_skiﬁ(ﬁijl)ﬂ(ﬁB7yJ‘):| }’p>7] + O(Oég)

Note that we erased tilde from Wilson lines since we have a sum over full set of states
and gluon operators at space-like (or light-like) intervals commute with each other.® This
equation describes the rapidity evolution of gluon TMD (1.6) with rapidity cutoff (2.1) in

"Strictly speaking, we need to consider matrix element <p|]}‘” B,z )Fi(BB,yL)|p+ &p2) proportional
to §(&), see eq. (2. 4)

8We have left F' as a reminder of different signs in the exponents of Fourier transforms in the defini-
tions (2.2) and (2.3).
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the whole range of 85 = xp and k) (~ |z — y|7"). In the next section we will consider
some specific cases.

6 BK, DGLAP, and Sudakov limits of TMD evolution equation

6.1 Small-x case: BK evolution of the Weizsacker-Williams distribution

First, let us consider the evolution of Weizsacker-Williams (WW) unintegrated gluon dis-
tribution (1.1) which can be obtained from eq. (5.5) by setting S = 0. Moreover, in the
small-xz regime it is assumed that the energy is much higher than anything else so the
characteristic transverse momenta p? ~ (z — y)_2 < s and in the whole range of evolution
)72 2
(1>0> %) we have Py < 1, hence the kinematical constraint 0(1 — BB — k—L)

gs as
in eq. (5.5) can be omitted. Under these assumptions, all F; (ﬁB + %) and F;(Sp) can
be replaced by i9;UUT and similarly for the complex conjugate amplitude. To simplify
algebra, it is convenient to take the production part of the kernel in the f(zrm of product of
Lipatov vertices (4.26) and (4.31) noting that the “subtraction terms” F; and .7i"j vanish
in this limit. One obtains the rapidity evolution of the WW distribution in the form

d - k
Utz )UlNy,) = —4a,Tr {xl‘UpZUT<U UT—2> (U Ut — )Up]U 1)
dlno pJ_ Pl pJ_ pJ_
pi® i Dk 1 1
LG B o) - S|l B )
pJ_ J_ Py

Ot [t U ) - o)) b 6

where we used the formula

k
p 2 T
—(y 1|5 (20;0,U + g;107U Uy,
( |pi( J kY L ) BBS7LP3_ ’ )
mg]k+2p]pk t 1
—U - U; 6.2
urm U e Vilu) (62)

In this form eq. (6.1) agrees with the results of ref. [25]. To see the relation to the BK
equation it is convenient to rewrite eq. (6.1) as follows [35] (cf. ref. [36]):

U () (6.3)

2

- I 2 —
- _T&«{(—iafl + U UdQ,zg(UleZg —1) 22122 (U, U, — 1)] (i 02 +U;’2)}

3
& 213723

where n = Ino as usual. In this equation all indices are 2-dimensional and Tr stands
for the trace in the adjoint representation. It is easy to see that the expression in the
square brackets is actually the BK kernel for the double-functional integral for cross
sections [25, 37]. Hereafter, to ensure gauge invariance, U;(z)) must be understood as
Ui(21) = Fi(0,21) = 2[dz, [00, 2] Fai(2s, 21 )[2,00] and gauge links at ocop; must be
inserted as discussed after eq. (5.4).
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—2
It is worth noting that eq. (6.3) hold true also at small S up to Sp ~ % since

(z—y) 7>

in the whole range of evolution 1 > o > one can neglect cf8ps in comparison to

p? in eq. (5.5). This effectively reduces Bp to 0 so one reproduces eq. (6.3).

6.2 Large transverse momenta and the light-cone limit

Now let us discuss the case when 8 = zp ~ 1 and (z — y)l2 ~ s. At the start of the
evolution (at o ~ 1) the cutoff in p? in the integrals of eq. (5.4) is ~ (z—y) 2. However, as
the evolution in rapidity (~ Ino) progresses the characteristic pi becomes smaller due to
the kinematical constraint p? < o(1—8pg)s. Due to this kinematical constraint evolution in
o is correlated with the evolution in pi: if o > o’ the corresponding transverse momenta of
background fields plz are much smaller than pi in quantum loops. This means that during
the evolution we are always in the light-cone case considered in section 3 and therefore the
evolution equation for 8 = zp ~ 1 and (z — y)|® ~ s is eq. (3.25) which reduces to the
system of evolution equations for gluon TMDs D(8p, |21 |,Ino) and H(Bp, |71 |,Ino) in the
case of unpolarized hadron.

6.3 Sudakov logarithms

Finally, let us consider the evolution of D(x g,k ,n = In o) in the region where xp = g ~ 1
and kzﬁ_ ~ (m—y)j_2 ~ few GeV2. In this case the integrals over pﬁ_ in the production part of
the kernel ( 5) are ~ (v —y) > ~ k% so that p? < ofBps for the whole range of evolution

1>0> " For the same reason, the kinematical constraint 9(1 — B — %) in the last
line of eq. (5.5) can be omitted and we get
d ~
T 0<p\ff”(537m)ﬂq(ﬁB,yL)!pVeal (6.4)

d*py i(p,z—y) =0 il a i
= 40&ch 5 € pr=y L<p‘~F-z ﬁB + , Ul fj BB + Yy YL ‘p>
p? os os

As to the virtual part

d
dln

dL ﬁ —~a a
= 404ch/ pgj_ [_ UBZSiSpi <p‘]:z (6373"1—)]:]' (5B73/J.)’p>:|

(plf (Bpy 2 1) F§ (B, y1)p) (6.5)

3 1 ~ 3
20 Tr(p| (2 | T (2656, — g g™ (10 — U 21)Fi(Bs,
(pl(zL| Bps+ 12 (2658, — gimg"™) (10, — Uk) Fi(BB) L| 1)Fi(BB,yL)
- p™ = k sl kil 1 t
—Fi(B, 1) (YL =5 Fr(BB) (I 01 +U1)(201,0; — gjmg™ )U ———5U'|yL)|p)
Y GBBS"‘pJ_

the two last lines can be omitted. Indeed, as we saw in the end of section 4.4.4, these terms
are non-vanishing only for the region of large p% ~ ogs. In this region one can expand the
H
operator O = Fr(8p)(i 9, +Ul)(25’,§15§ —gimg™ U as O(z1) = Oy, )+ (y—2)i0:0(yL) +
and get
1 DPrm 10m Oy

a9 1YL Oy(yL Y1)+
035 Sﬂﬂl ) = Oy( ’2(05 Sﬂu)' )

(yL‘ drofps
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The first term in the r.h.s. of this equation is obviously zero while the second is O(;Zi’s)
in comparison to the leading first term in the r.h.s. of eq. (6.5) (the transverse momenta
inside the hadron target are ~ my ~ 1GeV).

Thus, we obtain the following rapidity evolution equation in the Sudakov region:

ol (852 F B ) lp) (6.

d i — ~a A a A
= 4O‘SNC/ gl [ez(m WL (p| F; (53 + pL,ﬂ?L)ﬂ <,BB + pL,M) p)
bl s s

JﬂBS
ofBps -I-pi

<p|ﬁ;‘<53,ma@(ﬁB,yLﬂm}

As we mentioned above, the integrals over pa_ in the production part of the kernel (6.6)

are k‘f_ whereas in the virtual part the logarithmic integrals over pi are restricted from

2
m leading to the double-log region where 1 > o > % and

oBps > p? > (r—y) . In that region only the first term in the r.h.s. of eq. (6.6) survives

above by an extra

so the evolution equation reduces to

d = -
Tina PIFE (B, ) F (B y ) Ip)"=7 (6.7)
_§g°N. [a? PL

e PV (p| F (B, 21 ) F(Br, v )p)"

which can be rewritten for the TMD (1.6) as

oV, 4 :
aﬂg D(zp,21,In0) / P]i =1 — P21 ] (6.8)

D 1 = —
dno (UCB,ZL HU)

We see that the IR divergence at p3 — 0 cancels while the UV divergence in the virtual
correction should be cut from above by the condition pi < os following from eq. (6.6).
With the double-log accuracy one obtains

asNe

D(zp,z1,In0) = — D(zp,z1,Ino)Inosz? + ... (6.9)

dlno
where dots stand for the non-logarithmic contributions. This equation leads to the usual
Sudakov double-log result

SNC k;2
D(xzp,k),Ino) ~ exp{ — a2 In? UQS}D (xB,kJ_,ln ) (6.10)
s kg S

2 os
kT
dimension of two light-like Wilson lines going from point y to cop; and ocopg directions (with

It is worth noting that the coefficient in front of In is determined by the cusp anomalous

our cutoff & < o). Indeed, if one calculates the contribution of the diagram in figure 6 for
Wilson lines in the adjoint representation, one gets

9 /
([oopr, 0][0, cops]) = i92Nc/dO‘d5d2m a(B —(;)(>a|§s| i;)—i—ie)
1

do [d? dp?
= —g2N/ a/ PL_ 9 N C DL (6.11)
871'2 o) pi

which coincides with the coefficient in eq. (6.8), cf ref. [38-40].
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Figure 6. Cusp anomalous dimension in the leading order.

