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AIP ADVANCES 5, 017112 (2015)

Maximum screening fields of superconducting
multilayer structures

Alex Gurevicha

Department of Physics and Center for Accelerator Science, Old Dominion University,
Norfolk, Virginia 23529, USA

(Received 4 September 2014; accepted 23 December 2014; published online 7 January 2015)

It is shown that a multilayer comprised of alternating thin superconducting and insu-
lating layers on a thick substrate can fully screen the applied magnetic field exceeding
the superheating fields Hs of both the superconducting layers and the substrate, the
maximum Meissner field is achieved at an optimum multilayer thickness. For instance,
a dirty layer of thickness ∼ 0.1 µm at the Nb surface could increase Hs ≃ 240 mT of
a clean Nb up to Hs ≃ 290 mT. Optimized multilayers of Nb3Sn, NbN, some of the
iron pnictides, or alloyed Nb deposited onto the surface of the Nb resonator cavities
could potentially double the rf breakdown field, pushing the peak accelerating electric
fields above 100 MV/m while protecting the cavity from dendritic thermomagnetic
avalanches caused by local penetration of vortices. C 2015 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4905711]

I. INTRODUCTION

The maximum magnetic field H which can be screened by a superconductor in the vortex-free
Meissner state has attracted much attention, both from the fundamental and applied perspec-
tives.1–16 This problem is particularly important for the Nb resonator cavities2 which have extremely
high quality factors Q(2K) ∼ 1010 − 1011 up to the breakdown fields Hb ≃ 200 mT at which the
screening current density J approaches the depairing limit,1 Jd ≃ Hc/λ0, where Hc ≃ 200 mT is the
thermodynamic critical field of Nb and λ0 ≃ 40 nm is the London penetration depth. The lack of
radiation losses and vortex dissipation in the Nb cavities (clean Nb has the highest lower critical
field Hc1 ≃ 180 mT among type-II superconductors) enables one to probe the high-field nonlinear
quasiparticle conductivity17 which can be tuned by alloying the surface with impurities.18–20

The screening field limit of Nb could be exceeded by using s-wave superconductors with higher
Hc and the critical temperature Tc, but such materials are prone to the dissipative penetration of
vortices at H ≃ Hc1 < HNb

c1 . To address this problem it was proposed to coat the Nb cavities with
multilayers of thin superconductors (S) with high Hc > HNb

c separated by dielectric (I) layers11

(see Fig. 1). This approach is based on the lack of thermodynamically stable parallel vortices in
decoupled S screens of thickness ds < λ, which also manifests itself in a strongly enhanced Hc1 in
thin films predicted by Abrikosov5,6 and observed in Refs. 7–10.

The maximum field Hm screened by N superconducting layers of thickness d = Nds ≫ λ is
limited by the superheating field Hs of S-layers,11 for example, Hs ≃ 0.84Hc = 454 mT for Nb3Sn
at T ≪ Tc. Here the Meissner screening currents at H = Hs become unstable with respect to infin-
itesimal perturbations of electromagnetic field and the order parameter, while the magnetic barrier
for penetration of vortices vanishes.12–14 This paper addresses the limits to which the maximum
screening field can be increased by S layers with given ds, λ and Hs deposited onto a thick Nb sub-
strate with given λ0 and Hs0. It is shown that: 1. The maximum Hm can be reached at an optimum
multilayer thickness dm which depends on the materials parameters of S layers and the substrate;
2. The optimized S-I-S multilayer can screen the field exceeding both superheating fields, Hs and
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FIG. 1. Distribution of the magnetic field h(x) in a multilayer of thickness d. The dashed lines show thin dielectric layers
(di ≪ ds) separating the superconducting layers.

Hs0; 3. S-I-S multilayers arrest thermomagnetic avalanches caused by local penetration of vortices
at defects and do not let them develop into global flux jumps, which otherwise quench the cavity at
fields well below Hm.

II. SUPERHEATING FIELD, DEPAIRING CURRENT DENSITY AND INSTABILITY
OF MEISSNER STATE

Distribution of a low-frequency (~ω ≪ kBTc) rf magnetic field h(x) in a multilayer can be
described by the London equations λ2h′′1 = h1 at 0 < x < d and λ2

0h′′2 = h2 at x > d, where the prime
denotes differentiation with respect to x. Given that h(x) in a multilayer calculated numerically from
the Eilenberger equations is close to the result of the London theory,13 I first disregard the nonlinear
Meissner effect21 which makes λ dependent on J at J ∼ Jd. Solutions of the London equations are
(see also Refs. 15 and 16):

h1(x) = H[(1 − c)e−x/λ + cex/λ], 0 < x < d, (1)

h2(x) = bHe(d−x)/λ0, x > d, (2)

c =
k

k + g2 , b =
(1 + k)g
k + g2 . (3)

