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Plasma treatment of bulk niobium surface for superconducting rf cavities:
Optimization of the experimental conditions on flat samples

M. Rašković,1 J. Upadhyay,1 L. Vušković,1,* S. Popović,1 A-M. Valente-Feliciano,2 and L. Phillips2

1Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA
2Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

(Received 30 November 2009; published 4 November 2010)

Accelerator performance, in particular the average accelerating field and the cavity quality factor,

depends on the physical and chemical characteristics of the superconducting radio-frequency (SRF) cavity

surface. Plasma based surface modification provides an excellent opportunity to eliminate nonsupercon-

ductive pollutants in the penetration depth region and to remove the mechanically damaged surface layer,

which improves the surface roughness. Here we show that the plasma treatment of bulk niobium (Nb)

presents an alternative surface preparation method to the commonly used buffered chemical polishing and

electropolishing methods. We have optimized the experimental conditions in the microwave glow

discharge system and their influence on the Nb removal rate on flat samples. We have achieved an

etching rate of 1:7 �m=min using only 3% chlorine in the reactive mixture. Combining a fast etching step

with a moderate one, we have improved the surface roughness without exposing the sample surface to the

environment. We intend to apply the optimized experimental conditions to the preparation of single cell

cavities, pursuing the improvement of their rf performance.

DOI: 10.1103/PhysRevSTAB.13.112001 PACS numbers: 81.65.Cf, 52.77.Bn, 74.70.Ad

I. INTRODUCTION

Plasma etching of niobium (Nb) thin films has been
readily used in the production of Josephson tunnel junc-
tions [1]. However, except for our publications [2–4], there
are no other reports of plasma treatment of bulk Nb used
for superconducting radio-frequency (SRF) cavities. In
discharge plasmas containing chlorine or fluorine radicals,
the deformed, contaminated, or oxidized bulk Nb surface
interacts with these radicals to produce volatile Nb halides.
The production of reactive species in the discharge and,
consequently, the Nb removal rate is determined by the
input power, the pressure, the temperature, and the radical
concentration. The same plasma parameters determine the
thickness of the plasma sheath [5]. The plasma sheath is the
region in the plasma right above the Nb surface character-
ized by a drop in potential perpendicular to the surface,
thus providing for anisotropic etching. Positive ions from
the plasma, accelerated in the sheath, hit the sample sur-
face where they deposit their energy, recombine, and react.
If excessively accelerated, the ions could knock out atoms
or atomic conglomerates from the sample surface, thereby
increasing the surface roughness. Moreover, they can be
implanted into the Nb surface and increase the level of
impurities in the penetration depth region. Therefore,
plasma parameters during the plasma etching process
have to be balanced to achieve high etching rates without
increasing the surface roughness or introducing impurities
due to the process.

Before a single cell cavity would be etched in plasma
discharge, the optimization of experimental conditions was
performed on flat Nb samples. The samples were exposed
to a microwave glow discharge system using chlorine (Cl2)
as a reactive gas. The results of the etching rate as a
function of plasma parameters were published in Ref. [2].
We have also presented results of the preliminary surface
composition analysis performed by x-ray photoelectron
spectroscopy (XPS) [3]. The surface characteristics of the
Nb samples exposed in the repetitively pulsed dc diode
system (PLAD), with BF3 as reactive gas, were published
elsewhere [4]. The surface roughness is described with two
parameters, waviness (Wa) and roughness (Ra). The wavi-
ness refers to the tendency of the surface to form large-
dimension shapes, while the roughness refers to the surface
deviation from the large pattern. Our results have shown
that the untreated sample had the largest features of all
measured samples. The BCP sample had much smaller
standard deviation (WRMS and RRMS) than the untreated
sample. All plasma-treated samples had the smallest mea-
sured standard deviation, especially with respect to the
waviness. In this paper, we discuss the influence of the
plasma parameters on the surface properties of the samples
exposed in the microwave (MW) glow discharge and the
steps taken toward the optimization of plasma etching of
bulk Niobium.