7 Rapidity evolution of unintegrated gluon distribution in linear approx-
imation

It is instructive to present the evolution kernel (5.5) in the linear (two-gluon) approxima-
tion. Since in the r.h.s. of eq. (5.5) we already have F and F; (and each of them has at
least one gluon) all factors U and U in the r.h.s. of eq. (5.5) can be omitted and we get

d = .
ding P (Be:pL) 7} (Be,p)Ip) 1)
k3 k i =2kl ks klgi + ps
g8 oPps+pi oPfps+ki oBps+pT

UﬁBS-i—k’i ofBps —i—p’i ofBs +p’i

. <05335§L — 2Kk (o + k), Qkﬁgﬂ + 5;“‘p9>

L2, ( ki oBps + 2k (W + k) . L )
o ki U»BBS—Fki ofBBs —l—p’i ofBBs —l—p’i ki(aﬁgs —i—p’i)
5 (p+k) ki oBps+2k? 29ik 2piky,
2915 2 3.2 12 + 7 T2 2
UﬁBS‘i‘pL i oBps + 1 U/BBS‘FPL L(OﬂBS‘f‘pL)

~ k2 k2
x (p| F* (53 + L p — h)fl <5B + L9 - kl) )
gSs oS

2 [ (2k'p, — k' )oF  (2pik* —kap®)ol ] .
[ it J}@\fm&mm<63,p;>|p>

K2 (oBps+ (1 + k)2 ofps+ (p+ k)2
4 k2 - k2 L2
— 7 (1l [9<1 - BB — L)-7:2‘(,5’13 +=L,pL - ]€J_>~Fj</BB by h)
kl gs os oS
oBps

_(Mﬁq(ﬁ&m)ﬂq(ﬁg,pl)] \p>}

where we performed Fourier transformation to the momentum space. Also, the forward
matrix element (p|F;(Bp,p1)F;(Bp,')|p) is proportional to 6 (p, — p/|). Eliminating
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this factor and rewriting in terms of R;; (see eq. (2.9)) we obtain (7 =1Ino)

d
%Rij(ﬁ37 p1sn) (7.2)
_ 2, 2p — k)i o8BS —2(p — k) (p — k)i (p — k)i gik +p¢9uk>
-l /d {[<0538+m ofps+ (p— k)3 2 ofps +p?
y <05355§L “2p K-k @p—k) (- k)ign+ 5{‘pj)
ofBps+ (p— k)% ofps +p? ofps+p?
120, ((p k)j(2p—k), — 2p;(p—k) (p—k);(2p— k) 29, )
' (p— k)3 (0BBs +p?) (08ps + (p—k)1)(0Bps+pi)  ofps+p]
49 l,((p k)i(2p—k)i = 2pi(p—k)r. (p—Kk)i(2p — k) L 29 )}
’ (p— k)3 (0BBs +p7) (08ps+ (p—k)3 )(oBps+pl)  oBps+pi

><9<1 _ Bp — (p ;Sk>i>73kl<ﬁ3+ (p as’“)i kl)

0F (kjp' — 2k'p;) + &% (kip® — 2pik*)
k3 loBps + (p — k)3 ]

9(1_g3 _ m) 7 y
78 y W—h) . _ BS - ‘
—4|: (p—k')i R’L] (/BB+ s 7kJ_777> ki(O'BBS—‘y—ki)sz(ﬁB’pJ"n)]}

Riu(BB,p1in)

Let us demonstrate that eq. (7.2) reduces to BFKL equation in the low-z limit. Indeed,
in this limit R;; is proportional to the WW distribution (1.1):
Rij(0, k1) ~ [d?xe’*®) 1 (p|tr{U;(2)U;(0)}|p). In the leading-order BFKL approximation
(cf. ref. [17-20])

<P|tr{U‘( )Ui(y)}p) (7.3)
2 a+i00 w
d? ql S ei(9:2) L —i(g:y) L /d ¢T< )/ + dw<3/> Gol(q, q/)

471' qJ_ QJ_ —300 2mi qq

Here ®7(q¢’) is the target impact factor and G,(q,q’) is the partial wave of the forward
reggeized gluon scattering amplitude satisfying the equation

wCu(,d) = 6@ (q — ) + / pKprks(a,p)Cu(p. ) (7.4)

with the forward BFKL kernel

2

1 q7]
— =d(qL —m)/dp’ }
2 T2 (g —p)?

asN, 1
KwrxL(q,p) = [(

™ |[(¢g—p)*

Thus, in the BFKL approximation

2 1 a+i00 w
asqiq; [d°q , dw [ os ,
Rii(0,q;1 =q;q;R(q;1 = —d —| — | Gu(p, 7.5
i(0,q135In0) = ¢ig; R(qu;Ino) 27T2qi/q’2 T(Q)/a—i 2m<qq,> (p,q') (7.5)
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and the equation for R

d
dlno

2
R?(qu;lno) = /d2m %KBFKL(va)RU(pJJan) (7.6)
1

is obtained by differentiation of eq. (7.5) with respect to In o using eq. (7.4).

Now it is easy to see that our eq. (7.2) reduces to eq. (7.6) in the BFKL limit. As we
2
discussed above, in this limit one may set Sp = 0 and neglect % in the argument of R;;.

Substituting R;;(0,k1 ) = k;kjR(k ) into eq. (7.2) one obtains after some algebra

2k2 2
dlnaR(pl;lna)—2a5Nc/d“2kL[pi L R(ki:lno)— -1 _R(pi :lno)

(p— k)2 kK (p— k)7

which coincides with eq. (7.6). We have also checked that eq. (7.1) at p; # p/, reduces to
the non-forward BFKL equation in the low-z limit.
Let us check now that the evolution of

D(Ba,no) =~ iR, (5, p1i1no) (7)

reduces to DGLAP equation. As we discussed above, in the light-cone limit one can neglect
k1 in comparison to p,. Indeed, the integral over p; converges at pi ~ ofps. On the
other hand, extra k;k; in the integral over k£, leads to the operators of higher collinear
twist, for example

/koL kik; R,)"(Bp,k1;no) ~ (plopF(Bp,01)0;F ™ (Bp,0.)p)"="™"

~ m2gij(p|F5(BB,01) F™(B,00)p)™° ~ m?D(Bp,Ino) (7.8)

2 2
(where m is the mass of the target) so % ~ UZ;S ~ %2 < 1.

Neglecting &, in comparison to p; and integrating over angles one obtains

d i
dlna/d2pl R; (BB»PL%IHU)

asN, / 2 [1 2 . 3p% 2pt il
pr— J_ —_— J—
w2 p:  oBps+pt  (oBes+pi)?  (oBps+p%)d  (0Bps+p?)t
2
; P oBps »
&Lk R, PL g /d% /d2 Ri(Bp.p.:]
X/ Lo <BB+ o't na) Lki(UBBSka:i) PiR:!(Bp.puilno)

which coincides with DGLAP equation (3.33).
It would be interesting to compare eq. (7.2) to CCFM equation [41-43] which also
addresses the question of interplay of BFKL and DGLAP logarithms.

8 Rapidity evolution of fragmentation functions

In this section we will construct the evolution equation for fragmentation function (1.7). We
start from eq. (5.2) which enables us to analytically continue to negative fp = —fp. In the
operator form, the equation (5.2) has imaginary parts at negative g = —fF corresponding
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to poles of propagators (o3 Fs—pij:ie)*l but we will demonstrate now that for the evolution
of a “fragmentation matrix element” (2.10)"

(Fi(=Br, 2 ) F(=Br,y1 ) ivag = Y OLF (=Br,21)lp+ X) (p+ X|F} (=Br,y1)I0) (8.1)
X

we have the kinematical restriction o(8p — 1)s > p? in all the integrals in the production
part of the kernel (5.2). As to virtual part of the kernel, we will see that the imaginary
parts there assemble to yield the principle-value prescription for integrals over pi. The
“fragmentation matrix element” (2.10) of eq. (5.4) has the form

d
dlno <

( 5F7$L) ( /8F7yJ_)>frag (82)

k2 -1 oBrsgui + 2k k;
= —a (Tr! [ a2k, 0 —1- L U———(U'k Ut H &
a r{/ + </3F as)k“'( e AUALE L R Moy

~ 1 k?
+2kjgikU7U + 2gukUpUT>J-'k ( — Br + U;) k1)

oBr _pj_ B S_pj_
oBrsdt + 2k k; 1
ko |F ~L kU +Up)——— Ut
x (k| < Br + )( UBFS—k‘i LU + pl)UBFerng

1 - k2
wo T H T | '
YRR gl o _pLU + 261U 5Fs—piU >|yL)+2(azl|Ji( Bp + Gs)\/ﬁ)

K2 k; ok? 1
><(k1|J-"l< B +>( o0rs = L (kU + Up))———— Ut

k:2 oBrs — k2 ofrs —pi
k;
2UgUT+2UpUT>|yL)
O'BFS_pJ_ B 5_pJ_
~ 1 ki oBrs —2k2 ~ Gik -
2 -U——> Utk Ut i ) G L |
" (xﬂ( UﬂFS—pL( kD )k2 ofrs — k% ofps —p3

PP SIL. S P2 (NP TS (L A T
O_BFS_pJ- k;2 oS J ags

= p" o k sl ki 1 t
+2Fi(=Br, 2 1) (Yo = Fr(=Br) (i 01 +U1) (204,05 — gjmg™ )U 5——U'|y1)
i ofrs —pi +ie
-1 ' - p"
+2(z L |U — U 1(2676%, — gimg™) (10 — Ur) Fi(— /BF) |21 )Fi(—BF,y1)
O-BFS pL PL

a’k k? 2 k2 »
_4/ kQL [9 <5F —-1- Ué) < Br + J_> < Br+—- yj_) itko—y)s
1

1 ofrs oPFs ,
—2[UBF5_ki—i€ UﬁFS—ki%—ie] (=B, wL)Fi(= ﬁF’yi)}}Mag*‘O(%)

where we have restored +ie in the virtual part in accordance with Feynman rules.