Here h(x) and the rf electric field E = −µ0ωλ
2h′ are continuous at x = d, k = (λ − λ0)/(λ + λ0), and

g = exp(d/λ), both for a single S film and for a stack of S-I layers with di ≪ ds.
For a S-I bilayer, the low-field surface resistance R̃s is determined by the total Joule rf po-

wer, H2R̃s/2 = (σ/2)  d

0 E2
1(x)dx + (σ0/2)

 ∞
d E2

2(x)dx + qi, where σ and σ0 are the quasiparticle
conductivities in S layers and the substrate, respectively, and qi accounts for dielectric losses. Using
Eqs. (1)-(3), and Rs = µ2

0ω
2σλ3/2 in the local dirty limit3 yields22

R̃s =
Rs

(k + g2)2
�(g2 + k2)(g2 − 1) − 4dkg2/λ

�

+
Rs0g

2(1 + k)2
(k + g2)2 +

4µ2
0diω

3ϵ ′′λ2λ2
0g

2

(λ + λ0)2(k + g2)2 , (4)

where Rs and Rs0 include the residual resistances,3 and ϵ = ϵ ′ − iϵ ′′ is the complex dielectric
permeability of a low-loss I layer with ϵ ′′≪ ϵ ′.
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For λ > λ0, the constant c in Eqs. (1)-(3) is positive so the current density J(0) = h′1(0)
= (1 − 2c)H/λ at the surface is lowered by the counterflow induced by the substrate.16 The Meiss-
ner state in S layers and the substrate is stable with respect to infinitesimal perturbations12–14

if the current densities are smaller than the respective depairing limits, J(0) = h′1(0) ≤ Hs/λ and
J(d) = h′2(d) ≤ Hs0/λ0. These conditions define the field region of the vortex-free state:

Hs ≥
H(g2 − k)
g2 + k

, Hs0 ≥
Hg(1 + k)
g2 + k

. (5)

Shown in Fig. 2 is the H − d diagram where the Meissner region is stable below both curves defined
by Eqs. (5). If Hs > Hs0λ0/λ, thin S layers with d ≪ λ are stable but do not screen the magnetic
field which is thus limited by Hs0 of the substrate. As d increases, H(d) increases until d reaches the
crossing point m at which the maximum field Hm exceeds both Hs and Hs0. The latter results from
the stabilizing effect of counterflow on J(0) = (1 − 2c)H/λ, where c(d) given by Eq. (3) decreases
as d increases. As a result, H(d) decreases with d at d > dm, approaching the superheating field of
the S layer at d ≫ λ. The optimal thickness dm is defined by the equalities in Eq. (5) which give a
quadratic equation for g = exp(dm/λ). Hence,

dm = λ ln
�
µ +


µ2 + k

�
, (6)

where µ = Hsλ/(λ + λ0)Hs0. Substituting dm back to one of Eqs. (5) yields the maximum screening
field

Hm =


H2

s +
*
,
1 −
λ2

0

λ2
+
-

H2
s0



1/2

. (7)

At H = Hm and d = dm, both current densities at x = 0 and x = d reach the depairing limits for the
respective materials, but Hm in Eq. (7) exceeds both Hs and Hs0 if λ > λ0, because it is the cur-
rent density J ≃ Jd but not the magnetic field which makes the Meissner state unstable.1,12–14 The
Meissner region lying below both curves in Fig. 2 is similar to that was calculated numerically in the
London model assuming that the energy barrier for the vortex parallel to the surface vanishes.15,16

FIG. 2. Magnetic phase diagram of a multilayer. Meissner state is stable below both solid lines calculated from Eqs. (5) for
k = 1/2 and Hs0 = 0.5Hs. Here H (d) > Hs at d > dc = ln(µ +µ2 − k), and the crossing point m defines the optimum
thickness dm at which H (d) is maximum.
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The London approach5,6 used in Refs. 15 and 16 has the well-known limitations, particularly at the
fields H ≈ Hs for which the Bean-Livingston barrier is only a few vortex core diameters away from
the surface. As a result, the London model cannot be used for the calculations of the superheating
field, so the calculations of Refs. 15 and 16 only give the right order of magnitude for Hm but can
hardly be used for quantitative evaluation of Hm.

