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RESEARCH ARTICLE
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Abstract

This study examined the effect of 5 ns electric pulses on macroscopic ionic currents in

whole-cell voltage-clamped adrenal chromaffin cells. Current-voltage (I-V) relationships first

established that the early peak inward current was primarily composed of a fast voltage-

dependent Na+ current (INa), whereas the late outward current was composed of at least

three ionic currents: a voltage-gated Ca2+ current (ICa), a Ca2+-activated K+ current (IK(Ca)),

and a sustained voltage-dependent delayed rectifier K+ current (IKV). A constant-voltage

step protocol was next used to monitor peak inward and late outward currents before and

after cell exposure to a 5 ns pulse. A single pulse applied at an electric (E)-field amplitude of

5 MV/m resulted in an instantaneous decrease of ~4% in peak INa that then declined expo-

nentially to a level that was ~85% of the initial level after 10 min. Increasing the E-field ampli-

tude to 8 or 10 MV/m caused a twofold greater inhibitory effect on peak INa. The decrease in

INa was not due to a change in either the steady-state inactivation or activation of the Na+

channel but instead was associated with a decrease in maximal Na+ conductance. Late out-

ward current was not affected by a pulse applied at 5 MV/m. However, for a pulse applied at

the higher E-field amplitudes of 8 and 10 MV/m, late outward current in some cells under-

went a progressive ~22% decline over the course of the first 20 s following pulse exposure,

with no further decline. The effect was most likely concentrated on ICa and IK(Ca) as IKV was

not affected. The results of this study indicate that in whole-cell patch clamped adrenal chro-

maffin cells, a 5 ns pulse differentially inhibits specific voltage-gated ionic currents in a man-

ner that can be manipulated by tuning E-field amplitude.

Introduction

Exposing biological cells to nanosecond-duration, high-intensity (>1 MV/m) electric pulses

(NEPs) causes effects on the plasma membrane conductance properties of cells by forming
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nanometer-diameter pores (nanopores) in the lipid bilayer [1–3]. Ion-conducting electropores

formed in response to NEPs are membrane-permeabilizing structures that exhibit complex

ion channel-like conductance that can last for minutes [3–6]. In addition, the very short dura-

tion of the pulses allows the electric field to penetrate the plasma membrane and cause intra-

cellular effects, such as the release of calcium from internal stores [7–9] that can trigger

various cell responses.

Depending on the cell type, NEP-evoked nanopores can cause cell swelling from osmotic

imbalance [10–12]. Cell swelling has been observed for NEPs ranging in duration from 600 ns

to as short as 5 ns [13–17]. In excitable adrenal chromaffin cells exposed to 5 ns pulses, cell

swelling does not occur [18]. Instead, the main effect of plasma membrane nanoporation is

that of a cell stimulus to evoke catecholamine release. When these cells are exposed to a single

5 ns, 5 MV/m pulse, voltage-gated Ca2+ channels (VGCCs) are activated, resulting in Ca2+

influx that triggers catecholamine release by exocytosis [19–21]. VGCC activation has been

attributed to plasma membrane depolarization that is mediated by Na+ influx via ion-conduct-

ing nanopores [20]. Whole-cell patch clamp recordings support this mechanism by showing

that a single 5 ns pulse induces an instantaneous inward current that is carried, at least in part,

by Na+, and which does not involve voltage-gated Na+ channels [22]. Thus, Na+ influx via

plasma membrane nanopores could serve as an alternative depolarizing mechanism typically

performed physiologically by activation of cation-permeable nicotinic receptors and subse-

quent stimulation of voltage-gated Na+ channels [23].

Although a 5 ns pulse can alter chromaffin cell excitability by allowing Na+ to cross the plasma

membrane via nanopores, overall cell excitability could be further affected if the pulse also exerted

effects on voltage-gated ion channels. In this regard, Pakhomov et al. [24,25] found that along

with plasma membrane permeabilization, longer duration pulses (300 and 600 ns) exerted a pro-

longed inhibitory effect on voltage-gated Na+ and Ca2+ channels in GH3 cells, NG108 cells and

adrenal chromaffin cells. Whether a pulse of only 5 ns in duration could also alter ionic channels

is still unexplored and was the purpose of this study. To this end, we carried out whole-cell patch

clamp experiments in chromaffin cells to determine the effect of a single 5 ns pulse on macro-

scopic ion currents, which in these cells comprise a mixture of Na+, Ca2+ and K+ currents

[26,27]. Our experimental approach utilized conditions designed to simulate near physiological

ion gradients and a whole-cell recording system in which effects of a NEP on macroscopic inward

and outward currents were monitored 0.5 s after the pulse was applied to the cells.

Materials and methods

Chromaffin cell culturing and preparation

Adrenal chromaffin cells were isolated by collagenase digestion of the medulla of fresh bovine

adrenal glands obtained from a local abattoir (Wolf Pack Meats, University of Nevada, Reno)

and maintained in suspension culture in Ham’s F-12 medium supplemented with 10% bovine

calf serum, 100 U/ml penicillin, 100 μg/ml streptomycin, 0.25 μg/ml fungizone, and 6 μg/ml

cytosine arabinoside at 36.5˚C under a humidified atmosphere of 5% CO2 as previously

described [18–22]. Cells were used up until 14 days in culture. For experiments, large cell clus-

ters were dissociated into single isolated cells with the protease dispase [28] and attached to

fibronectin-coated glass coverslips [22]. Once attached, cells retained their spherical morphol-

ogy and were used either the same day or for a period not exceeding two days.

