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ABSTRACT This paper investigates the secrecy rates and optimal power allocation schemes for a decode-
and-forward wiretap relay channel where the transmission from a source to a destination is aided by a relay
operating in a full-duplex (FD) mode under practical residual self-interference. By first considering static
channels, we address the non-convex optimal power allocation problems between the source and relay nodes
under individual and joint power constraints to establish closed-form solutions. An asymptotic analysis is
then given to provide important insights on the derived power allocation solutions. Specifically, by using the
method of dominant balance, it is demonstrated that full power at the relay is only optimal when the power at
relay is sufficiently smaller when compared with that of the source.When the power at the relay is larger than
the power at the source, the power consumed at the relay saturates to a constant for an effective control of self-
interference. The analysis is also helpful to demonstrate that the secrecy capacity of the FD system is twice as
much as that of the half-duplex system. The extension to fast fading channels with channel state information
being available at the receivers but not the transmitters is also studied. To this end, we first establish a closed-
form expression of the ergodic secrecy rate using simple exponential integrals for a given power allocation
scheme. The results also show that with optimal power allocation schemes, FD can significantly improve
the secrecy rate in fast fading environments.

INDEX TERMS Decode-and-forward, full-duplex relaying, residual self-interference, physical-layer
security, optimal power allocation.

I. INTRODUCTION
Cooperative relaying has been considered as an effective
method to enhance the transmission security in wireless net-
works under the context of Physical Layer (PHY) [2]. Under
this framework, most of the works consider the use of a
trusted relay operating in half-duplex (HD) mode, i.e., the
relay cannot transmit and receive at the same time in a single
channel. Given the recent development of several encourag-
ing full-duplex (FD) radio front-ends [3]–[6], the capability
of a FD relay in transmitting and receiving simultaneously to
further enhance the secrecy has also gained attention in the
literature. For instance, FD relaying has been exploited in [7]
and [8] to send jamming signals to the eavesdropper while
forwarding information to the destination. However, one of
the main drawbacks of these studies is the assumption of

significant suppression of self-interference in FD operation.
In a realistic FD operation, residual self-interference needs to
be explicitly taken into account.

Besides the capability of receiving data and sending jam-
ming signals as in [7] and [8], a trusted FD relay can also
send and receive data coherently. In this line of research,
the work in [9] and [10] has examined the secrecy capacity
and the respective optimal power allocation schemes for a
relay wire-tap channel using an amplify-and-forward (AF)
FD relay. Interestingly, it was shown in [10] that while FD
relaying significantly outperforms HD relaying, full power
allocation (PA) at the FD relay might not always be needed.

In this work, we extend the results in [9] and [10]
by investigating the optimal power allocation schemes
at the source and relay nodes for a FD relay wiretap
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channel where the relay is assumed to operate in decode-
and-forward (DF) mode. Both static, and ergodic fading
channels are considered. While AF and DF relaying strate-
gies have been considered as the two most popular relaying
schemes [11], there exist fundamental differences between
these two relaying strategies [12]. Therefore, the extension
from AF in [9] and [10] to DF in this work under the frame-
work of PHY security and FD relaying is certainly not trivial
and it poses different challenges. The main contributions of
the paper are summarized as follows:
• By first focusing on the static channels, we establish the
optimal power allocation schemes under both individual
and joint power constraints for the considered relay
wiretap channel.We adopt the practical self-interference
model established from experimental results in [13] to
take into account the effect of residual self-interference
in FD operation. While the optimization problems are
non-convex, we show that the closed-form solutions can
still be established.

• The second contribution of the paper lies in the asymp-
totic analysis on the derived optimal power allocation
scheme to shed important insights on the obtained solu-
tions. Specifically, using the method of dominant bal-
ance, it is shown that full power at the relay is needed
onlywhen the power at relay is sufficiently smaller when
compared to that of the source. Furthermore, when the
power at the relay is larger than the power at the source,
the power consumed at the relay saturates to a constant
for an effective control of the self-interference. The
analysis is also helpful to demonstrate the superiority of
FD DF relaying over HD DF relaying as well as FD AF
relaying.

• By further considering ergodic fading, we derive closed-
form solutions of the ergodic secrecy rates in terms
of the well-known exponential integral functions by
calculating the expectation of an exponentially dis-
tributed random variable. Numerical results show that
the closed-form solutions can be used to accurately
calculate the ergodic secrecy rates without the need
of lengthy Monte Carlo simulations. The closed-form
solutions allow us to obtain the optimal power allocation
scheme to further improve the secrecy rates in fast fading
environments.