Equations (5) obtained from the condition of instability of Meissner currents have no ambi-
guity resulting from the evaluation of the surface barrier in the London model with the rigid core
cutoff15,16 which fails at H ≈ Hs because of strong deformation of the vortex core at the sur-
face.23 Calculations based on the Ginzburg-Landau (GL) theory have shown that the instability at
H = Hs is caused by lateral perturbations with the wavelength ∼ ξ3/4λ1/4 decaying over the length
∼

λξ perpendicular to the surface, where ξ is the coherence length.12 At T ≈ Tc, the theory gives

Hs = f (κ)Hc where f (κ) decreases as the GL parameter κ = λ/ξ increases,12 so that Hs ≈ 1.2Hc at
κ ≈ 1 and Hs = (1 + 1/

√
2κ)√5Hc/3 at κ ≫ 1. At T ≪ Tc, only the limiting value f (κ) → 0.84 for

κ ≫ 1 has been calculated.13,14

Taking λ = 120 nm and Hs = 0.84Hc ≃ 454 mT in Eq. (7) for a dirty Nb3Sn (Ref. 26) on
Nb with Hs0 = 240 mT and λ0 = 40 nm, yields Hm = 507 mT at dm = 1.1λ = 132 nm. Here the
Meissner state persists up to the field ≃ 12% higher than Hs of Nb3Sn, consistent with the Lon-
don model of Ref. 15. For NbN films28 with ξ = 9 nm and λ = 180 nm, we obtain dm ≃ 79 nm
and Hm ≃ 288 mT, while for pnictides24,25 with λ ≃ 200 nm and Hc ≃ 1 T, Eqs. (6)-(7) give
Hs = 0.84Hs ≃ 840 mT and Hm ≃ 872 mT at dm = 1.78λ = 356 nm. The case of the two-band
superconductor MgB2 with Hc ≃ 230 mT is more complicated as the rf dissipation can occur at a
smaller field Hd ≃ Hcξσ/ξπ at which the screening current decouples two weakly coupled σ and
π bands.27 For the typical ratio of coherence lengths, ξσ/ξπ ≃ 0.2 − 0.3, the band decoupling field
Hd ∼ 50 mT is consistent with the rf breakdown field of 42 mT at 4 K observed on MgB2/Al2O3

bilayers on the Nb substrate.8

The enhancement of Hm does not necessarily require I layers because Eqs. (6)-(7) also describe
a dirty layer at the surface where λ is increased due to a shorter mean free path ℓ. For instance,
a dirty Nb layer with ℓ ≃ 2 nm has λ ≃ λ0(ξ0/ℓ)1/2 ≃ 180 nm and ξ = (ℓξ0)1/2 ≃ 9 nm. Using
Hs ≈ 0.84Hc for κ = λ0/ℓ = 20, yields dm = 0.44λ = 79 nm and Hm = 1.44Hc = 288 mT, the same
as for the above case of NbN and some 20% higher than Hs0 = 240 mT of pure Nb. In the limit of

(λ0/λ)2 → 0, Eq. (7) gives Hm =


H2

s + H2
s0 = 1.465Hc = 293 mT.

To see how the nonlinear Meissner effect can change Eq. (7), Hm is also calculated from the
GL theory at κ ≫ 1 for which the y component of the magnetic vector potential A(x) satisfies the
equation12–14

λ
2A′′ − A + ξ2A3 = 0. (8)

Consider a dirty layer with constant λ and ξ at 0 < x < d, a substrate with constant λ0 and ξ0, and
the same Tc in both regions. The first integrals of Eq. (8) are: λ2A′2 − A2 + ξ2A4/2 = C at 0 < x < d
and λ2

0A′2 − A2 + ξ2
0 A4/2 = 0 at x > d. Continuity of A(x) and A′(x) at x = d, the boundary condi-

tion A′(0) = −Hm, and the GL pairbreaking conditions A(0) = φ0/2π
√

3ξ and A(d) = φ0/2π
√

3ξ0

under which the Meissner superflow becomes unstable12–14 yield (2πλHm/φ0)2 − 5/18ξ2 = C1 at
x = 0, and [2πh(d)λ/φ0]2 − 1/3ξ2

0 + ξ2/18ξ4
0 = C1 and [2πh(d)λ0/φ0]2 = 5/18ξ2

0 at x = d. Here
C1 = (2π/φ0)2C, and φ0 is the magnetic flux quantum. Excluding C1 and h(d) and solving for Hm

reproduces Eq. (7) in which Hs → H̃s, and

H̃2
s =

*
,
1 − ξ2

5ξ2
0

+
ξ4

5ξ4
0

+
-

H2
s . (9)