9 Again, strictly speaking we should consider 3 (0|F¢(—Bp,z1)|p+ X){(p+ Ep2) + X|F(=Br,y1)[0),
see eq. (2.10).
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Let us prove that all non-linear terms in eq. (8.2) can be neglected with our accuracy.
(Naively, they were important at small 55 but small S are not allowed due to kinematical
restrictions). First, consider the “light-cone” case when the transverse momenta of fast
fields lf_ are smaller than the characteristic transverse momenta in the gluon loop of slow
fields pﬁ_ ~ kzi As we discussed above, in this case with the leading-twist accuracy we can
commute all U’s with p| operators until they form UUT = 1 and disappear. In this limit
the (8.2) turns to

d - 2
T P ) =By g = ~d0Te] (o110 (B =1 - 22 ) (83)
y [fﬁ“pi L 9O - P Foostpipt 2pipkp’j] {pﬁ} oLpj + dlpt — guip!

pi (fﬁps—pL (Uﬂps—pi — i€)? pﬁ_ ofBrs —pl + i€

9uipip' +2pipp! - (p? i
B LTy ) (F PL - Br, w1 | F 7—5F,?JJ_ )frag
~(0Bps — P2 +i€)? os

3| ) + T )]

UBFS—pl aﬁps—pL+ze

(Fo( =B ) F ﬁF,ymﬁag}

Now consider the shock-wave case when lf_ ~ pi. There are two “subcases”: when

Brox > 1 and when Bpo, < 1 (where o, ~ %) In the former case we have 5F‘I’T,S >1
1 1

so of3ps > p% and only two last lines in eq. (8.2) survive. Moreover, in this case eq. (8.3)

also reduces to the last two lines so eq. (8.2) is equivalent to eq. (8.3) in this case as well.

If Bro. < 1, as we discussed above, one can replace F;(—Sr) (and ]-"j( — Br + %))
by U;. We will prove now that after such replacement the r.h.s. of eq. (8.2) vanishes, and
so does the r.h.s. of eq. (8.3), and therefore eqs. (8.2) and (8.3) are equivalent in the case
of large Sro, also.

Let us now prove that if we replace all F;(—/fp) and ]—"j( — Br + %) by U; the r.h.s.
of eq. (8.2) vanishes. Indeed, a typical term in Feynman part of the amplitude vanishes:

(p+ X|U;(2)UUL,|0) = 0 (8.4)

To prove this, let us consider the shift of U operator on %a*pl. Since the shift in the p;
direction does not change the infinitely long U operator, we get

(p+ X|U;(2) U UL |00 = (p+ X[ 3P4 U, (2) U U, e 2P0 |0)
e PrtBx)as (p 4 X|U;(2)U UL, |0)

which can be true only if eq. (8.4) vanishes. It is clear that for the same reason all terms

in the r.h.s. of eq. (8.2) (and r.h.s. of eq. (8.3) as well) vanish. Summarizing, in all regimes
the eq. (8.2) can be reduced to the light-cone version (8.3).
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One can rewrite eq. (8.3) in the form:

d =lno
o (F(=Br & L) F(=Br Y1) g (8.5)
p , (P »
B e
gs gs gs
y {5555- 2670} L P oF6 + 85 pipt + Slpip* — Skpip* — 6Fpipt — g pip; — gip™p
Pl oBrs—p? (0Brs —p?)?
e 2gi0"p' + 6/ pip' + Oipip® — Shpi' — Sipip* plgiip*p! ]
- (0Brs —p?)® (0Brs —p?)*
0(cfrs — p?
—(ng)< P (=Br,x )Ty (= BFvyJ_»frag
1

where we used the formula
d*py 1 oBrs oBrs dz}u
/ P 2 [Gﬁps —R tic  oBps— 12 - ie] _/ i lobrs—pi)  (89)
The eq. (8.5) is our final evolution equation for fragmentation functions valid for all (z—y)?
(and all SF).
If polarizations of fragmentation hadron are not registered we can use the parametriza-
tion (2.10)

< ( ,BF,ZJ_) ( 5F70J—)>frag

4
= 2125(€)Brg” | — 9i;Ds(Br, 21,m) — 3 (2225 + 923 )H{ (Br, 21, n) (8.7)

where Hi(Br,z1,m) = [d?k, k2L (Bp, ky,m) and
H{(Br,z1,n) = (%)QHf(ﬁF, 21,7m), cf. eq. (3.26). After integration over angles similar to
eq. (3.27) one obtains

d
n [gijaspf(ﬁp, Z1,m) + %(2212;' + gij21 )asHY (Br, 2.1, 77)] (8.8)
Br—1
= aSNC/ ag {9¢on(|2&|\/ of3s)asDs(Br — B,21,1)
Br=B 2 33 28? B3 }
[ BBF * BF * Br(Br — B) - Br(Br — 5)? " Br(Br — )3
+J2(|zL[v/oBs) ( 24 +gzg>ast(5F ﬁ’ZLn)ﬁF(ﬁf—B)
+iJO(|ZL|¢g@3)<2Z<Z< T | e ]
m?2 R T BrpB Br  Br(Br—B)

g” 2J2(’2J_|\/ O'BS)O(SHf BF_B,ZJ_,T/)

N

Br(Br —B)  Br(Br—B)?  Br(Br—pB)3

aSN Fdﬁ
B

where § = % (and o = €' as usual).

4
[gzgast(ﬁF, z1,m) + W(zzizj + i 23 )asHY (Br, 21, ?7)]
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This evolution equation can be rewritten as a system (cf. eq. (3.29) for DIS)

1
CZ’]aSDf < ZL?U) (89)

:asN {JO(m' LZR )[(1 Z) +—2+z(1—z)]aspf< zl,>
421_ZZZLJ2<IZL|\/i>ast (z 2L, >}7

dd as My <1 ZJ_777>

o () e ()
n :Ziu — 22, <|m\/%> a@(jl;,am)}

Pl
oBrs
the fraction of the “initial gluon momentum” carried by the hadron. By construction, this

where 2/ =1 — = 1 — Bzp. Here we introduced the standard notation zp = ﬁLF for

equation describes the evolution of fragmentation TMD at any zr and any k| ~ |z, |~'.
Let us demonstrate that eq. (8.9) agrees with the DGLAP equation for fragmentation
functions in the light-cone limit z; — ¥, . In this limit

d 1 « Ly 1
DI —.0,.1 =N, =1 J1-2)=2 8.10
dlnoas <ZF7 1, nas) = {/ZFZ/2 [z’(l—z’)+z( Z) ] ( )

/ 1 1 d /
anDf< OL,ans>ast (,OL,ans)/ i /}
ZF ZF 0 1—=2

As explained in eq. (3.30), with leading-log accuracy we can trade the cutoff in « for cutoff
in p2. In terms of the standard definition of fragmentation functions [3]

difern) =~ s fau 50 S D07 )l + X)p+ XIF4(0)0)
(8.11)

we have in the leading log approximation

1
df(zF,lnu )= 2215 <ZF,ZJ_ =0,Iln as) + O(ay) (8.12)
so we can rewrite eq. (8.10) in the form
Las(;z)df (zp,In p?) (8.13)
dIn ,u2 ’

ol 2 (2] + bt it ()

easily recognizable as the DGLAP equation for fragmentation functions [31-33]. (Here
again the term proportional to S-function is absent since FiaF"’i is defined with an extra «.)
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Finally, let us describe what happens if zp < 1 and we evolve from o ~ 1 to o ~ %
€

With double-log accuracy we have an equation

d 1 <N, 1 d? ,
de< Zl,”) =" Df( Zm”)/ 1 - i ] (8.14)
1] ZF 2 ZF b1

(cf. eq. (6.8)) with the solution of the Sudakov type

1 N, 1
Dt <,2L,lna> ~ exp{ _ Gsfle2 @ szf_}Df< 21, In —— °F ) (8.15)
zZp 2m ZF ZF 22s

The evolution with the single-log accuracy should be determined from the full system (8.9).

9 Conclusions

We have described the rapidity evolution of gluon TMD (1.6) with Wilson lines going
to +o0o in the whole range of Bjorken xp and the whole range of transverse momentum
k. It should be emphasized that with our definition of rapidity cutoff (2.1) the leading-
order matrix elements of TMD operators are UV-finite so the rapidity evolution is the
only evolution and it describes all the dynamics of gluon TMDs (1.6) in the leading-log
approximation.

The evolution equation for the gluon TMD (1.6) with rapidity cutoff (2.1) is given
by (5.5) and, in general, is non-linear. Nevertheless, for some specific cases the equa-
tion (5.5) linearizes. For example, let us consider the case when zp ~ 1. If in addition
kf_ ~ s, the non-linearity can be neglected for the whole range of evolution 1 > o > My
and we get the DGLAP-type system of equations (3.29). If & is small (~ few GeV) the
evolution is linear and leads to usual Sudakov factors (6.10). If we consider now the inter-
mediate case xp ~ 1 and s > k2 > m? N the evolution atl > o> % will be Sudakov-type

(see eq. (6.6)) but the evolution at 'L > 0> N will be described by the full master
equation (5.5).

For low-x region k| ~ few GeV and xp ~ % we get the non-linear evolution described
by the BK-type equatlon (6.3). If we now keep k2 ~ few GeV and take the intermediate
1>»axp=p06> L we get a mixture of linear and non-linear evolutions. If one evolves o
(+> rapidity) from 1 to ?l first there will be Sudakov-type double-log evolution (6.8) from
c=1too = ,l%is’ then the transitional region at o ~ ﬁ%g? and after that the non-linear
evolution (6.3) at i . The transition between the linear evolution (6.8) and
the non-linear one (6 3) should be described by the full equatlon (5.5).