II. EXPERIMENT

Sample preparation and experimental setup

In order to determine the influence of the sample prepa-
ration history on the surface roughness after exposure to a*vuskovic@odu.edu
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microwave glow discharge, the samples’ surface was pre-
pared in one of the following ways. Some samples were
left unprocessed (NP), i.e., they were exposed to plasma as
received after electron beam cutting, while other were
mechanically polished (MP) down to 9 �m average rough-
ness. After that, some samples were exposed to 1:1:2
buffered chemical polishing (BCP) mixture for removal
of approximately 100 �m of the surface. Electropolishing
(EP) in 1:9 mixture was performed after BCP for 4 hours
removing additional 100 �m of the surface. After the
surface preparation, we exposed the samples to the reactive
gas in the MW cavity discharge system described in
Ref. [3]. All samples were treated at the same position in
the reactor and at identical plasma conditions.

The diagnostics of the plasma process were performed
in situ using optical emission spectroscopy. The surface
analysis was performed ex situ, after exposure to plasma.
The samples were transported from the reactor to the test-
ing systems using standard protective techniques to prevent
the exposure of the samples to the laboratory environment.

The characteristic property of reactive plasma is that any
process inside the reactor affects the emitted radiation
detected outside the plasma. Thus, the measured radiation
reflects the reaction mechanism of the plasma etching
process. To correlate the mechanisms that take place in
the reactor with measured radiation, one has to perform a
detailed analysis that provides real-time information on the
process. Optical emission spectroscopy is the most conve-
nient method for the analysis of radiation emitted during
the etching process. To use optical emission spectroscopy
on the flow as a process monitoring technique, we con-
nected the experimental setup to an Acton SpectraPro-
500i: Model SP-556 Spectrograph in conjunction with a
charged-coupled device (CCD) camera. The spectrometer
had a focal length of 0.5 m. It was equipped with a triple
grating turret: grating (1) had 3600 grooves per millimeter
with a resolution of 0.005 nm per pixel, grating (2)
had 1800 grooves per millimeter with a resolution of
0.02285 nm per pixel, and grating (3) had 600 groves per
millimeter with a resolution of 0.07 nm per pixel. The CCD
camera was an Apogee, Model SPH5-Hamamatsu S7030-
1007, Back-Illum with a pixel array of 1024� 122 and a
pixel size of 24 microns. We obtained the line shapes and
band intensities, needed for evaluation of the gas and
electron temperatures and electron density, by integrating
over 10 to 1000 pulses. All spectral measurements were
performed side-on with respect to the direction of the flow.
Small windows were constructed on the side of the
cavity to allow these diagnostic measurements. We
made an absolute calibration of the system using the
Spectra-Physics Quartz Tungsten Halogen Lamp as the
blackbody source.

The ex situ surface diagnostics consisted of post treat-
ment measurements of surface roughness, and chemical
composition in the surface layers. We measured the surface

roughness using a commercial tapping mode atomic force
microscope (AFM) (Digital Instruments: Nanoscope IV).
Silicon tips with tip size of 10 nm were used. The
scan sizes were 20 �m� 20 �m, 50 �m� 50 �m, and
100 �m� 100 �m, whenever possible. The limiting fac-
tor for the Nanoscope IV was the maximum vertical range
of 6:5 �m. The typical measurement of surface roughness
is expressed as the root mean square (RMS) roughness,

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

i;j

ðhi;j � �hÞ2
v

u

u

t ;

where n is the total number of taping points, i is the number
of taping points in the x direction, j is the number of taping
points in the y direction, hi;j is the height reading for point

ði; jÞ, and �h is the average height reading for the whole
scan. The RMS depends on the scan size and instrument
resolution. Therefore, it is not recommended to compare
the RMS from measurements performed on different in-
struments and with different scan sizes. To go around this
problem and to be able to see the real influence of the
plasma etching process on surface roughness, we per-
formed the same size scans of a referenced region before
and after exposure to plasma. These results are compared
in this paper.
Surface topology and point composition were investi-

gated by using a JEOL 6060LV scanning electron micro-
scope (SEM) with energy dispersive x-ray spectroscopy
(EDS) capability. The Nb samples were investigated in
high vacuum mode with scanning resolution of 5.0 nm
and a magnification between 30 and 300 000 times. The
accelerating voltage for a EDS was 15 kV. The covered
spectral range contains sensitive x-ray lines of Nb, Cl, O,
and possible impurities line.
A more detailed composition analysis, including

composition of oxide layer formed at the surface of Nb
samples after exposure to air, was performed using Kratos
ultra-x-ray photoelectron spectrometer (XPS). This XPS
has a monochromatic Al K� x-ray source with 15 �m
spatial resolution. XPS has lower a spatial resolution than
SEM therefore survey spectra represents average compo-
sition over large sample’s area and cannot be used for point
composition analysis. The sampling depth of the used
x-ray source was 10 nm maximum.