Here Hs =
√

5Hc/3, and both Tc and Hc = φ0/23/2πλξ = φ0/23/2πλ0ξ0 are independent of the mean
free path, according to the Anderson theorem.14 Two last terms in the parenthesis of Eq. (9) result-
ing from the nonlinear Meissner effect give a negligible contribution to Hm for a dirty layer with
ξ < ξ0.
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III. PENETRATION OF VORTICES AT DEFECTS AND THERMOMAGNETIC STABILITY
OF MULTILAYERS

The maximum screening field Hm at which the Messier state becomes absolutely unstable with
respect to infinitesimal perturbations can hardly be reached under realistic operating conditions
which require that the accelerating resonator cavities remain stable with respect to penetration of
vortices, strong transient electromagnetic perturbations of charged beams, and local field enhance-
ment at surface defects. In the multilayer approach11 I layers are instrumental to assure the neces-
sary stability margin with respect to local penetration of vortices at surface defects, which can other-
wise trigger thermomagnetic flux jumps29,30 particularly at low temperatures T ≪ Tc and extremely
high screening currents J ∼ Jd at which the cavities operate. Misinterpretation of this issue has lead
to speculations that neither I layers nor the enhancement of Bc1 is necessary, so a few µm thick
Nb3Sn film coating of the Nb cavities could just be protected against penetration of vortices by the
Bean-Livingstron surface barrier.15 This assumption contradicts a vast body of experimental data on
magnetization of high-κ type-II superconductors for which inevitable materials or topographic de-
fects at the surface cause premature local penetration of vortices at Hc1 < H < Hs, or even H < Hc1

due to grain boundary weak links.31

The maximum screening field Hm at which the Meissner state is stable with respect to pene-
tration of vortices can be evaluated from Eqs. (6)-(7) with effective Hs and Hs0 depending on
the operating conditions. For instance, in a multilayer with h(d) < Hc10 ≃ 180 mT at H = Hm,
a vortex entering through a defect in the S layer cannot penetrate further into the bulk Nb. Let
a surface defect cause local penetration of vortices as the current density, J(0) = H ′(0) = βHs/λ

reaches a fraction β . 1 of Jd in S layer with ds < λ and ξ ≪ ds. If J(0) is not too close to Jd,
the London theory shows6,11 that the energy barrier U = ϵ0 ln(1/β) per unit length of a vortex in the
S layer at J = βJd coincides with the bulk Bean-Livingston surface barrier5,6 at H = βHsh ≫ Hc1

and (ξ/ds)2 ≪ 1, where ϵ0 = φ2
0/4πµ0λ

2. The criterion J(0) < Jd/2 assures a reasonable protection
against penetration of vortices caused by low-angle grain boundaries in polycrystalline Nb3Sn or
pnictides,31 or local field enhancement at typical topographic defects in the Nb cavities.2

At Hs → Hs/2 and Hs0 → 170 mT, Eqs. (6)-(7) give Hm = 278 mT at dm = 0.8λ = 96 nm for
Nb3Sn. If Nb can withstand the field Hs0 → 200 mT observed on the best cavities,2,3 the maximum
screening field could reach Hm = 295 mT at dm = 0.67λ = 80 nm. Increasing β by the materials
refinements of Nb3Sn could push the peak fields over 300 mT. Pnictides with Hc ≃ 0.9 T, such
as Ba0.6K0.4Fe2As2 (Ref. 24) could provide Hm = 426 mT at dm = 1.21λ = 242 nm, β = 1/2, and
Hs0 → 200 mT.

To inhibit dissipative penetration of vortices, S film can be subdivided by I layers into N thinner
S layers with ds = dm/N . At h(d) < Hc10, even if a vortex penetrates at a defect in the first S layer,
it could not propagate into the next S layer and further in the bulk Nb where it can cause a thermo-
magnetic avalanche.30 As H(t) reaches the critical value βHs at a week spot, a vortex line cannot
penetrate parallel to the surface but first originates at a defect as a small semi-loop as depicted in
Fig. 3. The vortex semi-loop expands under the action of the perpendicular Meissner current until it
hits the I layer where most part of the dissipative vortex core disappears in a loss-free flux channel
connecting two short vortices of opposite polarity. Because of the magnetic flux compression in
the I layer and the substrate, the energy of a perpendicular vortex ≃ dsϵ̃0 ln(L/ξ) diverges with
the lateral film size L, while the energy of the vortex-antivortex pair ≃ dsϵ̃0 ln(u/ξ) grows with
the distance u, where ϵ̃0 ∼ ϵ0 (Ref. 33). This vortex-antivortex pair expands during the positive rf
cycle and contracts and annihilates as H(t) changes sign. The upper limit of the pair size um can
be estimated neglecting the long-range vortex-antivortex attraction described by the last term in
the dynamic equation, ηu̇/2 = φ0J(t) − ϵ̃0/u, where η = φ2