Another interesting case is xg ~ @ and s > k‘2 > m3;. In this case, if we evolve o

from 1 to T7 first we have the BK evolution (6.3) up to o ~ % and then for the evolution
2 2
between o ~ ]% and o ~ "X we need the eq. (5.5) in full.

In conclusion, let us again emphasize that the evolution of the fragmentation
TMDs (2.10) is always linear and the corresponding equation (8.8) describes both the
DGLAP region ki ~ s and Sudakov region k:i ~ few GeV2,
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As an outlook, it would be very interesting to obtain the NLO correction to the evo-
lution equation (5.5). The NLO corrections to the BFKL [44, 45] and BK [17-20, 46-49]
equation are available but they suffer from the well-known problem that they lead to neg-
ative cross sections. This difficulty can be overcome by the “collinear resummation” of
double-logarithmic contributions for the BFKL [50-53] and BK [54-56] equations and we
hope that our eq. (5.5) and especially its future NLO version will help to solve the problem
of negative cross sections of NLO amplitudes at high energies.
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A Light-cone expansion of propagators

In this section we consider the case when the transverse momenta of background fast fields
[, are much smaller than the characteristic transverse momenta p; of “quantum” slow
gluons. As we discussed in section 2, in this case fast fields do not necessarily shrink to
a shock wave and one should use the light-cone expansion of propagators instead. The
parameter of expansion is the twist of the operator and we will expand up to operators
of leading collinear twist two. Such operators are built of two gluon operators ~ F,;F,;
or quark ones 1) p1¢ and gauge links. To get coefficients in front of these operators it
is sufficient to consider the external gluon field of the type Ae(zs,21) and quark fields
#11(2+, r1 ) with all other components being zero.'?

For simplicity, let us again start with the expansion of a scalar propagator.

A.1 Scalar propagator
A.1.1 Feynman propagator for a scalar particle in the background gluon field

For simplicity we will first perform the calculation for “scalar propagator” (xlp%ﬂely) As

we mentioned above, we assume that the only nonzero component of the external field is

A, and it does not depend on z, so the operator o = i(%. commutes with all background

fields. The propagator in the external field Ae(zx, 21 ) has the form

1 da 0 da
it - [ i — 2 [ L Al
(el prgel) = | =i =) [ 58 40—z [ 5] (A1)
) T 2 2
x e—mw—y)-(mpexp{ i [“ _ gA.<z*>} }m)
» Qs S

0The 2, dependence of the external fields can be omitted since due to the rapidity ordering a’s of the
fast fields are much less than «o’s of the slow ones.
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The Pexp in the r.h.s. of eq. (A.1) can be transformed to

. T 2 9
atpep i ["an 2 - 2 4] oy
Y
2 . Ty 2 P2
:(M|ei’2¢<x*y*>pexp{2f/ dz, el (= y*)A,(z*)ez’ng(z*y*)}|yL) (A.2)

Since the longitudinal distances z, inside the shock wave are small we can expand

p2 p2 *
oo G Age s (o) — A, - 2l Ry - = 202 2) V. ', DiFui}} + ..

:A.—z*;Sy*(2piF.i—iDiF.i)— (7*)( 'p —ip) DY)YDjFy; + ... (A.3)

This is effectively expansion around the light ray y, + 2y*pl with the parameter of

1|

the expansion ~ ] < 1. As we mentioned, we will expand up to the operator(s) with
twist two.
We obtain
) L p2 P2
O(Zs, ysi L) = Pexp{Zg/ dz, € ok (2 y*)A.(z*)e—zj;(z*—y*)} (A.4)
s
Yx

21 —Y)« i Y] * i0J )t
=1+ = {A° - %?(2#F.i —iD'Fui) ~ 2w( "W — i D')D;Fyi
Yx

Zx — . ! .
49 dz*/ dz [A. _ M‘plp.i] [A. _ MPJF.].:| +
Ys Ys as as

82

It is clear that the terms ~ A, will combine to form gauge links so the r.h.s. of the above
equation will turn to

O, Yu; PL) = (4, Y] — 2292/ dz, (2 — y)*<2pj[1f*72*]F-j(Z*) — i[z., 2] DV Fuj(2)
+2@(pjp (s, 2] — ip¥la, Z*]Dj)DkF-j> (20, 4]

o] e [ (= (o ey ) 2RI (A.5)

( )

e SRRV N N L ER) [ERA R

where dots stand for the higher twists.
Thus, the final expansion of the propagator (A.1) near the light cone y, + %y*pl takes
the form

(g = | =06 =) [758 +i0(0 ) [ :iﬂ (A.6)

—ia(z—y)e —ii(x—y)*o .
xXe ($L|€ s ($*,y*,pL)|yL)

Note that the transverse arguments of all background fields in eq. (A.6) are effectively v .
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A.1.2 Scalar propagator for the complex conjugate amplitude

For calculations of the complex conjugate amplitude we need also the propagator

el = [0~ [ 50 oo [ 0] (A7)
xe—iaw—w-mypexp{ ~if e [pi - 29;1.(,2*)] }\yn

For the calculation of the square of Lipatov vertex we need to consider point x inside the
shock wave and point y outside. In this case one should rewrite eq. (A.2) as follows

(a:J_|Pexp{ —i/j*dz KZ — A )] }!yﬂ

2ig o 7ii(x —2x) vl L (z—24) fii(a: —Yx)
= (x |Pexp s/ Az, e Vs T 72) A (2, )ebas (@ m2) R emiqs (Tmu) |y ) (A.8)
Yx

The light-cone expansion around x| + %aj*pl is given by eq. (A.3) with y, — =,

2 2
¢i'as Grmt) J et as (5emee) (A.9)

(s =) = = i R B

= A. — z T (QF.jpj + iﬁjﬁ.j) —

as

(the only difference with the expansion (A.3) is that we should put the operators p’ to the
right) and therefore

21 Ze — Ty, ~ i~ Zy
+79 dz* [A. R (2F.jp7 + zDJF.j) — 2%(D F.pr’ +iD'D; F.Zp])

/ dz*/j*dsz [;1, _ Q(Zo;x)* ~“p] [A - Q(ZO;””) .pr] (A.10)

which turns to

- 23
O(Tw, Ys; p1) = [Ts, ys] + g/ dzy [Ty, 24 {2F.j z*)[z*,y*]p] —I—ZDJF.J(z*)[z*,y*]

(z

y(bkﬁ.j(z*)[z*,y*]pjpk +iD? DiFuj(z0) 2, y:]p") } (2 — 2),

+8g3/* dz*/jdz; (2 — ) &| T, 24 ( — iFaj ()2, 2 FV (20) 20, ]

+2

_Q(ZOZ;C)*F.]‘(Z*)[Z*,Z }Fok( /)[ fk?y*]p]pk> + ... (A.ll)
and we get
(x|P21—z'e‘y) - [w(y*—x*)/o %—29( y*)/ Za] (A.12)

2
x T (g[GOl yespr)e @ D fy )

Here (in eq. (A.11)) the transverse arguments of all background fields are effectively z .
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A.1.3 The emission vertex

For the calculation of Lipatov vertex we need the propagator in mixed representation
(k‘|PQJr |z) in the limit k2 — 0 where &k —ap1—|— p2+kj_

1 2 o o a0 1
Ly =2 awda, ihe | _ - Al
P yic?) s/dm dredies e [ “redw, T (A13)

First, we perform the trivial integrations over z, and x| :

K (k]

lim &2(k A4
1mk:( |P2—|—ze|y) ( )

2

k2 a 1 P .
/dw*d z) e'as i) [ax - fﬁ] 0(z — y)u(zole™ @ OO, yui p1 ) lys e

as

&2 ) 2 o )
:/dm*deL ela*tx*_z(k’”")i($L|e_z%(x_y)*£9($ = Y)«O(@s, ys; pL)|yL)e" Y

. k2 o
— ot [ o200 = ). (6110w yei k)l

2

= el a1 000, i,y )

where O(00, yx, y1; k) = eF¥L (k1 |O(00, ys; k)|yL). In the explicit form

O(00, ys; yL; k)
2ig .
= [00, Ys)y — s? dz* (z —y)« (ij [00, 2]y Foj(24, Y1) — i[00, 24|y D? F.J (24, y1)
Yx

+2M(kﬂ‘kl[oo 2]y — ik![00, 24y Dj)DzF.j<z*,yL)> N

2 [t [ . (e o o 2D A )

20 D oo )y oy o 2y P ) ) el (A15)

where the transverse arguments of all fields are 3, and p’ is replaced by k7.
Similarly, for the complex conjugate amplitude we get

lim k‘2(ﬂs| ! _|k) = e *2O(z,, 00,21 ; k) (A.16)

k2—0 — 1€

where @(:B*, 00, k) = (21 ]0(z, 00, p )|k1)e "B or, in the explicit form

(’}(:L'*,oo,xl;k:)

%qg [ . S
= X4, 00]5 + 04392/ dzs [m*,z*]m{2F.j(z*,xl)[z*,oo]mk] + 1D Fyj(24, 1 )24, 00|
T x

128 (DB ) 0ClaB K 4 DI DLy (2 00La) } 2 — 2,
—|-8i dz Oodz’ (2 = 2)u[Ta, 2w | — 1Foj (20, 1) |2, 2L]a Fu7 (2L, 1) [2L, o]

a53 * : * s Ly ©x | oj <%y L | xy “xlxl o PERCEN *9 T
—27(2 — )

as

'j(z*7 ‘T;J_)[z*’ Zi]wpol(ziv xL)[’?’{w Oo]mkjkl) T+ (A17)
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In the complex conjugate amplitude we expand around the light cone x;, + %w*pl so the
transverse arguments of all fields in eq. (A.17) are z; . Note that the second terms in the
r.h.s. of egs. (A.6) and (A.7) (proportional to fBoo d«a) do not contribute since o > 0 for
the emitted particle.