Patch clamp electrophysiology

Coverslips containing the attached cells were placed inside a perfusion chamber that was

mounted on the stage of an inverted Nikon Eclipse TS100 microscope. The chamber was

Effects of nanosecond electric pulses on ionic currents in chromaffin cells
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continuously perfused at a rate of 0.5 ml/min with a balanced salt solution (BSS) consisting of

145 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1.2 mM Na2HPO4, 1.3 mM MgCl2, 10 mM glucose

and 15 mM Hepes, pH 7.4 at room temperature. Whole-cell currents were monitored in volt-

age-clamp mode using an Axopatch 200B amplifier and Digidata 1322A data acquisition sys-

tem (Axon Instruments, Sunnyvale, CA), and pClamp software (version 8.2, Molecular

Devices, Sunnyvale, CA) at a sampling rate of 20 kHz and low-pass filtering at 1 kHz. The

series resistance (Rs), which was compensated to 90%, varied between 6 and 28.3 MO (average

11.7 ± 1.1 MO, n = 21) and the seal resistance (Rm) varied between 1.3 and 3.2 GO (average

2.2 ± 0.1 GO, n = 21). Cell capacitance (Cm) ranged between 4.2 and 13.7 pF (average 8.8 ± 0.4

pF, n = 21). Micropipettes having a tip size of 0.8–1.2 μm were fabricated from borosilicate

glass (#BF150-110-7.5, Sutter Instruments, Novato, CA) using a P-97 pipette puller (Sutter

Instruments, Novato, CA) and a MF-830 microforge (Narishige, Tokyo, Japan). The patch

pipette internal solution contained 10 mM NaCl, 30 mM KCl, 110 mM K-gluconate, 1 mM

MgCl2, 10 mM EGTA, 3 mM Mg.ATP, and 10 mM Hepes, pH 7.2 (adjusted with KOH) at

room temperature. The cell being recorded was viewed with a 40X objective and bright field

images of the cells were captured with a CoolSnap HQ DIFF CCD camera (Photometrics, Tuc-

son, AZ) and SimplePCI software (version 6.6.0.0, Hamamatsu Corporation, Hamamatsu

City, Japan) at the start and end of experiments. For recordings obtained in the absence of

extracellular Na+, Na+ in the external bath solution was replaced with an equimolar concentra-

tion of N-methyl-D-glucamine (NMDG+). For experiments conducted in the absence of both

extracellular Ca2+ and Na+, the external NMDG+-containing bath solution lacked Ca2+. A 3 M

KCl-agar salt bridge was used to minimize changes in liquid junction potentials when chang-

ing the external solution from BSS to NMDG+ or to Ca2+-free NMDG+ solutions [29,30]. The

salt bridge was gelled in 4% (w/v) agar and enclosed in a U-shaped microhematocrit capillary

tube. In all experiments, the holding potential (HP) was set to –70 mV.

Current-voltage (I-V) relationships for inward and outward currents were generated using a

voltage step protocol consisting of 50 ms steps ranging from –70 mV to +80 mV applied in 10

mV increments every 2 s. NEP effects on peak inward and late outward currents were monitored

using a constant-voltage step protocol in which voltage steps to +10 mV or to +80 mV were

applied every 3 seconds from a HP of –70 mV. Steady-state activation curves for Na+ currents

were constructed by measuring the peak Na+ conductance (GNa) calculated from the equation:

GNa ¼
INa

V � Erev
;

where INa is the peak Na+ current during the test depolarization (V), and Erev is the reversal

potential of the inward current. Data were normalized to maximum peak conductance (Gmax)

and fitted to a Boltzmann function:

GNa

Gmax
¼ bþ

a
1þ eðV0:5� V

k Þ
;

from which the slope factor (k) and half-maximal activation voltage (V0.5) were derived. A stan-

dard double-pulse protocol was used to generate steady-state inactivation curves for INa. Nor-

malized peak inward currents were plotted as a function of the conditioning potentials and the

data fitted to an appropriate Boltzmann function:

INa

Imax
¼ bþ

a
1þ eðV� V0:5

k Þ
;

from which the slope factor (k) and half-maximal inactivation voltage (V0.5) were derived.

Effects of nanosecond electric pulses on ionic currents in chromaffin cells
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NEP exposure

A nanosecond pulse generator, designed and fabricated by Transient Plasma Systems, Inc.

(Torrance, CA), produced pulses that were 5 ns in duration (Fig 1A) that were delivered to a

pair of cylindrical, gold-plated tungsten rod electrodes (127 μm diameter) having a gap of

100 μm between the electrode tips. After rupturing the plasma membrane to achieve the

whole-cell recording mode, the NEP-delivering electrodes were lowered to a predefined

“working” position using the automated targeting function of a motorized MP-225 microma-

nipulator (Sutter Instruments, Novato, CA). In this “working” position, the patched cell was

situated midway between the electrode tips, with electrode tips positioned 40 μm from the bot-

tom of the coverslip (Fig 1B). A single pulse was applied to the cells at E-field amplitudes rang-

ing from 5 to 10 MV/m. The E-field distribution at the location of the target cell was computed

using the commercially available Finite-Difference Time-Domain (FDTD) software package

SEMCAD X (version 14.8.5, SPEAG, Zurich, Switzerland) and is shown in the inset of Fig 1A.

The two simulated images show that the E-field was uniformly distributed at the plane of the

cell during the application of a NEP. Whole-cell membrane currents were continuously

recorded, except for the interval between 20 ms before and 8 ms after delivery of a pulse, using

an automated pulse exposure system controlled by a program written in LabVIEW [22].

Statistical analysis

For all experiments, results were obtained using cells from different days in culture and differ-

ent cell preparations and presented as the mean ± standard error (SE). For all NEP experi-

ments, each cell was exposed to a single NEP. With the exception of experiments in which we

explored the effects of NEPs on inward and outward currents at a +10 mV test potential, all

data originated from independent experiments. In experiments examining inward and out-

ward currents at +10 mV, the data were collected from the same cells at each E-field tested.