The remainder of the paper is organized as follows.
Section II describes the considered relay channels and for-
mulates the secrecy rates. The optimal power allocation
and asymptotic analysis for the static channels are given
in Section III. In Section IV, the results are extended to
ergodic fading channels. Numerical results are then presented
in Section V to confirm the analysis. Finally, Section VI
concludes the paper.

II. SYSTEM MODEL AND SECRECY RATES
The considered relay wiretap model is shown in Fig. 1. In this
model, we have a HD source node S, a HD destination D,
a HD eavesdropper E , and the transmission from the source

FIGURE 1. The FD DF relay wiretap channel.

to the destination is aided by a FD relay R that uses DF. At a
given time i, S transmits the signal xi to the relay R. At the
relay, the received signal is given by

ri =
√
Psh1xi + nr,i + vi. (1)

In (1), Ps is a constant associated with the power transmitted
at S and h1 is the channel gain for the S-R link. In addition,
nr,i is the zero-mean circularly Gaussian noise at R, which
is denoted as nr,i ∼ CN (0,Nr ), while vi is the residual
self-interference resulting from the FD operation at the relay.
While receiving xi, the relay can decode the signal it received
at time i − 1 before extracting the data and retransmitting
this information to the destination. Let x̂i−1 be the signal
forwarded by R at time i. The signals received at D and
overheard at E can then be written respectively as:

yd,i =
√
Prh3̂xi−1 + nd,i, (2)

ye,i =
√
Prh4̂xi−1 + ne,i. (3)

Here, Pr is a constant related to the power consumed at R.
Furthermore, h3 and h4 are channel gains of the R-D and
R-E links, respectively, and nd,i ∼ CN (0,Nd ) and ne,i ∼
CN (0,Ne) are the thermal noises at D and E .

A. STATIC CHANNELS
For static channels, that the gains h = [h1, h3, h4] change
very slowly and can be considered as constant. Furthermore,
as in [14]–[18], these channel gains are assumed to be avail-
able at all nodes, including E . This assumption corresponds
to the case where the eavesdropper is a lower-level user
belonging to the same legitimate network. Without loss of
generality, we also assume that the thermal noise levels are
the same at all nodes, i.e., Nr = Ne = Nd = N0. Now, let
E[|xi|2] = q1 and E[|x̂i|2] = q2, i.e., S and R use an average
power q1Ps and q2Pr , respectively. Additionally, we adopt the
model in [13] and [19] so that the residual self-interference is
given by vi ∼ CN (0,V ) and the variance V = β(q2Pr )λ,
where β and λ (0 ≤ λ ≤ 1) are constants that depend on the
self-interference cancellation techniques [13], [19].

In DF relaying, the achievable rate at the destination
is bounded by the capacities of the two links: from the
source to the relay and from the relay to the destina-
tion [20], [21], so that a reliable decoding at R and D can
be guaranteed. As such, the maximum end-to-end achievable
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rates at D and E , respectively, can be written as:

Id = log

(
1+min

(
q1γ1

1+ qλ2γ2
, q2γ3

))
,

Ie = log

(
1+min

(
q1γ1

1+ qλ2γ2
, q2γ4

))
, (4)

where γ1 = α1Ps/N0, γ2 = βPλr /N0, γ3 = α3Pr/N0,
γ4 = α4Pr/N0 and αj = |hj|2. It is important to note from (4)
that the (q2Pr )λ term represents how the self-interference
power scales as a function of the relay power q2Pr [13]. The
achievable secrecy rate for a given power allocation q1 and q2
can be then given from (4) by

Rs = [Id − Ie]+, (5)

where [x]+ = max{0, x}.