A.2 Gluon propagator

A.2.1 Gluon propagator in the background gluon field

As we saw in the previous section, to get the emission vertex (A.13) it is sufficient to write
down the propagator at x, > y4. The gluon propagator in the bF gauge has the form

./ Aa 1 a
Z<A (z )Ab( ) = (z \m\y)ﬂ (A.18)
T >Yx . da e ta(z—y)e [ by 2ig ab
2 [T G et (:chPexp{—z / K [as— <z*>—a8F<z*>]}y¢>W

_ / Tda -y
0 2c

p2 Tx 9 P2 2 p?2 ab
x(xL]e_Zw(x*_y*)Pexp{ig/ d—z, eias (2o =vs) (A, + F) (z*)e_’as(z*—y*)} ly1)
ve S a

%

*

where powers of I are treated as usual, for example (FAFF),, = FfA. ggnF”AFAV. The
expansion (A.3) now looks like

2 . 2 .
e’ ik (2 —ys) <A09W + ZF,“,> efi%(zfy*) = AeGuw + lF;w
e

2
— Yx 2= Y)x
+Z s [pL,A-Q;w + FMV:| - (2a232) [PQL» |:p3_aA°g/U/ + FW”

Zx — Yx i ] Z=Y)k, 4 . j
= G [A, - Y (2p' Foj — iD’ Fyj) — 2%(197;9’“1)]-1?.,{ — zkakD]F.j)}

(z—y):

+ F,W+21 > y*pJD s + 205 25 pp DDy + . (A.19)

so we get

T 2 pz
Quu(w*,y*;m)EPexp{ig/ d2z* ¢ias (2= y*>(A + F>( e tas e y*)} (A.20)

Yx

‘ Tx 9 i(z ) 7 —z (» T 9 2 (z )
= gu 19 d—zy € as\#7Y) [ Ay + —F (z4)e *=Yx) _ d 2, €las (B Yx
. 8 & Ys
. 2 « 2 2
% (A. + Zp) (z*)eiit(hy*)/z dgz; i (=) (A. + Zp) (Zi)efi%(éfy*)
« S «
HE * v
27/ Lx z — * . i . z — z .
= G + 2 dz*{g/w [A-(Z*) - M(QI?ZFoz‘ —iD'Fe;) — 2%(;071916173‘1?-16
S Jy. as a?s

—ZkakD]F.j)} + = Fu + Py e Y Y DF + QZ%p?ka DyF V}
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492 o = ( i (Z - y)*
- dze | d Ae + —F e — 2 Fo;
52 /y : /y o [ng t ot T 2u 4 s /

. ,
x [5§A. + ipﬁu _ 2pk(2y)*p.k5§] n

= g,uy .%'*7?/* +g/ dzy <_ (Z — y)*gMV{ij[w*7z*]F'j(z*) B [x*,Z*]D F ( )
Y
+2 (2 — — Y) (pjpk[x*, Z*]DjF.k — ipk[x*, z*]DijFoj)}
((57]921/ — (53102#){[513*, Z*]FOJ(Z*) + Q(ZCV_Sy)*pk[x*’ Z*]DkF.j(Z*)

+2 (z ; yQ)*pkpz [+, 2] DDy Foj }) (24, ]
dz*/ ( [Zguv Ty - jspzupzu] [T, 24] Foj (2:) [24, 2] Fy 7 (2})
_Q%ﬁpk(z - y)*(zl - y)*[x*, z*]F.j(z*)[z*, ]F.k( /)> [Z;, y*]

Note that FuéanFnV and higher terms of the expansion in powers of F},, vanish since the
only non-vanishing field strength is Fy;.
Finally,

1 ab __ . Cda 0 do
(Jﬂm@)w = [—19(33* —y*)/o % + i6(y« *)/OOQCY] (A.21)

x e~te@Y)e (g [e0as 2 (o). "G (@ v pL)lyL)

For the complex conjugate amplitude we obtain in a similar way

el = [0 -0 (T30 i -0 [ 52] a2

2

P _
(2 1|G8 (s, yuspr e as Ty )

> efza(x Y)e

where

~ T 2 2 _ P 2
G (Ta, ys;P1) = PeXp{ig/ d—z elas (o) <A. + ;F> (z4)e Zn(’z*_””*)} (A.23)
Ysx g

ys 2 . o
= gl 0 [ s oz ( 25— 2o 2Pl I 4 1D F o)

I x
_1_2@

~ )y <z*>[z*,y*]pjp'f+¢Dkbjﬁ.j<z*>[z*,y*]pk>}

2(z — )«

s ﬁkﬁ.j(z*)[z*,y*]pk

G 5,Zp2u>{ﬁ.j(z*)[z*, ]+

z—x)? ~ - -
+2(a282)*DleFOj(Z*)[Z*7 y*]pkpl})
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(a) (b)
Figure 7. Gluon propagator in an external quark field.

. 2 _
+ [t [z = e =00 = Lo | Bt 1R G
Zg/u/ / [ /
I (o ) = @) P2, 2 Pk () 2L 0
A.2.2 Gluon propagator in the background quark field

We do not impose the condition D'F,; = 0 so our external field has quark sources D'F - =
gt® p11p which we need to take into consideration. The corresponding contribution to
gluon propagator comes from diagrams in figure 7

1 1
a b 2 4 34 1 ac/ ! db
(A @A) e 7 = 5 [ 2% <a:|P2 ) ) (A:24)

[(zwm P w1 + (2Nt o Putb]2)

P2 P2
As we mentioned above, we can consider quark fields with —i—% spin projection onto p;
direction which corresponds to v(...)1 operators of leading collinear twist. In this ap-
proximation p21) = 0 so the only non-zero propagators are (Ae(z)Ae(y)), (Ae(z)Ai(y))
and (A;(z)A;(y)). In addition, we assume that the quark fields 1(z) depend only on z|
and z, (same as gluon fields) so the operator & = %ﬁ* commutes with all background-field
operators. We get

1
b s o[ db
(2@ ALt 7 = 2ig? [ d'as <x|P2 1) ) (4.25)
- 1
) td |t P, #1t°
Gl AP e 901 + (0 P rt0l)
In our gluon field P = ap; + 2%P.—|— p1 so P? =2aP, —p? + % P27’ Foj and one can
rewrite P, i +Z€ as
1 1
P = (B4 e Gan )
2aPy — p; + i€ 2 2 2aPy — p + i€
1 1
—+ it (A.26)

" 2a ' 2a2aP, —p? +ic
(the term %]ngfij.j does not contribute due to o) = 0). Similarly,

1 1 1 2
o=+ 55— PL (A.27)
2aP, — p; +1i€ 20 2aP, —p; +i€2a
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so one can rewrite the propagator (A.24) as

1 .
A% 4b — R & Y/ . ab
< o(m) o(y)>ﬁgure 7 Zg($|a(P2 iE)D Fo] P2 ZE!y) (A.28)

1 db
td

1 ‘ ‘ ca
ot A =20 - 80 () o

[

sig? ol (parrs ) (R0 + 2050 - e

1 bd

. 2 74d
—_— t

+g (y’<a(P2+i6)> v P2

—_

where in the first line we have rewritten g2i[t¢, t4] p11p as —g(DI Fy;)?

Similarly, we get

(AX(2) A () igure 7 (4.29)
-9 1 e A YA c 1 ®
— il () - 00 ot gt () W
—ig*(y| <P21—i-ze) Yt d 1 t Vi P17 (Yp? + i071)) <P )
N ) 1 db
<Ag($)A?(y)>ﬁgure T = 192(17’ (M) dy}'@ ﬁlfyj P2 1 e w <P2 + ZG) |y)

) o bd o 1 ca
+ig (y’<P2+ie> (0l 22 tCWj%%w(M) |2)

for the remaining propagators.

If now the point y lies inside the shock wave we can expand the gluon and quark
propagators around the light ray y, + %y*pl. It is easy to see that the expansion of the
gluon fields A, given by eq. (A.3) exceeds our twist-two accuracy so we need only expansion
of quark fields which is

2 2
Pl
—igs (

ei%(z*fy*)we (o Ze—Yx) 1/}+2 y*p]Dﬂ/J"i‘ (A?)O)

(and similarly for ¢ and D'Fy;).