III. RESULTS AND DISCUSSION

A. Influence of plasma parameters on etching
rate and surface roughness

Plasma etching of Nb in the Ar=Cl2 microwave dis-
charge is mostly chemical in nature, which means that
the etching rate is primarily determined by the concentra-
tion of reactive species in the plasma. The dependence of
the etching rate on the initial concentration of molecular
chlorine Cl2, holding other plasma parameters constant, is
presented in Fig. 1. Etching rates were obtained ex situ, by
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measuring the reduction in mass of the samples after treat-
ment. The initial volume concentration of Cl2 was varied
from 0.1% to 3%. By increasing the initial Cl2 concentra-
tion, the etching rate increased steadily with the power of
1.32, approximately. The surface RMS of the same
samples has displayed quite a different behavior, as shown
in Fig. 1. The scan RMS size was 20 �m� 20 �m. The
surface roughness increased by a factor of 2 at low initial
concentrations (0.1 to 0.3%). At higher concentration (0.3
to 3%) the surface roughness remained constant, within the
statistical error. Since the etching rate at low concentration
did not exceed 0:1 �m=min, one observes that the reduc-
tion of the surface roughness would be achieved to the
expense of excessive reduction of etching rates. In most of
the present work, the operating concentration was between

2% and 3%, where we can conclude that the surface rough-
ness does not depend significantly on the concentration of
Cl2. The constancy of RMS at higher concentration can be
attributed to the kinetics of the chlorine dissociation pro-
cess, which saturates on the low power density [2] and at
relatively low initial concentration of Cl2, 3% of Cl2 in the
reaction mixture, that was kept constant while varying all
other discharge parameters.
The etching rate depends less strongly on the input

power density than on the concentration of Cl2, as shown
in Fig. 2. Conversely, the RMS dependence on the input
power density shows a peak for medium power densities.
Also, we are pointing out that the scan size for the set of
measurements presented in Fig. 2 was only 10 �m�
10 �m due to instrument limitations. The maximum z
range of used atomic force microscope was 6 �m. When
the surface roughness was increased at higher etching
rates, it was not possible to obtain 50 �m� 50 �m scans
without reaching the instrument z-range limit.
The Nb etching rate depends much stronger on the

pressure in the reaction chamber than on the power density,
as shown on Fig. 3. The surface roughness, measured by
RMS, is following the same dependence up to 1 Torr,
approximately, and drops at higher pressure.
Reasons for this behavior could be found in the increase

of plasma density with the increase of pressure and power.
The plasma sheath is proportional to the plasma density
and therefore, if we increase the power or the pressure, we
increase the energy of ions that are hitting the surface. This
contributes to an increase of the surface roughness. It has
been suggested that this is the best surface quality one
could obtain by operating at elevated pressures, but our
results do not completely agree with this proposition, as
shown in Fig. 3. However, the limited pressure range used
in the present work does not allow a definite conclusion.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

E
tc

hi
ng

 r
at

e 
(n

m
/m

in
)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

R
M

S
 (nm

)

0.5 1.0 1.5 2.0 2.5 3.0

Power density (W/cm3)

FIG. 2. Etching rate and surface RMS dependence on input
power density. Experimental conditions: 3% of Cl2 in reactive
gas mixture and pressure in reaction chamber 340 mTorr.
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FIG. 3. Etching rate and surface RMS dependence on total gas
pressure. Experimental conditions: 3% of Cl2 in reactive gas
mixture, total gas flow 196 sccm, and input power density of
1:40 W=cm3.
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FIG. 1. Etching rate and surface RMS dependence on Cl2
concentration. Experimental conditions: total gas flow
196 sccm, pressure in reaction chamber 340 mTorr, and input
power density 1:40 W=cm3.
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The error bars in Figs. 1–3 represent statistical error
obtained through series of measurements of etching rate
and RMS under the same experimental conditions. The
statistical error for etching rate is 7%, while the statistical
errors for RMS vary with the number of scans performed
on each sample. Experimental points in all three figures are
connected with line as a visual guide, i.e., no fitting pro-
cedure is involved.