B. ERGODIC FADING CHANNELS
For ergodic fading, it is assumed that all the channel gains
change independently from frame to frame. Specifically,

in (1), the channel gain h1 is replaced by a fading gain h(i)1 ,
which is a complex Gaussian random variable with variance
φ1, i.e., h

(i)
1 ∼ CN (0, φ1). In a similar manner, the channel

gains h3 and h4 in (2) become h(i)3 and h(i)4 , respectively,
and they are the complex Gaussian variables with variances
φ3 and φ4, respectively, i.e., h(i)3 ∼ CN (0, φ3), h

(i)
4 ∼

CN (0, φ4). This means that γ1, γ3 and γ4 are exponentially
distributed. Furthermore, we assume that the channel state
information (CSI) is available at the receivers but not the
transmitters, i.e, the destination D and eavesdropper E have
full knowledge of channel gains hi = [h(i)1 , h

(i)
3 , h

(i)
4 ], while R

can estimate h(i)1 perfectly. Note that different from the static
case, the parameters γ1, γ3, γ4 depend on the instantaneous
channels, i.e., γ1 = |h

(i−1)
1 |

2Ps/N0, γ3 = |h
(i)
3 |

2Pr/N0, and
γ4 = |h

(i)
4 |

2Pr/N0, while we still have γ2 = βPλr /N0. The
ergodic secrecy rate for DF relaying can then be obtained by
averaging the difference between the two instantaneous rates
over three channel gains as follows:

Rs = [E[Id − Ie]]+, (6)

where the expectation E[·] is over γ = [γ1, γ3, γ4], and
Id and Ie are given by (4).

In the following, by first focusing on the static channels,
we shall derive the optimal power allocation at the source and
relay {q1, q2} that maximizes Rs in (5) before extending the
results to fading channels.

III. STATIC CHANNELS: OPTIMAL SOURCE AND
RELAY POWER ALLOCATION
In this section, we shall consider both individual and joint
power constraints under static channels. Recall that under
this static setting, the channel gains are assumed to be time-
invariant so that all nodes have full CSI. For individual con-
straints, it is assumed that 0 ≤ q1 ≤ qs and 0 ≤ q2 ≤ qr
so that the power constraints at the source and the relay are

qsPs and qrPr , respectively. Under these individual con-
straints, the optimization problem of interest is to find the set
{q1, q2} to maximize Rs, which is written as:

max
q1,q2

Rs s.t. 0 ≤ q1 ≤ qs, 0 ≤ q2 ≤ qr (indiv.) (7)

In the case of a joint power constraint, the total power budget
at both source and relay is qtPt and thus Ps = Pr = Pt . The
optimization problem can then be expressed as:

max
q1,q2

Rs s.t. q1 ≥ 0, q2 ≥ 0, q1 + q2 ≤ qt (joint) (8)

It should be noted that the total power constraint is a useful
criterion to compare different transmission schemes. In addi-
tion, a network with such a constraint can serve as a system
benchmark to any system under individual power constraints.

Before proceeding further with the solutions to (7) and (8),
let us first examine the positivity of the secrecy rate in (5).
From (4) and (5), it is clear that Rs = 0 when γ3 ≤ γ4,
or equivalently, α3 ≤ α4. It means that a necessary condi-
tion for the system to achieve a positive secrecy rate is the
relay-destination channel must be stronger than the relay-
eavesdropper channel. As such, hereafter, we only need to
focus on the condition that γ3 > γ4. Now, denote γr =
q1γ1

/
(1+ qλ2γ2), γd = q2γ3 and γe = q2γ4. Note that since

γ3 > γ4, we have γd > γe. Therefore, if γr ≤ γe, Rs = 0.
As result, we can only achieve a positive Rs when γe ≤ min
(γd , γr ) and the secrecy rate in (5) can then be rewritten as:

Rs = log
(
1+min (γr , γd )

1+ γe

)
. (9)

To this end, the optimization problem to maximize Rs in (9)
under individual power constraints is solved first, before we
extend the results to the case with a joint power constraint.

A. INDIVIDUAL POWER CONSTRAINTS
Under the individual power constraints, the optimization
problem in (7) becomes:

max
q1,q2

log
(
1+min (γr , γd )

1+ γe

)
s.t.


γe ≤ min(γd , γr )
0 ≤ q1 ≤ qs
0 ≤ q2 ≤ qr .

(10)

Let t = min (γr , γd ), the max-min optimization problem (10)
can be restated as

max
q1,q2,t

log
(

1+ t
1+ γe

)
s.t.



γr ≥ t
γd ≥ t
γe ≤ t
0 ≤ q1 ≤ qs
0 ≤ q2 ≤ qr .