It is convenient to parametrize quark contribution in the same way as the gluon
one (A.21)

<AZ($)Ag(y)>ﬁgure 7= [— O(zs — y*)/o ? + 0(ysx *)/io‘;z] eia(z—y)e

2 _ 'p2
x | (2 e as y>*Qab<:c*,y*;m>\yL>+(yung;m,y*;pme—’aﬂf—”*m)] (A.31)
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In the leading order we need only the first two terms of the expansion (A.30) which gives

QU (24, yu; 1)
g

' 2z — 1), ' ab
A (12D R loee] + 2E 0 DD gl ]
2

w5 [Tt [ 020G + 2075 D 60) il e i, 02
Yx *

+2 —Yx 2
Oé

P20 D (22) P12 2t 20, 4 e,
+25 V2 () e )t

2 (2)

and

Qfl: (33*7 YsiPL

)
s [ [ [0 e 100~ 2D
_QZ* _

G Dy (22) il vl Ly w1 o, 2

_Qiy*

() Lo, g ) e, o, 20D (P P

]7/)( )pﬂﬂ

(A.33)

Similarly, for propagator (Ae(z)A;(y)) one gets

Qe (T, yu; P1)
2 . 2 . LY
agSQ /y* dZ*/y* dz, [[p%(z*) — i D7 (2)]y; ]dlfyi[z*,x*]ta[x*,y*]tb[y*, 2] (22)
+2(Za_5y)*pjpk¢ Dic (2075 Bryilizes s gy, 2L10(2L)
2 =y
as

PR s Bryilze, 2t 2, vt [y, Zi]Dkw(Zi)]

_l’_

(A.34)
Q?z [L‘*, y*,PL

-5 /d [ [t o e 0+ D70
—2

¢Dk (24)7i 1’5173 (24, y*]t [V, Tt [T, Z;W’(Z/ )pjpk

_2%1/;(2*)% B1v; (2o, Yt [y, 2]t [, ZﬂDkl/J(Zi)pjpk} (A.35)

For the propagator (A;(z)A(y)) the corresponding expressions Q% (x., y.;py) and
Sab

Q% (x4, y«; p1 ) are obtained from egs. (A.34) and (A.35) by replacements in the r.h.s.’s
Y5 Pryi = i P1y; and i Pry; — y; Pryi, respectively.

— 56 —



Finally, for the propagator (A4;(z)A;(y)) we obtain

g2 T 2 _
R [W*m Brilms 2t gt 2 J0(2)

b . _
Q?j (x*yy*,pL) - 0482
29 (21)

+2(a_sy)* kak (Z*)%le%[z*,x*]t [x*,y*]tb[y*,
2D il e 0 P DD (80)

+
as

92 T s T _
iz [ et [wmm Brrilen, 9l )t 20, 106 (2)

k

~ab . —

Q?j (:E*,y*,pL) T as2 ”

Zx — Yx o b= . . b a /
T/J(Z*)Dk ij %172[2*7y*]t [y*ax*]t [x*az*]¢(2

!/

P

-2

_2%1;('2*)73 ﬂl’yi[z*ay*]tb[y*a%*]t [33*, ]Dkw( )pk:| (A 37)

For the complex conjugate amplitude we get in a similar way

da Y da »
hadhnd wer —ia(z—y)e
+ 0(zs — ys) /_ 2a] e

(A A s 7 = | = 000 ) [ 5
) + (e @ QZi<m*,y*;m>|m] (A.38)

x [wézux*,y*;m)e =

where

Q‘.".’(ﬂc*,y*;m)
B o B o ab
i [ s ([ 2 D) o] - 2 5D Rl
Y Y ~ 7
+W dz*/ dz, L[J Z4) P12, Tt [, Y]t [y*’ ](¢( ) — 2Dy )pj)

20 ()Pt p

o 1/_’[)] (24) P1[2x, Tt 24, ?J*]tb[y*7

2T ) il 2t s et e 0D R

tof
(A.39)

+2

:ab

Q 1'*7y*7pl_
Y ~ o~ -
/ . / 02! [ 20(2) + 20p70 D () e, 9]y, 21 s 2115 (2)

2

a352
= P]¢D (Z*)ﬁl[z*vy*]t [y*,x*]ta[x*,z;]q/;(z

—2
(A.40)

— 2 Q/ZJ(Z*)751[2*,y*]tb[y*,x*]ta[w*,Zi]DjT;(Z*)

—2
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and

QU (2, yu; 1)

2 Yx Y= ~
- a2i2/ dz*/ dz., [1/’(2*)%' Prvilze, 2t [0, yult [y, 2L (bp7 + iDTy)
+2 = _Sx*lzf?k (z*)%‘ P1Yi 25, Tt [T, Y]t [y*, ]T’ZJ( )pj
+2 S x*i/:}(z*)% ]51%'[2*, .T*]ta[.fw y*] [y*v ]Dklp( )p]pk (A41)

= ab
Qoz (w*ay*QpJ_)

_ /d / i {pw—mwmm[z*,y*] [y 2t 2, 2LJ00(1)

a?s?
—22*‘ I Dy (22 1 e el 2t s 2110 (21)
. — T2 ) 1Y [ Yol [ ]t [, 2] Dt (2L) (A.42)

To get Qab one should again make the replacement v; p17; — i p17; in eq. (A.41) and to

get Qz, the replacement ~; p1v; — vj P17 in eq. (A.42). Finally, similarly to eq. (A.36)
one obtains

~ Yx Yx ~ ~
Q?Jb(xmy*;pj_) 82/ dZ*/ dZ |:w Zx 71 ﬁlﬂ)/j[z*;x*]t [x*7y*]tb[y*72i]¢

+2 dJDk (22)7% B1Yjl2e, TJt? [x*,y*]tb[y*,z;]@;(zi)pk

+2Z*‘”“’*wz*)wmj[z*,x*]ta[x*,y*] Py, 2] Dz >pk] (A.43)
~a 2 Y ~
Qi;)(xwy*;pj_) = —% dz*/ dZ |:¢’7J ]él’yl[z*,y*]t [y*,l“*] [JI*, ]1/}( )

N S kl/?f?k (2)7) B1%il 2w, Yl [y, 2]t [, 24]00(21)

9% ;S “p(z )y il vt [y*,x*]ta[x*,z;]bkzﬁ(z;)] (A.44)

A.2.3 Final form of the gluon propagator

Assembling terms from two previous sections we get the final result for
background-Feynman gluon propagator in external field in the form

(Af(2) AL (v)) (A.45)
o 0 Fa . p3
= [_ O(x, — y*)/o % + 6(y. *)/ d] e—za(vc—y).{($L|e—za(rc—y)*

oo 20

ab . ab . ~ab . fii(:pfy)*
x [guu(x*ay*apL) + Quu(x*)y*apL)] |yL) + (yL|Q,u1/(x*7y*apL)e s |xl)}
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for Feynman propagator and
(A5 (2) AL (y)) (A.46)
da O dal i
= [0t [ TG 0 =) [ G e oG ip)
0 «

—00
2
~ P AN = ab
+O0 (2, yuipr) e o Ty ) + (yole T T Q (2 yui )L }
for the anti-Feynman propagator in the complex conjugate amplitude.

A.3 Vertex of gluon emission

Repeating the steps which lead us to eq. (A.14) we obtain
lim_ K2(A% (k)AL (y)) = —ie™ O (00, g, g3 b), (A.47)
k2—0

O (00, 4wy 15 k) = Gt (00, 5, y 13 k) + Qi (00, 5, y 13 k) + Qi (00, Y y 15 §)

where

Go (00, Y,y 13 k) = ei(k’y)L(kL!ngZ(oo,y*;m)lym
QI (00, Y, Y13 k) = €'t (kL’Q,W(OO Y DL)YL),
Q% (00, Y, Y15 k) = e BV (y, |QP (00, yusp ) K ) (A.48)

The explicit expressions can be read from eqgs. (A.20) and (A.32)—(A.37) by taking the
transverse arguments of all fields to be y| and replacing the operators p/ with k7 similarly
to eq. (A.15).

Similarly, for the complex conjugate amplitude the emission vertex takes the form

lim k*(A%(2) AL (k) = ie” O (2,,00, 21 k), (A.49)
k2—0
. ~ = ab
Oab (37*7 00, T ; k) = gzg(«x*; o0, T 15 k) + QZZ,)/(x*7 00, T ; k) + Quu(x*’ 00, T L; k)
where
Gl (w4, 00,21 5k) = e " FDL (211G (2, 005p1 )|k ),
Oy (s, 00,215 k) = €7D (2 | Qg (s, 005 p1 ) k),
= ab . = ab
Q,U,V(x*7 o0, T k) = el(kw)l (kJ-‘ Qw/(x*a Oo;pJ_)|xJ_) (A5O)

Again, the explicit expressions can be read from egs. (A.23) and (A.39)-(A.44) by taking
the transverse arguments of all fields to be x, (and replacing the operators p/ with k7)
similarly to eq. (A.17).

B Propagators in the shock-wave background

In this section we consider propagators of slow fields in the background of fast fields in the
case when the characteristic transverse momenta of fast fields (k) and slow fields (I ) are
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comparable. In this case the usual rescaling of ref. [8, 9] applies and we can again consider
the external fields of the type Aq(zy, z) with A; = A, = 0.
Actually, since the typical longitudinal size of fast fields is o, ~ %s and the typical
1

distances traveled by slow gluons are ~ % our formulas will remain correct if 2 > k%
since the shock wave is even thinner in this case. As we discussed above, we assume that
the support of the shock wave is thin but not infinitely thin. For our calculations we need
gluon propagators with both points outside the shock wave and propagator with one point
inside and one outside. It is convenient to start from the latter case since all the necessary
formulas can be deduced from the light-cone expansion discussed in the previous section.

To illustrate this, let us again for simplicity consider scalar propagator.