The data were analyzed with SPSS software using either a paired Student’s t test when the

means of two groups were compared, or a One-Way ANOVA test for repeated measures fol-

lowed by Tukey post hoc multiple range tests in multiple group comparisons. P< 0.05 was

considered statistically significant.

Reagents

Ham’s F-12, dispase II and the antibiotics-antimycotics were obtained from Gibco Laborato-

ries (Grand Island, NY, USA), bovine calf serum was purchased from Gemini Bio-products

(West Sacramento, CA, USA), and collagenase B was obtained from Roche Diagnostics (India-

napolis, IN, USA). All other chemicals were reagent grade and purchased from standard com-

mercial sources.

Results

Properties of macroscopic ionic currents in bovine chromaffin cells

Preliminary experiments were carried out to characterize the general biophysical properties of

peak inward and late outward currents recorded in whole-cell voltage clamped chromaffin

cells using the voltage step protocol shown in Fig 2A. The pipette and bathing solutions with

physiological pH and isotonic salt concentration were set to allow for recording membrane

currents under near “physiological conditions”. The traces below the voltage protocol in Fig

2B represent a typical family of membrane currents characterized by an early transient inward

current followed by a late outward current. Fig 2C and 2D show a series of I-V relationships

for peak inward and late outward currents (measured as shown in Fig 2B), respectively,

Effects of nanosecond electric pulses on ionic currents in chromaffin cells
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Fig 1. NEP exposure of a chromaffin cell. (A) Representative waveform of a 5 ns, 8 MV/m pulse. The inset shows the simulated E-

field distribution between the electrodes and at the level of the patch clamped cell on a color-coded scale as viewed from the side (top)

and from above (bottom) the electrodes. (B) Photomicrograph of a patched chromaffin cell located between the electrode tips that are

positioned 40 μm above the bottom of the dish.

https://doi.org/10.1371/journal.pone.0181002.g001
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recorded in the same cell at 3 min intervals. The early transient inward current activated near

–30 mV, peaked around +10 mV and reversed at ~ +56 mV. The late outward current acti-

vated near –20 mV and displayed a bell-shaped voltage-dependence with a peak observed

around +40 mV. While the voltage-dependence and amplitude of the inward current remained

stable over the course of 10 min or more (in some cases more than 30 min), the outward current

measured between 0 and +70 mV ran down in tens of seconds to a few minutes after seal rup-

ture, which contrasted with outward currents elicited by moderate (e.g. –10 mV) and strong

(e.g. +80 mV) depolarizations. These results are consistent with previous studies in these cells

[26,27] showing that the late outward current is composed of a mixture of ionic currents com-

prising: 1) a voltage-dependent Ca2+ current (ICa), 2) a Ca2+-activated K+ current (IK(Ca)), as

evident from the bell-shaped I-V curve that mirrors that of a typical ICa, and 3) a delayed and

sustained rectifier K+ current (IKV). The outward current at +40 mV is a mixture of a small volt-

age-dependent Ca2+ current, a large conductance Ca2+-activated K+ current (IK(Ca)), itself acti-

vated by Ca2+ entry through Ca2+ channels, and a sustained voltage-dependent delayed rectifier

K+ current (IKV). Since activation of IK(Ca) is triggered by ICa, the rundown of the outward cur-

rent observed between 0 and +70 mV would be consistent with the well-known rundown of

several types of voltage-gated Ca2+ channels (e.g. L-type Ca2+ channels encoded by CaV1 sub-

units) [31–33] when recorded in the whole-cell patch clamp configuration [26,34]. The lack of

Fig 2. I-V relationships for early peak inward and late outward currents. (A) The voltage step protocol consisted of 50 ms steps

ranging from –70 to +80 mV, applied in 10 mV increments every 2 s. (B) Corresponding traces of the early inward and late outward

current elicited by the voltage step protocol. (C) I-V relationship for the peak inward current (arrow in (B)) obtained for each of 6

successive voltage step protocols applied to the same cell. The interval between each protocol was 3 min for a total elapsed time of 21

min. (D) Corresponding I-V relationship for the outward current of the same cell shown in (C). Current represents the mean value of the

late outward current for the interval between the arrows in (B). The results are representative of 5 cells.

https://doi.org/10.1371/journal.pone.0181002.g002
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rundown of the outward current at potentials below 0 mV and above +70 mV would be consis-

tent with the stable properties of voltage-dependent delayed rectifier K+ channels [27] under

these conditions.

Ion replacement experiments were performed to define the ionic nature of the inward and

outward currents registered in our experiments. As shown in Fig 3A, total replacement of

extracellular Na+ with the non-permeant ion NMDG+ nearly abolished the inward current,

indicating it is predominantly carried by Na+, with barely detectable and slower ICa that was

converted to net outward current when both Na+ and Ca2+ were removed from the external

solution. As described in a later section, the half-inactivation potential of V0.5 (~ –45 mV)

determined from the analysis of the steady-state inactivation properties of the inward current

is also consistent with this current being predominantly composed of a fast voltage-dependent

Na+ current (INa) [26,35]. Total replacement of Na+ with NMDG+ also produced a significant

leftward shift (~ –6 mV) of the bell-shaped voltage-dependence of the outward current, an

observation consistent with the previously reported negative shift of the steady-state activation

curve of Ca2+ current produced by substitution of internal NMDG+ for Cs+ [36]. Removal of

both external Ca2+ and Na+ converted the bell-shaped I-V curve to a sigmoidal curve typical of

that recorded for delayed rectifier K+ channels (Fig 3B). Taken together these results confirm

that the inward current is largely determined by INa whereas the outward current reflects the

properties of a small inward ICa activating IK(Ca), superimposed with IKV [26,27].