(11)

It is not hard to see that the above optimization is nonconvex.
Thus, it is difficult to find its globally optimal solution. How-
ever, it is observed in (11) that it is better to increase q1 as high
as possible, which may lead to an increase in t . Thus, q∗1 = qs
is an optimal solution. Intuitively, it does not decrease the
secrecy rate if the source transmits at its maximum power for
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the maximum source-relay rate, although the source may use
more power than needed. To find the optimal power allocation
at the relay, let us examine the following two cases:

1) CASE 1 (qλ+1
r γ2γ3 + qrγ3 ≤ qsγ1)

Set q∗1 = qs at its optimal value, we have

qλ+12 γ2γ3 + q2γ3 ≤ qλ+1r γ2γ3 + qrγ3≤ qsγ1, ∀q2 ≤ qr .

(12)

Thus, γd ≤ γr . The optimization (10) becomes

max
q2

log(1+ q2γ3)− log(1+ q2γ4) s.t. 0 ≤ q2 ≤ qr .

(13)

Since the objective function is increasing in q2 when
γ3 > γ4, the optimal transmit power at the relay is q∗2 = qr .
We note that the optimal power allocation at the source, q∗1,

can be set anywhere in the range
[
qλ+1r γ2γ3+qrγ3

γ1
, qs
]
.

2) CASE 2 (qλ+1
r γ2γ3 + qrγ3 > qsγ1)

Denote f (x) , xλ+1γ2γ3+xγ3−qsγ1, which is an increasing
function in x. Note that f (0) < 0 and f (qr ) > 0. Thus,
f (x) = 0 has a unique solution, denoted as ρ1, which satisfies
0 ≤ ρ1 ≤ qr . We examine two sub-cases: 0 ≤ q2 ≤ ρ1 and
ρ1 < q2 ≤ qr .
i)

1) 0 ≤ q2 ≤ ρ1: In this case γd ≤ γr and the optimization
(10) becomes

max
q2

log(1+ q2γ3)− log(1+ q2γ4)

s.t. 0 ≤ q2 ≤ ρ1, (14)

which attains the optimal solution at q∗2 = ρ1 as the
above expression is increasing with q2 when γ3 > γ4.

2) ρ1 ≤ q2 ≤ qr : In this case γr < γd and the
optimization (10) becomes

max
q2

log

(
1+

qsγ1
1+ qλ2γ2

)
− log(1+ q2γ4)

s.t. ρ1 ≤ q2 ≤ qr . (15)

It can be easily verified through derivative methods
that the objective function in (15) is now a decreasing
function in q2. Thus, q∗2 = ρ1.

Therefore, the optimal power allocation for both sub-cases is
q∗1 = qs and q∗2 = ρ1.
By combining the results in Cases 1 and 2, the optimal

power allocation scheme under individual power constraints
can finally be expressed as follows:

q∗1 =
[
qλ+1r γ2γ3 + qrγ3

γ1
, qs

]
, q∗2 = qr ,

when qλ+1r γ2γ3 + qrγ3 < qsγ1
q∗1 = qs, q∗2 = ρ1,

when qλ+1r γ2γ3 + qrγ3 ≥ qsγ1

(16)

It can be seen from the final solution given in (16) that under
individual power constraints, full-power at the relay is not
always optimal.

B. JOINT POWER CONSTRAINT
We restate the problem (8) as follows:

max
q1,q2,t

log
(

1+ t
1+ γe

)
s.t.


γr ≥ t
γd ≥ t
γe ≤ t
q1 + q2 ≤ qt .

(17)

Similar to the arguments following problem (11), we can
always find an optimal solution (q∗1, q

∗

2) such that
q∗1 + q

∗

2 = qt . By introducing an auxiliary variable q̂r ≤ qt ,
the optimization is recast as

max
q1,q2,t,q̂r

log
(

1+ t
1+ γe

)
s.t.



γr ≥ t
γd ≥ t
γe ≤ t
q1 = qt − q̂r
q2 ≤ q̂r .

(18)

Denote ρ̂1 as a solution to equation f̂ (x) = xλ+1γ2γ3 +
x(γ1+γ3)−qtγ1 = 0. Note that f̂ (x) is an increasing function
with f̂ (0) < 0 and f̂ (qt ) > 0. Thus, f̂ (x) = 0 has a unique
solution in ρ̂1 and 0 < ρ̂1 < qt . By introducing an auxiliary
variables q̂r ≤ qt , we consider two cases: i)
1) q̂r ≤ ρ̂1: In this case q̂λ+1r γ2γ3 + q̂rγ3 ≤

(qt − q̂r )γ1, which is similar to Case 1 for individual
power constraints and the solution is given as q(1)2 = q̂r
and q(1)1 ∈

[
q̂λ+1r γ2γ3+q̂rγ3

γ1
, (qt − q̂r )

]
.