B.1 Propagators with one point in the shock wave

B.1.1 Scalar propagator

For simplicity we will again perform at first the calculation for “scalar propagator”
(x|P%+Ze|y) As usual, we assume that the only nonzero component of the external field is
A, and it does not depend on z, so the operator a = ia%. commutes with all background
fields. The propagator in the external field Aq (24, 2z, ) is given by eq. (A.1) and (A.2) which
can be rewritten as

1 Cda O da ,
| _ - . - —ia(z—y)e
(@l a7 1¥) [ if) (. y*>/0 5o i — ) /_ Oom}e (B.1)

p2 A L p2 p?
x(xJ_|elof;(w*y*)Pexp{Zg/ dzy elaﬁ(z*y*)A.(z*)ezoi(z*y*)}‘yl)

*

Suppose the point y lies inside the shock wave (the point  may be inside or outside of the
o’s )

shock wave). Since the longitudinal distances z, inside the shock wave are small (~ %*
€L

2 /
we can use the expansion (A.3) but the parameter of the expansion is now %0* ~ L1
rather than twist of the operator. Consequently, the last term in eq. (A.3) can be neglected

2
since it has an extra factor %O'* in comparison to the second term:

Pl il
elas (Zx—y») A.€*Z§ (zx—yx)

= Ay — 2"V (9)iF,; —iD'F,;) — 2%@@7 — ip! DY)D; Fyi + ...
as a“s

Zx — Yx
as

= Ay — (2p'Fo; —iD"Fo) + ... (B.2)

This is again the expansion around the light ray y, + %y*pl but now with the parameter of
2

the expansion ~ %U* < 1. However, we need to keep the second term of this expansion

since the first term forms gauge links (for example, it is absent in the A, = 0 gauge).

Since there are no new terms in the expansion (B.2) in comparison to (A.3) we can
look at the final result (A.5) for O(xy,y«;p1) and drop the terms which are small with
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respect to our new power counting. This way the eq. (A.5) reduces to

O(@s, Y3 1)
2ig . , ,
= [T, Y] — osz/ dzi (2 = y)a {207 [4, 2] Foj(24) — i@, 2] D? Foj(2:) } 24, 4]
829 = ’ YA
+$ dz* dz, (2" — Y)«[@s, 2| Foj (24) 24, 2 ) Fo? (20) [25, ) + - - (B.3)
and the propagator has the form (A.6)
1 Cdo 0 da
——y) = | —if(xs — ys — 4+ i0(ys — s — B4
(el gel) = | =i =) [ 52 40—z [ 5] (B.4)

% —ia(z—y)e fii(zfy)*o .
e (zole " as (Txs ysiPL) Y1)

As we mentioned, this formula is correct for the point y inside the shock wave and the
point z inside or outside.

Similarly, for the complex conjugate amplitude we obtain the propagator in the
form (A.12) with

O (s, y; L)
= [2a, 3] + 229/ dzy (2 — ) [x*,z*]{QF.j(z*)[z*,y*]pj +il~)jﬁ.j(z*)[z*,y*]}

_ 8ig® / Az, (2 — ) [Ta, 2] Foj (20) |20y 2. FVI (21) 20, 4] + - .- (B.5)

s’

which is the expansion (A.ll) but with fewer number of terms. Again, the formula (A.12)
with O(x,,y+; p1) given by the above expression is correct for the point z inside the shock
wave and the point y inside or outside.

The expressions for particle production are the same as (A.14) and (A.16) with
O(00, Y, y1: k) and O(x,, 00,z ; k) changed to eqs. (B.3) and (B.5), respectively.

B.1.2 Gluon propagator and vertex of gluon emission

As we saw in previous section, the gluon propagator with one point in the shock wave can
be obtained in the same way as the propagator near the light cone, only the parameter of
the expansion is different: L -0, rather than the twist of the operator. Careful inspection of
the expansions (A.19) and (A.30) reveals that there is no leading or next-to-leading terms
with twist larger than four so we can recycle the final formulas (A.45) and (A.46) for gluon

propagators. At 2 —a* < 1 the expression (A.20) for G, (x«, y«;p1) turns to
guu(w*yy*§pj_) (B6)

= g#l/[x*a Yi] + g/x*dz* ( - ;;2 (2 — y)*g#y{ij[x*, z*]F.j(Z*) — i[@y, Z*]DjF'j(Z*)}

+7(5Jp21/ - 5}1])2”)[1'*7 Z*]Fo](z*)> [Z*7 y*]
892 o = ’ 2 ) I 50\
tog | da | dz g (2 = Y — —papa | [T, 2 Faj(24) [z, 2 B (20) 2, 4]

3
as? J,,
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Looking at quark formulas (A.32)—(A.37) we see that at —a* < 1 the only surviving
terms are the first terms in the r.h.s’s of these equations. Let us compare now the size
of these terms to the gluon contribution (B.6). The “power counting” for external quark
fields in comparison to gluon ones is %fdz*l/; D1Y(ze) ~ %fdz*DiF.i(z*) ~ liU ~ li
and each extra integration inside the shock wave brings extra o,. The first lines in r.h.s.’s
of eqs. (A.34) and (A.35) are of order of gjls’; fdz*iz D1(z) ~ gpig o« 80 they can be
neglected in comparison to the corresponding term f dzy Fei(z4) ~ g% in eq. (B.6). As

to the terms (A.36) and (A.37), they are of the same odrer of magnitude as next-to-leading
terms ~ g,,, in eq. (B.6) so we keep them for now. With these approximations we obtain

szy(x*»y*;pL) = _062g3p2,up2u/ dz*([x*7Z*]DjFoj(Z*)[Z*ay*])ab (B7)
g9 :
v 2 [ e b e bl P o)
2

— g _
QZ?/(@”*,?/*aPL) = _OéS2 dZ*/ dZ;ﬂWsz I’jl’hﬂz*ay*]tb[y*aI*]ta[ﬂf*J;W(zi)
Y

and the gluon propagator is given by eq. (A.45) with the above G, Q, and QW:

(A5 (2) A (y)) (B.8)
« O da P
= {— 0(zs — y*)/0 ;La + 0(y. *)/ Za] e~ @Yo L) |~ as (FmY)

> [gab (.CC . ab . Nab . fii(a:fy)*
o (T Y DL) + Qo (T, Y p) ] lyL) + (WL | Qi (24, Y5 p1 e s z1)}

As in the scalar case, it is easy to see that eq. (B.8) holds true if the point y is inside the
shock wave and the point x anywhere.
Similarly, in the complex conjugate amplitude the gluon propagator is given by

eq. (A.46) with
guu(w*a y*SpJ_) (B,Q)

Yx 21 ~ . o~
= 9w [:E*, y*] +9g dz [l‘*, Z*] (Oé82(z - $>*g,uzx{2Foj(Z*)[Z*a y*]p] + ZDJF.]'(Z*)[Z*, y*]}

T

4 A .
—*2<6z¢p2y — Spa) Fay (=) m)

| 2 _ iy
0483 dz*/ x*7 Zx ( Zg;w(z - x) - 7p2up2V]F ( )[Z*v ZL]F.] (Z;)[Zi,y*D

and
~ 44 Y . b
Qﬁ?,(x*,y*;pﬂ = ag:sggp2up2y/ dz*([z:*,z*]DJF.j(z*)[z*,y*])a (B'10>
X%
92 Y Ve o )= 1 1 a b T
+Q dZ* dz*w(z*)'y‘u %171/ [Z*,]I*]t [.’L’*,y*]t [y*,Z*]"l/J(Z*),
Zx

= ab

Yx Zx ~ ~
Quu(x*vy*;pJ_) = _a32/ dz*/ dZ; QWVL %17j[z*7y*]tb[y*ax*]ta[x*a Z;W(Zi)
T T
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The expressions (B.9) and (B.10) are valid for point z inside the shock wave (and point y
inside or outside).

The corresponding expressions for the Lipatov vertex of gluon production are given by
egs. (A.47)—(A.50) with G, Q, and Q changed accordingly.

B.2 Propagators with both points outside the shock wave

In this section we will find the propagators with both points outside the shock wave. Again,
we assume that the characteristic shock-wave transverse momenta are of order of transverse
momenta of “quantum” fields with o > ¢’. As discussed in section 2, we consider the width
of the shock-wave to be small but finite, consequently we can not recycle formulas from
ref. [8, 9] for the infinitely thin shock-wave.

B.2.1 Scalar propagator

As in the previous section, for simplicity we start with the scalar propagator (A.1)

! 22y 5 (TR ia(ey). / [
(x|P2+Z,6]y) = Z/o 5 © (1 |Pexpq — i *dz* e o(z) | plyL)
(B.11)

The Pexp in the r.h.s. of eq. (B.11) can be transformed to

2 T 2 2 2
,ipiLz* . 2 iz* 7’L'pfj‘z 2L
(x|e " as®™Pexpqig [ d—zie'as™ Ag(zy)e "as® te'as
s

*

) = /d22ld2zi (B.12)
2

‘ T 9 2 2 2
X(Q?LleZ%x*!ﬂ)(zﬂpexp{ig/ o elz‘;tz*A-(Z*)eZ“éz*}’zli)(zilel%y*\m)
S
Yx

Next, we use the expansion (B.2) at y, =0
il il
elas S5 Age s = A, ——(Qp 'Foi —iD'Fy;) + ... (B.13)
as

This is an expansion around the light cone z, + gz*pl with the parameter of the expansion

2
~ %U* < 1. Note that similarly to eq. (B.2) we need to keep the second term of this
expansion since the first term forms gauge links.