B. Optical emission spectroscopy

During the etching process, we performed extensive
spectral radiation measurements from plasma layers above
the samples. Further, we used optical emission spectros-
copy of Ar I, Cl I, Nb I lines and Cl2 molecular continuum.

In order to follow thoroughly the assumption of common
excitation temperature, we have chosen several sets of
spectral lines for each gas in the mixture. The lines had
to be recorded in the same CCD camera frame. Further, the
lines from the first cascade (labeled with subscript 1 or 2 in
Table I) have to be observable, but also the line from the
second cascade (labeled with subscript 0 in Table I) has to
be of unsaturated intensity. Further, the whole observed
column of plasma had to be optically thin for the radiation
from these lines. The selected lines for Ar that satisfy the
above criteria are listed in Table I.

Taking into account that the excitation temperature is a
statistical parameter only, we have inspected its behavior
using three separate sets of spectral lines over the full range
of power density. The common excitation temperature for
all four sets could then serve as a parameter that could
characterize the discharge, serve as the indicator for the
process, and establish the link from the raw observables to
the simulation. Measured excitation temperatures as a
function of power density are given in Fig. 4. Results
show a fairly constant behavior of all data sets within the
statistical error of 15%. Since the accuracy of the data used
for the analysis is of the same order, we conclude that the
excitation temperature can be used as a common parameter
for all data sets that satisfy the conditions of observability
and optical thickness that were taken within the same
camera frame.

The correlation between the excitation temperature and
the etching process is well manifested by the jump at about
3 min after the introduction of Cl2 into the system, as
shown in Fig. 5. This event coincides with the increase of
the Nb I and decrease of the Cl I line intensities, which are
shown in Fig. 6. Nb I lines become prominent only after
about 3 min from the start. At the same time, the intensities
of atomic Cl lines drop indicating a delayed reaction which
produces volatile Nb chlorides. After a sharp jump in

TABLE I. Data of argon line sets.

�Ei!0 A Ek

Set Number Wavelength (nm) (eV) (106 s�1) gk (eV)

A 0 800.6156 4.9 5 13.1718

1 789.1075 1.571 0.95 5

2 805.3308 1.539 0.86 3

B 0 763.5105 24.5 5 13.1718

1 743.5368 1.667 0.9 5

2 789.1075 1.5708 0.95 5

C 0 840.8209 22.3 5 13.3022

1 860.5776 1.4403 1.04 5

2 879.9087 1.4087 0.46 3
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FIG. 4. Excitation temperature in the absence of Nb sample as
a function of power density. Error bars reflect the statistical error
of the individual sets of data and the uncertainty in local power
density. Sets A, B, and C correspond to Table I. Experimental
conditions: pressure 1 Torr and the gas mixture Ar=Cl2 ratio
97:3.
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FIG. 5. Excitation temperature as a function of time. Data are
taken during the etching process. Set B corresponds to Table I.
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intensity, the Nb I lines saturate and remain steady during
the etching process. While this presents a direct evidence
of Nb presence in the system, the time lag of the process is
rather long. The transport processes in the plasma, the
equilibration of the electronegative discharge, and the
chemical kinetics of the volatile products are certainly
contributing to the time delay, but on a time scale that is
orders of magnitude lower than observed. The time delay
of 3 min rather indicates a surface-breaking process in-
dicative of the initial removal of a protective layer of
adsorbed impurities, before the bulk Nb oxide layer is
exposed to the plasma.