2) ρ̂1 ≤ q̂r ≤ qt : In this case q̂λ+1r γ2γ3 + q̂rγ3 ≥
(qt − q̂r )γ1, which is similar to Case 2 for individual
power constraints and the solution is given as q(2)2 = ρ̂1

and q(2)1 = qt − ρ̂1.
Using simple calculations to compare the objective function
values obtained from the above two cases, it is straightfor-
ward to check that the solution of the second case results in the
maximum secrecy rate. Thus, the optimal power allocation
scheme under the joint power constraints is q∗2 = ρ̂1 and
q∗1 = qt − ρ̂1.

C. ASYMPTOTIC ANALYSIS AND COMPARISON
TO HD RELAYING
Given the solutions of the optimization problem under indi-
vidual and joint power constraints, this section provides an
asymptotic analysis to shed light on the derived solutions in
different high power regions. As we will show later, the anal-
ysis is helpful to make a direct comparison with traditional
HD relaying. Note that for the HD system, the secrecy rates
can be obtained by setting γ2 = 0 in (4) and pre-multiplying
Rs by a factor of 1/2. Also, for a fair comparison, the same
average power constraints between HD and FD are used,
i.e., qs,HD = 2qs, qr = 2qr , and qt,HD = 2qt for the
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HD system. In the following, we will examine different high
power regions at the source and relay.

1) INDIVIDUAL POWER CONSTRAINTS
a: LARGE Ps/N0
Assume that Ps is sufficiently higher than Pr . By choosing
q∗1 = qs, when λ = 0, we have q∗2 =

qsγ1
γ3(1+β)

if qsγ1
γ3(1+β)

≤ qr .

The secrecy capacityCs therefore approaches log[
α3
α4
]. On the

other hand, if qsγ1
γ3(1+β)

> qr , then q∗2 = qr , and the secrecy

capacity goes to log[ 1+qrγ31+qrγ4
]. When 0 < λ ≤ 1, applying

the method of dominant balance to the equation qλ+12 γ2γ3 +

q2γ3 − γ1qs = 0, we have O(qλ+12 ) = O( PsN0
). As a result,

q∗2,FD = O( PsN0
)

1
(λ+1) if O( PsN0

)
1

(λ+1) ≤ qr , and the secrecy
capacityCs approaches log[(qsα1Ps)/((q2γ4+1)(qλ2γ2+1))].

If O( PsN0
)

1
(λ+1) > qr , q∗2,FD = qr , and Cs goes to log[ 1+qrγ31+qrγ4

].

It can be seen that in this case, full power allocation at
both source and relay is asymptotically optimal for any λ ∈
[0, 1]. Regarding the HD system, the optimal power alloca-
tion is q∗1,HD = 2qs. For q∗2,HD, we have q∗2,HD =

2qsγ1
γ3

if
2qsγ1
γ3
≤ 2qr . As a result, Cs,HD → 1/2 log[α3

α4
]. If 2qsγ1

γ3
>

2qr , we obtain q∗2,HD = 2qr , and Cs,HD → 1/2 log[ 1+2qrγ31+2qrγ4
].

It is obvious the secrecy capacity of the FD system is twice
as much as that of the HD system.

b: LARGE Pr/N0
This is the case where Pr is sufficiently higher than Ps.
When λ = 0, we have q∗2 = min( qsγ1

γ3(1+β)
, qr ) =

min(O( PrN0
)−1, qr ) = O( PrN0

)−1. If 0 < λ ≤ 1, applying
the method of dominant balance to the equation qλ+12 γ2γ3 +

q2γ3 − qsγ1 = 0, we have O( PrN0
)λ+1qλ+12 = O(1).

As a result, q∗2 = min(ρ1, qr ) = min(O( PrN0
)−1, qr ) =

O( PrN0
)−1. Therefore, in this case, the power used by the relay

is q∗2Pr = O(1). Furthermore, the secrecy capacity
approaches log[α3

α4
] regardless of Pr for a given value of λ.