A single pulse reduces INa

A constant-voltage step protocol (Fig 4A) was used to monitor the time course of changes on

INa in cells exposed to a 5 ns pulse. The protocol consisted of stepping membrane potential

from –70 mV to +10 mV every 3 s for 10 min. The test potential of +10 mV was selected

because it nears the peak of the Na+ conductance (Fig 2C). We first determined INa stability in

the absence of a NEP (Fig 4B). We next tested the effect of a single NEP on INa elicited by the

same constant-voltage step protocol. Membrane currents were first recorded for 60 s prior to

NEP exposure to establish baseline conditions. A single NEP applied at an E-field of either 5

MV/m (Fig 4C), 8 MV/m or 10 MV/m (Fig 4D) was then delivered between the 20th and 21st

voltage steps of the 200 voltage step train. Consistent with our previous whole-cell recordings

Fig 3. Effect of eliminating Na+ and Ca2+ on the I-V relationships for inward and outward currents. The voltage step

protocol was the same as described in Fig 2 for obtaining inward (A) and outward (B) currents. The I-V relationship was first

obtained in the presence of normal BSS, then after the external bath solution was changed to BSS in which extracellular Na+

was absent (NMDG+) and finally to BSS in which both extracellular Na+ and Ca2+ were absent (NMDG+-Ca2+free). The data

represent the mean value of 4 cells ± SE.

https://doi.org/10.1371/journal.pone.0181002.g003
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obtained in patch clamped cells [22], the NEP caused a small instantaneous inward leak cur-

rent (Ileak) at the holding potential (Fig 4C and 4D) that decayed exponentially in an E-field

strength-dependent manner.

The time course profile of the changes in INa resulting from NEP exposure are shown in Fig

5. In the absence of a NEP, the inward current at +10 mV slowly declined over a period of ~10

min to a level that was ~92% of the initial level (Fig 5A). The small decline in INa in these

experiments may be attributable, at least in part, to the small but significant contribution of ICa

to peak inward current as suggested by ion replacement experiments (Fig 3A). A single NEP

applied at an E-field of 5 MV/m (Fig 5A) caused a sudden ~4% decrease in peak INa recorded

Fig 4. Inward and outward currents evoked by a constant-voltage step protocol. (A) The constant-

voltage step protocol consisted of applying a 100 ms voltage step to +10 mV from a holding potential. (B)

Control traces of inward and outward current obtained by applying a total of 200 voltage step protocols, with a

3 s interval between each protocol. The inset shows an expanded view of the peak inward current. (C)

Representative traces of inward and outward current following exposure of a cell to a single 5 ns pulse applied

at an E-field of 5 MV/m, and in (D), at an E-field of 10 MV/m. In both (C) and (D), the pulse was applied

between the 20th and 21st voltage step protocols, with an interval of 0.5 s between the time the NEP was

delivered and recording of currents. The arrow indicates Ileak, which was recorded with a delay of 8 ms after

the pulse [22].

https://doi.org/10.1371/journal.pone.0181002.g004
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0.5 s after the pulse. INa then declined exponentially to a level that was ~85% of the initial level

after 10 min. When the E-field amplitude was increased to 8 or 10 MV/m (Fig 5B), the inhibi-

tory effect on peak INa recorded 0.5 s after the pulse was twofold greater (~9%) in magnitude

in each case. There was no further decline in INa over the course of 10 min, indicating that the

effect of the pulse on INa was saturated at the higher E-field amplitudes. One-Way ANOVA

revealed a significant difference among the groups. INa recorded from cells exposed to 5 MV/

m (P< 0.001), 8 MV/m (P< 0.001) and 10 MV/m (P< 0.001) were all significantly different

from the control group. However, there was no significant difference detected between data

collected from cells exposed to the three E-field intensities (5 MV/m vs. 8 MV/m, P = 0.069; 5

vs. 10 MV/m, P = 0.068; 8 MV/m vs. 10 MV/m, P = 1.000).

Fig 5. Effect of a single 5 ns pulse at different E-field amplitudes on peak inward current. (A) Time

course of the changes in peak inward current for an unexposed cell (control) compared to a cell exposed to a

5 ns, 5 MV/m pulse, obtained by using the constant-voltage step protocol described in Fig 4. Normalized

current represents the magnitude of peak inward current normalized to the mean of the peak inward current

recorded for the 8 voltage step protocols that immediately preceded the 21st voltage step protocol. Data are

expressed as the mean ± SE (control, n = 11; 5 MV/m, n = 9). (B) Time course of the changes in peak inward

current for a cell exposed to a 5 ns pulse at E-fields of 8 MV/m and 10 MV/m. Data are expressed as the

mean ± SE (8 MV/m, n = 10; 10 MV/m, n = 11).

https://doi.org/10.1371/journal.pone.0181002.g005
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Is Ileak reducing INa by eliciting a voltage drop across the series

resistance?

When using the whole-cell patch clamp method, the command voltage (Vc) is distributed

across the series resistance (Rs) and the cell membrane resistance (Rm), yielding a clamped

membrane potential (Vm) that is actually less than Vc. The presence of an Ileak evoked by the

NEP at the holding potential could cause a greater difference between Vm and Vc by eliciting a

voltage drop across Rs. Such an effect could cause current error measurements of INa. To deter-

mine the extent to which Ileak affected INa, we first calculated the voltage error (VErr) that

would be attributed to a voltage drop across Rs produced by the Ileak measured just prior to

recording INa. The calculations were based on the equation VErr = Ileak
� Rs and the results are

shown in Table 1 for an NEP applied at 5, 8 or 10 MV/m. At each E-field amplitude, Ileak

exerted only a small effect on Rs wherein VErr was 0.6 ± 0.2 mV, 0.7 ± 0.1 mV and 1.0 ± 0.1

mV for 5, 8 and 10 MV/m, respectively. We next determined the impact of these voltage errors

on INa by quantifying their effect on the steady-state inactivation curve of INa shown in Fig 6A.