C. XPS surface analysis

XPS survey spectra have shown only the characteristic
lines of Nb, O, and C. The source of carbon lines was
environmental carbon deposited on the surface of samples
during handling and transportation. No chlorine lines were
found. High-resolution spectra of Nb, are showing 3d5=2
and 3d3=2 doublet, separated by 2.75 eV [6]. This Nb

doublet is highly sensitive to the oxide state of Nb.
The peak at 201 eV corresponds to metallic Nb that is
the Nbo oxidation state. The most intense peak at 207 eV
corresponds to Nb2O5 containing Nb5þ oxidation state.
Between these two peaks are located unresolved peaks of
Nb suboxides which oxidation states are Nb1þ, Nb2þ,
Nb3þ, andNb4þ. In both spectra, before and after exposure
to the discharge, Nb5þ is the most dominant oxidation
state. However, the amount of suboxides is smaller after
plasma exposure.

Experiments with Nb samples in pure Ar plasma show
that the discharge removes residues of organic solvents left
on the surface during sample preparation. We expected a
similar result for the sample exposed to Ar=Cl2 discharge.

Thus, we show O 1s line spectra in the Figs. 7 and 8.
According to Ref. [6], the high-energy side wing contains
unresolved peaks of Nb hydroxides and carbonyl group
from solvent residues. The wing is significantly smaller
after exposure to the discharge. The most intense peak is
one that can be associated with Nb oxides. Its surface
increases after exposure to the discharge. We analyzed
the observed O 1s spectrum from the untreated Nb sample
by a standard deconvolution procedure [7,8]. The nonlinear
background is assumed and subtracted. The remaining
spectrum was normalized to the maximum intensity, lo-
cated at 530.0 eV. By fitting the low energy wing of the
normalized O 1s spectrum, we determined that the best
fit was a Voigt profile with 81% Gaussian and 19%
Lorentzian. The large contribution of the Gaussian compo-
nent is typical for transition metal oxides. The influence of
the instrumental profile is minimal, since we used the
monochromatic Al K� line with the full width at half
maximum (FWHM) of 0.035 eV.
We show in Fig. 7 the result of the O 1s line for an

untreated sample. The observed spectrum could be fitted
with two lines, both containing the same combination of
Lorentzian and Gaussian profile. The stronger line was
centered at 530.0 eV with the FWHM of 1.24 eV. Its
position and profile indicates the Nb2O5 origin. The
weaker line was centered at 531.9 eV with FWHM equal
2.28 eV. Based on these two parameters, we suggest that
the origin of the second line is unlikely to be from the
carbonyl or hydroxyl contribution, but rather from Nb
suboxides. The contribution of the first peak is 70.3%
and the second peak 29.7%.
The oxygen 1s spectrum of the plasma-treated sample is

shown in Fig. 8. It differs from the untreated sample in the
following: (a) The chemical shift of both lines is reduced
and the position of the stronger line is at 529.7 eV, 0.3 eV
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less than for the untreated sample. The position of the
weaker line is shifted even more—by about 1.4 eV to be
at 530.5 eV. (b) The line that originates in Nb2O5 is
narrower for the plasma-treated sample with FWHM equal
to 0.96 eV, but the second line remains almost unchanged
with FWHM at 2.4 eV. (c) The Lorentzian contribution
drops by a factor of 4% to 5%, which is observed by
increased sharpness of both lines. (d) The relative contri-
bution of theNb2O5 line has drops to 65%. A drop of 5% is
within the statistical error.

All this suggests major changes occurring on the mo-
lecular level. The small number of exposed samples does
not allow us to draw a definite conclusion and further study
is planned.

The XPS results also show that, under experimental
conditions for the optimal removal rate, no impurities
were induced into the sample surface. The chlorine 2s line
at 271 eV is absent from the XPS spectrum of plasma-
treated samples. The analysis of the surface was also
performed on a scanning electronic microscope (SEM). It
showed no chlorine lines or any other impurities, except
oxygen. An auxiliary analysis performed on the yellow
colored deposit from effluent gases in the cold region of
the reaction chamber, which was transported to the SEM
facility without exposure to air, showed the presence of Nb
and Cl in a proportion corresponding to NbCl5.