From egs. (A.4) and (A.5) we obtain (cf. eq. (A.6))

ly) = [—i@(:c*—y*)/ooom+19( —x*)/o do‘} e =Y)e  (B.14)

2a oo 20

@l 5

2 —iix* iiy*
X [d?z (xp]e " as ™ O(zs, ys;pr)|zL) (2L ]€ @Y |y L)

where
O(x*,y*,m
= [Ty, Y] — / dzi 2 2p] [T, 2] Foj(24) —i[:v*,z*]DjF.j(z*))[z*,y*]
8293/ dz*/ A2l 2w, 2| Faj(2:0) 25, 2L Fd (20) (20, Y] + - - - (B.15)
as :
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Here the transverse arguments of all fields turn effectively to z; . Note that this expression
is equal to eq. (A.5) at y. = 0. For the complex conjugate amplitude one obtains (cf.

eq. (A.12))

1 ® da 0 da )
= |1 — - —ia(T—Y)e
(JIIPZ — Z.€|y) [Z@(y* x*)/o 5 i60(2+ y*)/ 20{} e (B.16)

—00

2 —iix*~ iiy*
X [ d*zi (z1]e™" T O, yssp1) |20 ) (21 |e' @Y [y )

where
- 2ig
O,y p1) = [x*,y*HT / Qe 2ales 2] (2B (20) er ylp? + D9 Fug(22) 22 1))
819 dz dz [Ty 2] Faj (20) (205 2L) o BT (20) 20, ] (B.17)
CMS?’ * H [k o x )| Zxs Zx ]zl o w ) [“xs Yx .

Again, this expression can be obtained from eq. (A.11) by taking x, — 0 in parentheses.

B.2.2 The emission vertex

Similarly to eq. (A.14) we get

1 s
: 2 —La.—i(kx
klggok‘ (k| P |y) /dx*d z) easTmilka)L (B.18)
a 7, ) 2 2
_ za o Ly, 1QYe
X [&c* s 05 } T /d 21 (wole™ a2 ) (21 |O (s, yus pr)e o ¥ [y e

/dx*(?x 0(z — y)u(kL|O(zs, yu; pL )€ ‘”y*‘yj_) 1oye
2

:/d2ZJ_ e 2L 000, yy; 215 k)(zJ_\ei%y* |y )e've

where O(c0, y«, 21 ; k) is obtained from eq. (B.15)

O(00,ys, 21 k) = ei(k’z)L(le’)(oo y*;pl)]zl) (B.19)
2 . o
= [00, Yu]» — as% dz* 2[00, 242 (2K Foj — 1D’ Foj) (24, 21 ) |24, Y] 2
Yx
+8/Lg d Z*d / / F . F ] !/
E " Zx e Z*[OO7Z*]Z OJ(Z*7ZJ_)[Z*7 ] (2*72J_)[ *7y*]z
For the complex conjugate amplitude we get
. 2 1 2 —iiy*-l-i(k Y)L
klgglok (x]PQ — |k:) = [ dy.d°y, e "as ’ (B.20)
0 2 2 —iiz 2 iiy —iQT
“| 3y @OM 0y — )« [ dz1 (zile” o™ 210 ) (21| Oz, yss pr)e as ¥ [y e

0 —iix A —i0x
_/dy*%e(y_"’f)*(me T O @, Yus p )|k e 100

— [ 42 i(k,z) 1 zpz k)etaze
= z e (x1le” *|z1)O (a:*,oo z1;k)e
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where O(00, 3y, 21 ; k) is obtained from eq. (B.17) in a usual way
O(xy,00; 211 k) = e F2 (2|0 (a4, 003 p1 ) |kL) (B.21)
27 o
= [x4,00], + zg/ Az 2], 24) 2 (2K Foj + iDI o) (24, 21 ) [24, 00]

8ig

as3/ dz*/ d2l 2 [Tw, 24] 2 ](z*,zL)[z*, ]Fj(z*,zL)[z;,oo]Z

B.2.3 Gluon propagator in the shock-wave background
The gluon propagator in a background gluon field (A.18) can be rewritten as

. a 1 ab Tx>Yx . Fda —ia(z—1)e
AL = () g i "2 =i G e (8.2

v 2ig [T i L ;7
><($L|e—lasx*Pexp{;g/ dz*e as (A + F)( ) —i J;z*} eliy*|yl)ab
* y12%4

Using the expansion (A.19) at y. = 0 we obtain with our accuracy

g i A
e"as* | Aggun + EFW e Vas (B.23)
= g [A. — 2 (iR, — iDjF.j)] + L F,+ i (2p7D iDijFW> +

as !
Similarly to eq. (A.21) we get
1 ab . “da /0 dol  ine-
= e e =|—1i6 * — Yx - 0 * T Lx ~ ta(@=y)e
el i = | - 06 y>/0 Y

2
/ P (21 e 21 ) (21 G2 (s g p e i [y ) (B.24)

where
Grv (T, Y30 1) (B.25)

T 2 ‘ , .
=gl g [ o (= 2t (o sy () ~ e DR ()
Y

2124
+7(5jp21/ 6jp2u){[$*7 Z*]Foj(z*) + s

o2 DiFuy(e) ) o

89 : 2 .
as3 dz*/ [Zg;wz; - asp2up2u] [T Z*]F'j(z*)[z*a ZL]F.] (Z;)['Z;7 Yo + ..
Yx

Let us consider now quark terms coming from figure 7. From eq. (A.24) it is clear that
this contribution can be parameterized similarly to eq. (A.31):

(A%(2) AL (Y))sigure 7 (B.26)
= [— 0z, — y*)/o ? +0(y. )/iogz] eia<w>-/d2zL [(mei‘ftw*m)

ab . iﬁy* iiy* ~ab . —iix*
X (2L Qu (s, yspr)e e [y 1) + (yoletas ¥ (21 ) (20| Qi (s, yus pr)e " as™ |21 )
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where QZ?, and Qz,bj are given by expressions (A.32)—(A.37) with z. —y, — z. (and similarly
2l — y« — 2.). With our accuracy only the first terms in these expressions survive so QZ?,
and Q‘Zfl’, are given by eq. (B.7) from previous section.

Adding gluon contribution (B.24) one obtains the final expression for gluon propagator
in a shock-wave background:

da O da -
a b | _ . had L8 —ia(z—y)e
A = | = 0o~ [ 5 0w - [ 5] (B.27)
2 2
2 —ip—Lx* ab . ab . ip—ly*
X/d n{(m!e as "2 ) (2 LG (Tas yss pL) + Qo (T Y pr) ] as ¥ [y 1)
2 2

.P _ .P
+<yﬂe@aﬁy*|zL><szi‘,<x*,y*;m>eZatx*\m}

where QZZ is given by eq. (B.25) and QZ;‘,, QZ’,’, are given by eq. (B.7).
Similarly, for the complex conjugate amplitude one obtains (cf. eq. (A.46))

@A) =~ 00w =) [ 5 0t ) [ 52| (B.23)

d2 fii:p* Sab . Nab . iiy*
X 21 |(zole™ s ™ [Gal(@a, yu; pL) + Qi (T, Y pr) ] 122 (2L ]85 ¥ [y )

iiy* a0 —iir*
H(yrle s ¥ |z1) (21| Quy (Ts; yss 1 e "o )
where

G (T4, Y5 p1) (B.29)

Y 202, _ S
— gl g [ o sl 2 g Rl + D Fofl i)

T x

a0l = Bl (P o ]+ 202 DiFeg ) o) |

2

2 / e dz x*,zq[—mng*— p2up2u] Fuj(22)es 2 Eu ()2 3]

Yab
and Q)),

are effectively z .

= ab
QZV are given by eq. (B.10). Note that the transverse coordinates of all fields

B.2.4 Gluon emission vertex
Similarly to eq. (B.18) one obtains from eq. (B.27)
2

lim k%i(A% (k)AL (y)) = / 2 ¢ B0 (00, y,, 215 k) (2L ]e 5 |y, )@V (B.30)

k2—0
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where (’)Zl;(oo, Yx, 213 k) is given by eqs. (A.47)—(A.48). With our accuracy we get
O,Zlb/(ooa Yses 215 k) = g,LLV [007 y*]ab

o0 202, ab
+g/ dzy <[OO7 Z*]z |: - 2 ,Lw(2k3] - ZD]) + 7((5317211 - 5,/]72#)] Foj(z*a ZJ_)[Z*, y*]z)

%

4 . ;
+ 293/ dz*{ - 2p2;¢p2u[00,2*]szFoj(Z*7ZJ_)[Z*73/*]z

Zx . 4 ) ab
—l—g/ dz, [QZO@WZ’ p?up?u:| (o0, Z*]zFoj(Z*aZJ_)[Z*aZi]zF.J(Zivzl)[Zivy*]z}
e I T ERER AR IRy SR S

S Y RN e SRARE RS U CNIRTE] (B.31)

For the gluon emission in the complex conjugate amplitude one obtains (cf. eq. (B.20)

— lim K2i(AG (2) A (k) = / Pey s (g, o |21 )0 (2., 00, 215 k)e " (B.32)
where @“l;(oo,y*, z1;k) is given by eqgs. (A.49)—(A.50). With our accuracy

O (@4, 00,213 k) = gy [, 0] 2 (B.33)

) iz,
+9/ dz <[x*,z*]z{ ZZ2 “V(Qk]+ZDJ)F°J'(Z*7ZL)[Z*7OO]Z
T

*

ab
1 Rx ~
_a—((ﬂpzy 5]p2ﬂ) <1 + 2ik O;D1>F.j(z*’ ZL)[Z*a OO]Z})
+2g3/ dzy ([x*vz*]z{iPQHPQVDjFoj(Z*,ZL)[Z*,oo]z
a“s T

> 4 ~ ab
+g/ dsz[—%ozng* - p2,u,p21/:| Foj(Z*,ZJ_)[Z*, ] F](Z*,ZJ_)[Z*,OO] })

Z*

{/ dz*/ 2 (20, 21 ) [0, T 8, 0]t [00, 2L] i 1y (2L, 21)
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