For an NEP of 5 MV/m, the 0.6 mV depolarization caused by Ileak decreased INa by 0.5%,

which is much less than the ~4% inhibition of INa evoked by the pulse (Fig 5A). For an NEP of

8 MV/m, the depolarization caused by Ileak decreased INa also by 0.5%, considerably less than

the ~9% inhibition of INa evoked by the pulse (Fig 5B). These results demonstrate that Ileak had

only a small effect on VErr and hence recordings of INa, which in turns means that the inhibi-

tory effect of the NEP on INa was not the result of a voltage drop across Rs.

A single pulse has no effect on the voltage-dependence of inactivation

and activation of INa

The inhibitory effect of a 5 ns pulse on INa could also be caused by a negative shift of the

steady-state inactivation curve, a positive shift of the activation curve, or both. In order to test

for possible changes in steady-state inactivation, cells were held over a range of potentials for 1

s and then depolarized to a test pulse (+10 mV) to evaluate the availability of Na+ channels. Fig

6A and 6C show the effect of a NEP at two E-field strengths (5 and 8 MV/m) on the voltage-

dependence of inactivation. For a NEP of 5 MV/m, half-maximal inactivation voltages V0.5

were –45.4 ± 0.9 mV (k = –10.1 ± 0.8) and -45.6 ± 1.3 mV (k = –10.6 ± 1.1) before and after

the pulse (P = 0.07, n = 4), respectively. For an NEP of 8 MV/m, V0.5 were –42.2 ± 1.3 mV (k =

–9.5 ± 1.0) and –43.8 ± 0.8 mV (k = –9.3 ± 0.6) before and after the pulse (P = 0.11, n = 6),

respectively. Thus, regardless of E-field amplitude, there was no significant effect of the NEP

on the steady-state inactivation of INa.

Steady-state activation curves for INa were constructed by measuring peak Na+ current dur-

ing the different test depolarization potentials (similar to Fig 2A) and then converting the

Table 1. Decrease in INa caused by Ileak versus the NEP.

E-Field

(MV/m)

Rsa

(MΩ)

Rsb

(MΩ)

Ileak

(pA)

VErr

(mV)

ΔINa
c

(%)

ΔINa
d

(%)

5 (n = 9) 12.7 ± 1.5 13.9 ± 1.2 43 ± 17 0.6 ± 0.2 0.5 ± 0.2 4.3 ± 0.5

8 (n = 9) 10.3 ± 2.2 10.9 ± 1.6 66 ± 5 0.7 ± 0.1 0.5 ± 0.1 9.2 ± 0.9

10 (n = 8) 12.9 ± 1.2 13.9 ± 1.4 71 ± 5 1.0 ± 0.1 ─ 9.2 ± 0.3

a Before and
bafter the NEP; for 5 MV/m, P = 0.122; for 8 MV/m, P = 0.465; for 10 MV/m, P = 0.065.
c Decrease caused by VErr and calculated from the INa inactivation curve.
d Decrease immediately after delivery of the NEP.

https://doi.org/10.1371/journal.pone.0181002.t001
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value to Na+ conductance (GNa). Our results indicate that a single 5 ns pulse at 5 or 8 mV/m

produced no significant effect on the voltage-dependence of activation of INa (Fig 6B and 6D).

Half-maximal activation voltages V0.5 were –2.7 ± 0.3 mV (k = 8.5 ± 0.3) and –2.5 ± 1.3 mV

(k = –10.6 ± 1.1) before and after a 5 MV/m NEP (P = 0.85, n = 6). The Erev (data not shown)

were –55.7 ± 1.3 mV and –55.3 ± 1.8 mV before and after the pulse (P = 0.57, n = 6), respec-

tively. When the NEP was applied at 8 MV/m, V0.5 were –8.4 ± 0.5 mV (k = 6.9 ± 0.4) and –

8.1 ± 0.5 mV (k = 7.1 ± 0.4) before and after the pulse (P = 0.44, n = 5), respectively, and the

Erev (data not shown) were –54.4 ± 0.9 mV and –53.9 ± 1.0 mV before and after the pulse,

respectively (P = 0.70, n = 5).

A single pulse decreases maximal Na+ conductance

Another possibility that could account for the NEP-induced decrease of peak INa is a decrease

in maximal conductance of the Na+ channel. To assess this possibility, we determined the

Fig 6. Effect of a single 5 ns pulse on the voltage-dependence of steady-state inactivation and activation of INa. (A)

Steady-state inactivation of INa was determined by holding cells at –70 mV and applying a series of 1 s conditioning potentials

ranging from –100 mV to –20 mV in 10 mV increments, with each voltage step followed by a constant 100 ms test pulse to +10

mV to record INa (inset). A 5 MV/m pulse was delivered and after 1 s the voltage step protocol repeated. INa in each case was

normalized to their respective maximal values and plotted as a function of the conditioning potential. The data were fitted to a

Boltzmann function (see Methods) and expressed as the mean ± SE (n = 4). (B) Steady-state activation of Na+ at an E-field of