D. Tri-step plasma etching process

Taking into account the influence of the plasma parame-
ters on the surface roughness, a tri-step plasma etching
process was designed. In the first step, a pure Ar discharge
was produced under a total pressure of 500 mTorr and a
power density of 2:08 W=cm3. During the 30 minutes of
etching, no Nb was removed from the surface (etching rate

is 0 nm=min as shown before [4]) but all physic-sorbed
gases and organic residues were removed. Starting with a
clean surface, fast plasma etching was performed in the
second step. A 3 vol% Cl2 in Ar is used as etching gas to
remove material as necessary for cavity production. The
exposure time was 120 min under a total pressure of
550 mTorr and input power density of 2:08 W=cm3. The
etching rate in this step was 1 �m=min and approximately
120 �m of surface was removed during 2 hours of
exposure. The third step was designed to remove Nb
from the surface under conditions more favorable for
surface smoothening. 1.5 vol% Cl2 in Ar was used
under a total pressure of 1250 mTorr and input power
density 1:4 W=cm3. Etching rate was 0:5 �m=min.
Approximately 100 �m of surface was removed during
4 hours of exposure.
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FIG. 8. Normalized XPS spectrum of oxygen 1s for the Nb
sample after Ar=Cl2 plasma treatment. The same sample is used
in Fig. 7 (before treatment) and Fig. 8 (after treatment). FIG. 9. AFM scan (50 �m� 50 �m) of BCP prepared

surface.

FIG. 10. AFM scan (50 �m� 50 �m) of surface prepared by
plasma etching.
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Figures 9 and 10 present the same surface before and
after exposure to plasma etching. The surface presented on
Fig. 9 is prepared by BCP so the polycrystalline structure is
prominent. The plasma etching has eliminated the surface
features (Fig. 10). A scanning electron microscope (SEM)
was used to observe and understand the nature of the peaks
present on the surface after plasma etching.

Because of the element sensitivity of the plasma etching
process, the surface preparation history plays an important
role in determining the final surface quality. The compari-
son of RMS measurements before and after the plasma
etching process depending on the surface preparation his-
tory is presented in Table II. Note that the mechanically
polished surface was too rough for a 50 �m� 50 �m scan
before plasma processing, therefore 20 �m� 20 �m scan
results are presented in this table. From Table II, one can
see that plasma etching improves the surface roughness if
the starting surface was prepared by mechanical polishing
or BCP. The RMS does not change if the surface was
prepared by EP. Therefore we can say that plasma etching
produces surfaces of lower or comparable roughness with
respect to other Nb surface preparation techniques.

IV. CONCLUSION

Nb samples were exposed to the microwave glow dis-
charge in a Cl2=Ar mixture in order to establish plasma
etching as a viable process for bulk Nb surface preparation.
We were focused on achieving etching rates at a compa-
rable level to wet etching techniques, without introducing
process related impurities on the Nb surface. We also
intended to achieve the surface roughness comparable
with the currently used wet etching processes.

We have shown that the etching rates of bulk Nb as high
as 1:7� 0:2 �m=min can be achieved in a microwave
glow discharge using Cl2 as the reactive gas. The Nb
etching rate depends on the Cl2 concentration and the
discharge parameters, such as input power density and
pressure in reaction chamber. The surface composition
analyses show that no impurities have been introduced
into Nb during the microwave discharge treatment.

To optimize the surface roughness, we have developed a
three-step process that gives results comparable to wet
processes, producing surfaces of satisfying roughness. The
three-step process includes a cleaning step, a fast removal
step, and a smoothening step. Further research will be
devoted to apply the same experimental conditions to
curved surfaces whose shape is closer to the cavity surface.
Emission spectroscopy results combined with measured
etching rates suggest that the Nb etching mechanism of
MW glow discharge in the Ar=Cl2 is more a chemical
etching process than a physical sputtering one.
A modified experimental setup that includes a single cell

cavity has been built. It will be used to determine the
influence of the plasma treatment on rf performance of
cavities. The microwave discharge treatment of Nb sur-
faces is a convenient, low-cost, and less hazardous alter-
native to the presently used liquid acid etching techniques.
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Phillips, and A.-M. Valente-Feliciano, J. Vac. Sci.
Technol. A 27, 301 (2009).
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