0/2πξ
2ρn is the viscous drag coefficient,

and ρn is the normal state resistivity. Hence, um ∼ 2φ0H/ληω ∼ β f ρn/
√

2πκµ0λν at H = βHs

and ω = 2πν, giving um ≃ 4 µm and the rf power32 q ∼ dJ2φ2
0/η ∼ β2 f 2dφ0Bcρn/κµ

2
0λ

2 ∼ 2 µW
for Nb3Sn at ρn = 0.2 µΩm, λ = 100 nm, β = 1/2, f = 0.84, κ = 20, ν = 2 GHz and ds/λ = 0.2.
Taking into account attraction of antiparallel vortices in S layer reduces um and q. Penetration of
vortex semi-loops at a defect appears more realistic than the model of a long vortex parallel to the
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FIG. 3. Propagating vortex loop (a) turning into the vortex-antivortex pair (b) in S layer with a surface defect (black dot)
which lowers the field threshold of vortex penetration.

surface for which the ill-defined notion of Hc1 = 0 associated with the magnetic flux trapped in I
layer15 is irrelevant to the rf dissipation.29

IV. DISCUSSION

Localization of the rf power in a thin S layer inhibits expansion of multiple vortex loops
in the bulk and stops dendritic thermomagnetic avalanches30 that are particularly pronounced at
the extremely high screening current densities J ∼ Jd and low temperatures T ≪ Tc in the mate-
rials like Nb3Sn, NbN or pnictides with low ρ−1

n and thermal conductivity k. The multilayer
thus significantly reduces vortex dissipation as compared to the bulk Nb3Sn, yet a thin Nb3Sn
layer with d ∼ 100 nm may only slightly increase the thermal impedance of the cavity wall,
G = α−1

K + ds/ks + di/ki + dNb/kNb, where αK is the Kapitza thermal resistance. For dNb = 3 mm,
kNb ≃ 20 W/mK, αK = 2 kW/m2K, the Nb3Sn multilayer with ds = 100 nm, ks ≃ 10−2 W/mK, and
Al2O3 dielectric layers with di = 4 nm and ki = 0.3 W/mK (Ref. 34) increases G by only ≃ 5%. A
thicker Nb3Sn film with d ≃ 2 − 3µm doubles G and reduces the field of thermal quench,3 in addi-
tion to the smaller Hc1 = (φ0/4πλ2)(ln κ + 0.5) < 130 mT of bulk Nb3Sn with λ > 65 nm (Ref. 26)
as compared to HNb

c1 ≃ 180 mT. Theoretically, I layers provide the strongest pinning of propagating
vortices and stop them more efficiently than holes in thin films which have been used to terminate
dendritic flux avalanches.35

The optimum number of S layers for particular materials is determined by a balance between
reduced vortex dissipation and suppression of superconductivity at the S-I interfaces. Here Hs of
ideal S layers with ds > (ξλ)1/2 remains the same as in the bulk,12 contrary to the assertion15 that Hs

is reduced at small ds. This claim was based on the artifacts of the London model discussed above
and on taking into account only one right vortex image in Fig. 4 of Ref. 15 instead of summing up
an infinite chain of vortex-antivortex image dipoles which ensure that vortex currents do not cross
the film surface. If this effect is properly taken into account6,11 Hs in a thin film (d < λ) is the same
as in a thick film (d > λ). Moreover, the GL simulations of Ref. 15 for a Nb3Sn film on Nb show
that Hm(d) reaches the maximum Hm(dm) ≃ 1.08Hs at dm ≃ 1.15λ but remains larger than Hs in
the whole region λ < d < 2λ for which the numerical results were presented.

High-field rf performance of the Nb cavities can be boosted by depositing not only materials
with higher Hs but also alloyed Nb-I-Nb multilayers which can increase Hm and benefit from a
significant raise of Q(H) with H in a wide field region.17–20 A polycrystalline Nb multilayer may be
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tuned by alloying and heat treatment to reduce the residual resistance,3,17,18 and is also less prone to
the current-blocking grain boundaries than the A-15 or pnictide compounds.31 Enhancement of the
vortex penetration field by a dirty Nb/Al2O3 bilayer deposited onto the Nb cavity was observed in
Ref. 36.

In conclusion, optimized multilayers can significantly increase the Meissner screening field
while inhibiting dissipative penetration of vortices. Implementation of such multilayer coatings
could potentially double the accelerating field gradients of superconducting resonators as compared
to the existent high-performance Nb cavities.
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