5 MV/m. Steady-state activation of INa was determined by holding cells at –70 mV and applying 50 ms steps ranging from –70

mV to +40 mV in 10 mV increments every 2 s (inset). A 5 MV/m pulse was delivered and after 1 s the voltage step protocol

repeated. Peak Na+ current in each case was converted to conductance (see Methods), normalized to their respective

maximal values and fitted to a Boltzmann function. Data are expressed as the mean ± SE (n = 6). (C) Same as in (A) for a

pulse applied at an E-field of 8 MV/m (n = 6). (D) Same as in (B) for a pulse applied at an E-field of 8 MV/m (n = 5).

https://doi.org/10.1371/journal.pone.0181002.g006
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difference in absolute Na+ conductance before and after a single pulse. For this determination,

relative Na+ channel conductance was obtained by normalizing the conductance of the chan-

nel after the pulse to the conductance of the channel measured before the pulse. As shown in

Fig 7, a single 5 ns pulse reduced relative channel conductance. At +40 mV, the decrease in

maximal Na+ conductance was 5% and 15% at an E-field of 5 MV/m and 8 MV/m, respec-

tively, indicating that the magnitude of the effect was dependent on the E-field amplitude.

A single pulse causes variable inhibitory effects on outward current

The same constant-voltage step protocol that was used to monitor the time course of changes

on INa (Fig 4A) in cells exposed to a 5 ns pulse was used to monitor NEP effects on the late out-

ward current. Control experiments revealed that the late outward current measured at +10

mV displayed prominent rundown, as shown in Fig 8A. This greater rate of decline in outward

current is consistent with the rundown described for the I-V relationships shown in Fig 2D, a

behavior that is consistent with ICa rundown and the progressive attenuation of the Ca2+ trig-

ger for activation of outward IK(Ca) [27]. Fig 8A shows that the application of a single pulse at

an E-field of 5 MV/m had no effect on the late outward current. When the E-field amplitude

was increased from 5 to 8 MV/m, the outward current of 3 out of 10 cells underwent a progres-

sive 20–25% decline over the course of the first 20 s after the pulse. The outward current then

stabilized at this reduced level over the course of 10 min (Fig 8B). There was no effect of the

pulse on the other 7 cells. When the E-field amplitude was increased from 8 to 10 MV/m, a

greater proportion of cells (6 of 11 cells) responded to the NEP (Fig 8B) but the magnitude and

time course of inhibition was similar to that observed with 8 MV/m.

As discussed before, at the test potential of +10 mV, the outward current is a mixture of a

voltage-dependent Ca2+ current, a Ca2+-activated K+ current (IK(Ca)) and a sustained voltage-

dependent delayed rectifier K current (IKV). Thus, it is difficult to distinguish the effect of the

NEP on these superimposed currents. To separate NEP effects on outward currents, a revised

constant-voltage step protocol was developed. Voltage steps to +80 mV instead of +10 mV

were applied every 3 s while maintaining holding potential. At the test potential of +80 mV,

the outward current would be primarily composed of the more stable voltage-dependent

Fig 7. Effect of a single 5 ns pulse at different E-field amplitudes on maximal Na+ conductance. The protocol (inset) was the same

as that for generating steady-state activation of INa. Peak INa was converted to conductance as already described and relative conductance

obtained by normalizing the conductance both before and after the pulse to the maximum conductance before the pulse. The data were

fitted to a Boltzmann function (see Methods) and expressed as the mean ±SE. (A) Pulse applied at an E-field of 5 MV/m (n = 6) and (B) at 8

MV/m (n = 5).

https://doi.org/10.1371/journal.pone.0181002.g007
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delayed rectifier K+ current with little contamination from ICa and IK(Ca) due to the greatly

reduced driving force for Ca2+ and thus the much smaller impact of ICa on IK(Ca). The control

experiment in Fig 9 clearly shows that the outward current at +80 mV was much more stable

than that recorded at +10 mV (Fig 8), declining only by ~10% over 10 min. When a single

pulse at an E-field of 5 MV/m, 8 MV/m or 10 MV/m was applied to the cells, there was no sig-

nificant effect of the pulse on the outward current at +80 mV (Fig 9), indicating that the

decrease in outward current observed at the test potential of +10 mV was primarily concen-

trated on ICa and IK(Ca) as IKV was not affected.

Fig 8. Effect of single 5 ns pulse at different E-field amplitudes on late outward current. (A) Time

course of the changes in mean outward current for an unexposed cell (control) compared to a cell exposed to

a 5 ns, 5 MV/m pulse, obtained by using the constant-voltage step protocol described in Fig 4A in which the

voltage was stepped from –70 mV to +10 mV for 100 ms. Normalized current represents the mean magnitude

of the late outward current (see Fig 4B) normalized to the mean of the late outward current recorded for the 8

voltage step protocols that immediately preceded the 21st voltage step protocol. Data are expressed as the

mean ± SE (Control, n = 11; 5 MV/m, n = 9). (B) Time course of the changes in mean outward current for a cell

exposed to a 5 ns pulse at E-fields of 8 MV/m and 10 MV/m (8 MV/m, n = 3/10; 10 MV/m, n = 6/11). In both (A)

and (B), the results were obtained from the same cells as those shown in Fig 5 for peak inward current.

https://doi.org/10.1371/journal.pone.0181002.g008
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Discussion

The results of this study have shown that a single high-intensity 5 ns electric pulse produces

differential E-field-dependent inhibitory effects on voltage-gated cation channels in bovine

chromaffin cells. Fast transient inward Na+ current was the most sensitive ionic current dis-

playing inhibition in response to a NEP at E-fields� 5 MV/m. This effect was not due to a

shift in the voltage-dependence of steady-state activation or inactivation but was associated

with a reduction in maximal Na+ conductance. In contrast, a single NEP inhibited outward K+

current at higher field intensities (� 8 MV/m) but the effect was voltage-dependent, with inhi-

bition detected in a fraction of cells at +10 mV, and no inhibition observed at +80 mV even at

an E-field of 10 MV/m. The potential cellular targets, molecular mechanisms and therapeutic

implications of these findings are discussed.