It is clear that full-power allocation at the relay is sub-optimal.
Regarding the HD system, the optimal power allocation is
q∗1,HD = 2qs and q∗2,HD = min(O( PrN0

)−1, 2qr ) = O( PrN0
)−1

and the secrecy capacity approaches 1/2 log[α3
α4
].

c: LARGE Ps/N0 AND Pr/N0
Finally, let consider the case that both Ps/N0 and Pr/N0
are sufficiently large. For simplicity, assume that they are
equal to P/N0. When λ = 0, we have q∗2 =

qsα1
α3(1+β)

and the secrecy capacity approaches log[α3
α4
]. When 0 <

λ ≤ 1, applying the method of dominant balance again,
we obtain O( PN0

)λ+1q(λ+1)2 = O( PN0
). It means that O(q2) =

O(( PN0
)
−λ
1+λ ), or equivalently, q∗2 = O(( PN0

)
−λ

(λ+1) ) ≤ qr . The
secrecy capacity therefore approaches log[α3

α4
] as well. Note

that full power allocation at the relay, the secrecy rate goes
to log[ qsα1P

−λ

qλ+1r βα4
] when 0 < λ ≤ 1. When λ = 0, the secrecy

rate goes to log qsα1
(1+β)α4qr

. For HD mode, it is straightforward

to see that q∗2,FD =
2qsα1
α3

. The secrecy capacity Cs,HD
approaches1/2 log(α3

α4
), which is half of that of FD relaying.

2) A JOINT POWER CONSTRAINT
Assume thatPt/N0 is sufficiently large.When λ = 0, we have
q∗2 = qt − q∗1 = O(1), q∗1,FD = qt − O(1) and the secrecy
capacity Cs,FD approaches log[α3

α4
]. When 0 < λ ≤ 1,

applying the method of dominant balance to qλ+12 γ2γ3 +

q2(γ1 + γ3) − qtγ1 = 0, we have qλ+12 = O(( PtN0
)−λ). Thus

q∗2,FD = O(( PtN0
)
−λ
λ+1 ). Note that for the HD mode, one obtains

q∗2,HD = qt − q∗1 = O(1), q∗1,HD = qt − O(1) and the
secrecy capacity Cs,HD approaches 1/2 log[α3

α4
]. Therefore,

HD relaying only achieves half of the secrecy capacity of FD
relaying.

IV. FADING CHANNELS: ERGODIC SECRECY
RATES AND POWER ALLOCATION
In the previous sections, we have focused on channels that
change slowly and can be considered as constant for the
duration of the transmission. We now turn our attention to
the fading case. It can be observed from (6) that the average
secrecy rates involve triple-integrals. As a consequence, cal-
culating themwith high accuracy is very cumbersome.Monte
Carlo simulations can be used as an alternative to estimate
these rates. However, it is a time consuming process and does
not give an insight on the behavior of the secrecy rate. In the
following, we propose a simple method to establish Rs in (6)
in closed-form. To this end, the following lemma first states
an important result related to the exponential integral.
Lemma 1: Consider an exponentially distributed random

variable ω with mean φ. Let J (x) = exp(x)E1(x), with E1(.)
being the well-known the exponential integral given as:

E1(x) =
∫
∞

x

e−u

u
du = −

(
γ + ln(x)+

∞∑
n=1

(−1)nxn

n!n

)
,

and γ being the Euler number. For any positive a0, we have:

Eω[ln(a0 + ω)] = J (a0/φ). (19)
Proof: By factoring a0, the expectation in (19) is

expressed as:

Eω[ln(a0 + ω)] = ln(a0)+ Eω[ln(1+ ω/a0)], (20)

The above expectation is similar to the rate achieved
in a single-input single-output system with instantaneous
SNR ω/a0, and average SNR φ/a0 in [22, eq. (15.26)].

Given the results in Lemma 1, we are now ready to find
the closed-form expression of the rate formula in (6), which
is described in the following.

The average secrecy rate given in (6) can be re-written as:

Rs = Eh1,h3

[
log

(
1+min

(
q1γ1

1+ qλ2γ2
, q2γ3

))]

− Eh1,h4

[
log

(
1+min

(
q1γ1

1+ qλ2γ2
, q2γ4

))]
. (21)
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It is known that the minimum of two exponential random
variables (RV) with the two corresponding expected values
1/α1 and 1/α2 is also an exponential RV with expected value
1/(α1 + α2) [23]. Therefore, (21) can be rewritten as:

Rs = E
[
log (1+ γr )

]
− E

[
log (1+ γe)

]
, (22)

where

γr = min

(
q1γ1

1+ qλ2γ2
, q2γ3

)
and

γe = min

(
q1γ1

1+ qλ2γ2
, q2γ4

)
are two exponential RVs with the following expected values,
respectively:

γr =
q1γ 1 × q2γ 3

q1γ 1 + q
λ+1
2 γ2γ3 + q2γ3

,

γe =
q1γ 1 × q2γ 4

q1γ 1 + q
λ+1
2 γ2γ4 + q2γ4

.