Experimental strategy and limitations

The experimental approach used in this study exploited conditions designed to simulate near

physiological Na+ and K+ gradients and took advantage of a novel NEP delivery system allow-

ing for the near continuous recording of whole-cell macroscopic currents with a gap of only

28 ms when exposing a chromaffin cell to a 5 ns pulse. This system significantly reduces the

delay time from pulse exposure to resumption of cell membrane recording compared to other

studies (delay times ranging from 10 seconds to 2 minutes) [5,37], which minimizes missing

important whole-cell monitoring information immediately after pulse delivery. Voltage clamp

protocols were devised to examine the effects of a single NEP on several ionic currents in the

same chromaffin cell, which eliminated potential disparities in channel sensitivity related to

differences in experimental conditions and batches of cells. This approach was further sup-

ported by the comprehensive body of literature on the biophysical properties of ion channels

in this well studied cell model.

Fig 9. Effect of a single 5 ns pulse at different E-field amplitudes on late outward current. Time course

of the changes in mean outward current for an unexposed cell (control) compared to a cell exposed to a 5 ns

pulse applied at E-fields of 5, 8 and 10 MV/m. The constant-voltage step protocol consisted of stepping the

voltage from –70 mV to +80 mV for 100 ms (inset). Normalized current represents the same as that described

in Fig 8. Results are expressed as the mean ± SE (Control, n = 4; 5 MV/m, n = 5; 8 MV/m, n = 5; 10 MV/m,

n = 5).

https://doi.org/10.1371/journal.pone.0181002.g009
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We first established that the net inward current elicited by depolarizing steps from a hold-

ing potential was mainly produced by voltage-gated Na+ channels as the current was nearly

abolished by replacing external Na+ with the non-permeant NMDG+. Removing external Ca2+

in the presence of NMDG+ only led to a small further reduction in inward current (discernable

by a small increase in net outward current) that was less than 8% of peak current. The gating

properties of net inward current were also consistent with those of tetrodotoxin-sensitive Na+

channels in chromaffin cells [35], and of NaV1.7, the pore-forming Na+ channel subunit

thought to be the main voltage-gated Na+ channel expressed in these cells [38].

Repetitive steps to +10 mV were used to monitor the time-dependent effects of a NEP on

membrane currents. This voltage was initially selected because it elicited near maximal Na+

conductance, while also activating voltage-dependent Ca2+ and K+ currents. The current mea-

sured at the end of the voltage steps was likely predominantly composed of a Ca2+-activated

K+ current (IK(Ca)) and a voltage-dependent delayed rectifier K+ current (IKV) [27], to which a

small partially inactivated Ca2+ current (ICa) was superimposed. The bell-shaped voltage-

dependence of late outward current is consistent with KCa channels being triggered by Ca2+

influx through “neighboring” Ca2+ channels since: 1) the shape of the I-V relationship mir-

rored that predicted for ICa in these cells and was apparent in cells dialyzed with a high concen-

tration of the Ca2+ chelator EGTA [27]; 2) the bell-shaped voltage-dependence of the outward

current was converted to a sigmoidal relationship following external Ca2+ removal [27,39],

with or without external Na+; and 3) similar to many types of high-threshold, voltage-depen-

dent Ca2+ channels, the late outward current exhibited pronounced rundown in the range of

+10 to +70 mV. This has also been reported by Marty and Neher [27] in the same preparation.

In contrast, the current at +80 mV was much more stable and thus primarily reflected the

activity of IKV since the driving force for Ca2+ would be very small and would thus produce

very weak stimulation of IK(Ca). This argument is also supported by the observation that

removal of external Ca2+ had no effect on this current at +80 mV in the absence of Na+ and

justified our rationale of examining the effects of NEP at this voltage in separate experiments.

Effects of NEP on voltage-gated Na+ channels

Our data provided evidence for an E-field-dependent inhibition of INa following a single 5 ns

pulse. Although smaller in magnitude, the effects were nevertheless similar to those of Pakho-

mov et al. [24,25] who reported that much longer nanosecond pulses (300 and 600 ns) were

able to modulate voltage-gated Na+ and Ca2+ channels in GH3, NG108 and even chromaffin

cells. Our data showed that INa decreased instantaneously by ~4% and then declined exponen-

tially following a single 5 ns, 5 MV/m pulse while higher E-fields produced instantaneous

inhibitory effects that were significantly larger with no further decline (~9% at E-fields of 8

and 10 MV/m) over the course of 10 min. We first considered the possibility that the inhibition

might be due to an alteration in the voltage-dependence of activation and/or inactivation. Our

results clearly showed that NEPs up to 8 MV/m produced no significant effect on either prop-

erty, suggesting that the ultrashort electric pulse did not interfere with Na+ channel gating. We

did find that the NEP reduced maximal Na+ chord conductance and potential mechanisms to

explain this observation are discussed below.

High intensity NEPs of less than 1 μs in duration (from 5 up 600 ns) were shown to evoke a

transient “leak” conductance that is hypothesized to be formed by ion-permeable nanoelectro-

pores [22,24,25]. The sudden appearance of a nanopore or “leak” conductance (Ileak) just prior

to recording INa after delivery of the NEP could have potentially lowered Vm sufficiently to

depolarize the command holding potential set to –70 mV due to a voltage drop across the

uncompensated Rs and thus reduce Na+ channel availability despite a lack of change in the
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voltage-dependence of inactivation. However, the potential impact of this voltage error (VErr)

on peak INa based on the steady-state inactivation curve revealed that the depolarization would

have decreased INa by only 0.5% both at 5 MV/m and at 8 MV/m, which is significantly less

than that observed. These results suggest that VErr associated with activation of Ileak due to a

voltage drop across Rs was too small to explain the much larger inhibition of INa evoked by

NEPs at any E-field magnitude.