Here, γ1 = E{γ1} = Psφ1/N0, γ3 = E{γ3} = Prφ3/N0, and
γ4 = E{γ4} = Prφ4/N0. Thus, from the results in Lemma 1,
the expectation in (21) can be obtained in closed-form as
follows:

Rs =
1

ln(2)
×

J


q1
γ−11
+

γ2γ3

q−λ−12
+

q2
γ−13

q1γ1 × q2γ3


− J

 q1
γ−11
+

γ2γ4

q−λ−12
+

q2
γ−14

q1γ1 × q2γ4

+ (23)

It can be seen from (23) the ergodic secrecy rate for DF
relaying can be easily evaluated. It is because the expression
in (23) involves only the well-known exponential integral.
In the next section, numerical results are presented to confirm
the accuracy of the proposed solution in (23).

Given the above closed-form expression, the power allo-
cation q1 and q2 at the source and relay, respectively, can be
further optimized to improve the secrecy rate. Since this rate
involves exponential integrals, obtaining a rigorous solution
of such a non-convex optimization problem is challenging,
and it is a subject for future research. However, as an alter-
native, we can perform an exhaustive search over the two
variables q1 and q2 under either individual power constraints
q1 ≤ qs and q2 ≤ qr , or the joint power constraint
q1 + q2 ≤ qt , to find the optimal values q∗1 and q∗2. Under
individual power constraints, via extensive numerical results,
we have observed that q∗1 = qs, while q∗2 < qr . It means that
full-power allocation at the relay is not an optimal solution to
maximize the ergodic secrecy rate. This observation shall be
confirmed shortly via numerical results.

FIGURE 2. Secrecy rate versus Ps/N0 for different systems.

V. ILLUSTRATIVE EXAMPLES
In this section, numerical results are provided to confirm the
proposed power allocation solutions, the asymptotic analysis,
as well as the derived closed-from expressions. In all simu-
lations, we consider qs = qr = qt = 1 so that the power
constraints are simply given by Ps and Pr for the individual
setting, and by Pt for the joint one. In addition and similar
to [9], it is assumed that β = 0.1.

A. STATIC CHANNELS
For static channels, we consider the case where α1 = 1,
α3 = 2, and α4 = 1, which corresponds to a 3dB gain
difference between R-D and R-E channels. Besides illus-
trating the performance of the considered FD DF system,
the performance of two benchmark systems are also provided
for comparison: 1) HD DF relaying, and 2) FD AF relaying
in [10]. For all FD AF systems, we assume that a perfect self-
interference cancellation is achieved, i.e., λ = 0.

1) INDIVIDUAL POWER CONSTRAINTS
Under individual power constraints, Fig. 2 first shows the
secrecy rates versus Ps/N0 for both optimal and full power
allocation (q1 = qs and q2 = qr ) with λ being either 0,
0.5, or 1. Here, Pr/N0 is fixed at 5dB. The secrecy rates
obtained by the optimal HDDF scheme as well as the optimal
FD AF system are also provided. Observe that the secrecy
rates in FD systems asymptotically approach log[ 1+qrγ31+qrγ4

] =
0.8745 for both power allocation schemes, which confirms
our asymptotic analysis. It can also be observed that the
FD system outperforms the HD system. Specifically, Cs →

log[ 1+qrγ31+qrγ4
] = 0.8745 > Cs,HD → 1/2 log[ 1+2qrγ31+2qrγ4

] =

0.4664. Furthermore, it can be seen that FD DF relaying is
significantly better than DF AF relaying.

Fig. 3 plots the secrecy rate versus Pr/N0 for the same
systems but now with Ps/N0 = 5dB. Observe from Fig. 3
that the secrecy rate achieved by FD DF relaying with
the optimal power allocation becomes insensitive to Pr
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FIGURE 3. Secrecy rate versus Pr /N0 for different systems.