Recent experiments from our group confirmed that the plasma membrane of chromaffin

cells becomes permeable to Na+ following activation of Ileak evoked by a single 5 ns pulse [22].

Thus, intracellular accumulation of Na+ could potentially account for the inhibition of INa by

reducing the electrochemical gradient for Na+. However, this seems unlikely in view of the fact

that the reversal potential of the net inward current was also not altered by NEPs. These results

suggest that the reduction of INa was not associated with a change in ion selectivity. This con-

clusion is in agreement with the results of Nesin and Pakhomov [25] who concluded that the

much larger Na+ influx through Ileak evoked by longer NEPs could not explain the reduction

of INa.

The pipette solution used in our experiments contained a high concentration of the Ca2+

chelator EGTA, which would argue against but cannot exclude the possibility that the NEP-

induced decrease of INa was caused by an intracellular Ca2+-dependent process since EGTA is

known to be a slow Ca2+ buffer (e.g., the buffering capacity of this chelator was insufficient to

prevent activation of IK(Ca) triggered by ICa). However, consistent with the idea that intracellu-

lar Ca2+ was not involved was the observation that inhibition of INa by 300 ns NEPs was unaf-

fected by cell dialysis with 20 mM BAPTA, a much faster chelator [25].

In this study, we confirmed that a single NEP reduced maximal INa conductance, which can

be defined by Gmax = N � gNa
� POmax, where N is the total number of Na+ channels in the mem-

brane, gNa is the unitary conductance of Na+ channels and POmax is the maximum open proba-

bility of Na+ channels. The 5 ns pulse could reduce maximal conductance by altering one or

more of these parameters. Single-channel experiments will be required to determine which

of these factors is influenced by the NEP. There are at least three possible mechanisms for

explaining the inhibitory effects of an NEP on Na+ channels: 1) the NEP affects the Na+ chan-

nel protein directly; 2) the NEP affects the structure of the phospholipid environment (e.g. dis-

ruption of lipid rafts and caveolae, the distribution of cholesterol, etc.), which indirectly alters

their activity; or 3) both. Direct effects of longer duration electric pulses (4 ms) on voltage-

gated channels were previously reported by Chen et al. [40,41]. They showed that a single 4 ms

transmembrane potential shock of –400 mV or –450 mV decreased Na+ and K+ channel con-

ductance and proposed that membrane proteins were somehow damaged by an unknown

denaturation process. The lipid bilayer of the cell plasma membrane is another primary target

that can be affected by externally applied electric fields [1,42,43]. Previous studies have shown

that membrane disturbances caused by NEPs initiate complex intracellular lipid signaling

pathways [44]. Changes in the biochemical and biophysical properties could alter channel

activity and membrane excitability in response to activation of receptors [44]. Phosphoinosi-

tides, especially phosphatidylinositol (4,5)-bisphosphate or PIP2, serve as signature motifs for

different cellular membranes and often are involved in the modulation of multiple types of ion

channels [45,46]. It has been demonstrated that 600 ns electric pulses can initiate hydrolysis or

depletion of PIP2 in the plasma membrane [44], which could be responsible for the NEP-

induced inhibition of voltage-gated channels [25]. Therefore, disruption of the phospholipid

bilayer by an NEP could be a possible step leading to subsequent inhibition of voltage-gated

channels. More experiments will be required to test this hypothesis.
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Effects of NEP on voltage-gated K+ channels

Single NEPs also inhibited outward K+ currents elicited at +10 mV but this effect was only

detectable in a fraction of cells at higher E-fields (8 and 10 MV/m) compared to that observed

on INa (E-field of 5 MV/m). In contrast, the outward K+ current evoked at +80 mV was not

influenced by NEPs up to 10 MV/m. For the reasons stated above, the K+ current elicited at

this voltage is primarily composed of IKV. Nesin et al. [24] reported that a single 600 ns NEP

inhibited ICa in GH3 cells but this effect required a higher E-field than that produced by a sin-

gle 300 ns pulse on INa recorded in NG108 cells, suggesting that voltage-gated Ca2+ channels,

as our study would suggest for Ca2+-activated K+ currents measured at +10 mV, are less sensi-

tive to NEPs. Clearly more experiments will have to be carried out to determine whether 5 ns

NEPs selectively inhibited ICa, IK(Ca) or both.

Potential implications

Potassium, calcium, and sodium channels play critical roles in the development of major dis-

eases, such as hyperkalemia, epilepsy, congenital myotonia and serious neurological, retinal,

cardiac, and muscular disorders [47–50]. On this basis, the inhibition of voltage-gated chan-

nels has potential medical applications. NEPs may lower excitability in nerve cells and block

nerve conduction, mimicking the activity of local anesthetics and nerve blocking agents [51–

53]. Recently, the role of voltage-sensitive ion channels (potassium, calcium, and sodium chan-

nels) has been linked to the progression of cancer and these channels are becoming the targets

of significant drug developmental efforts to modulate voltage-sensitive ion channel activity in

order to prevent or combat malignant disease [47]. The inhibition of INa and ICa has also been

shown to have important roles in cell adhesion, invasiveness, angiogenesis and chronic pain

relief [54–57]. Thus, the inhibition of voltage-gated channels with NEPs, especially in light of

possible differences in sensitivity to E-fields, has potential implications in cancer treatment. In

addition, the development of NEPs to modulate ion channels directly or indirectly in excitable

and non-excitable cells is likely to become a promising therapeutic avenue with great potential

for medical benefits in the near future.
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