FIGURE 4. Secrecy rate versus Ps/N0 = Pr /N0 = P/N0.

when Pr increases. With full-power allocation, the secrecy
rate of the FD DF system goes to zero. Similar to the pre-
vious result, FD DF relaying with optimal power allocation
outperforms both HD DF and FD AF relaying.

Finally, under the individual power constraints, Fig. 4
presents the secrecy rates achieved by different systems when
Ps/N0 = Pr/N0 = P/N0. It can be noticed from Fig. 4
that in FD mode with full power allocation, the secrecy rates
are zero. Furthermore, when the optimal power allocation
scheme in the FD mode is used, the secrecy rates asymp-
totically approach log α3

α4
. As similar to the previous results,

FD DF relaying provides much better performance than those
achieved in HD DF and FD AF systems.

2) JOINT POWER CONSTRAINT
Under the case of a joint power constraint, Fig. 5 plots the
secrecy rate versus Pt/N0 for the FD systems using the
optimal power allocation and the uniform power allocation

FIGURE 5. Secrecy rate versus Pt /N0(λ = [0,0.5,1]).

FIGURE 6. Secrecy rates vs. P/N0 for fading channels and full power
allocation.

scheme (q1 = q2 = qt/2). The rate achieved by the optimal
HD system under the joint power constraint is also provided
for comparison. As expected, the secrecy capacity of the FD
system approaches log(α3/α4)→ 1. The uniform power allo-
cation performs poorly and it does not provide any secrecy.
Compared to the HD mode, the FD system is far superior.
It is interesting to see that in this case, while FD DF relaying
is much better than DF AF relaying in the low power region,
the two systems achieve a similar performance when Pt/N0
increases.

B. FADING CHANNELS
Let us now consider the case of fading channels. To confirm
the accuracy of the proposed closed-form expression, here
we compare the rates obtained by (23) to those obtained by
Monte Carlo simulations. In this simulation, we assume that
the channel variances φ1 = 2, φ3 = 2.5, and φ4 = 1.5.
Fig. 6 plots the secrecy rate versus signal-to-noise ratio

SNR = P/N0 for different values of λ. In Fig. 6, we assume
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FIGURE 7. Ergodic secrecy rate versus P/N0 for different power allocation
schemes under the individual power constraints.

that Ps = Pr = P and full power allocation is used at
both source and relay nodes, i.e., q1 = qs and q2 = qr .
It can be seen from Fig. 6 that the results obtained by
the proposed closed-form are identical to the Monte Carlo
simulations. This verifies the accuracy of our proposed
solution in (23).

Regarding the optimal power allocation, Fig. 7 shows the
ergodic secrecy rates versus SNR for two different power
allocation schemes under DF relaying: the full power allo-
cation scheme and the optimal allocation scheme obtained
by brute-force search. All channel parameters are the same
as the ones we considered earlier. It can be observed from
Fig. 7 that full power allocation scheme is suboptimal and
the secrecy rates approach 0 when 0 < λ ≤ 1. When
λ = 0, the rate is positive. However, it is much smaller that the
secrecy capacity obtained using the optimal power allocation
scheme.

Similar results can also be obtained under the joint power
constraint. In particular, Fig. 8 plots the secrecy rate versus
Pt/N0 when the optimal power allocation scheme and the
uniform power allocation scheme are used. Apparently, a sig-
nificant gain can be achieved with the optimal solution.

VI. CONCLUSION
This paper investigated the optimal power allocation schemes
for both static and ergodic fading two-hop relay channels
with FD DF relaying under residual self-interference. Indi-
vidual and joint power constraints were considered. For
the static case, while the optimization problems are non-
convex, we demonstrated that closed-form solutions can still
be obtained. By further exploiting these solutions via an
asymptotic analysis using the method of dominant balance,
important insights on the derived solutions have been pro-
vided to demonstrate the advantage of FD relaying over HD
relaying. A comparison between FD DF and FD AF also
showed that FD DF relaying outperforms FD AF relaying

FIGURE 8. Ergodic secrecy rate versus Pt /N0 for different power
allocation schemes under joint power constraints.

under both individual and joint power constraints in low
power regions. In high power regions, their performances are
almost the same under joint power constraints. The extension
to fast fading channels has also been studied. Specifically,
we derived a closed-form expression of the ergodic secrecy
rate using simple exponential integrals for a given power allo-
cation scheme. By further optimizing the power allocation,
we demonstrated that FD also greatly enhances the secrecy
rate in Rayleigh fading.
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