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Activation energy of surface diffusion and terrace width dynamics during
the growth of In(4X3) on Si(100)-(2X 1) by femtosecond pulsed

laser deposition

M. A. Hafez and H. E. EIsayed—AIia)
Department of Electrical and Computer Engineering and the Applied Research Center, Old Dominion
University, Norfolk, Virginia 23529, USA

(Received 24 January 2008; accepted 6 March 2008; published online 5 May 2008)

The nucleation and growth of indium on a vicinal Si(100)-(2 X 1) surface at high temperature by
femtosecond pulsed laser deposition was investigated by in situ reflection high energy electron
diffraction (RHEED). RHEED intensity relaxation was observed for the first ~2 ML during the
growth of In(4 X 3) by step flow. From the temperature dependence of the rate of relaxation, an
activation energy of 1.4*0.2 eV of surface diffusion was determined. The results indicate that
indium small clusters diffused to terrace step edges with a diffusion frequency constant of
(1.00.1) X 10" s7'. The RHEED specular beam split peak spacing, which is characteristic of a
vicinal surface, was analyzed with the growth temperature to obtain the average terrace width.
Gradual reduction in the terrace width during growth of In(4 X 3) was observed with In coverage
and is attributed to the detachment of In atoms from terrace edges. At a substrate temperature of
405 °C, the average terrace width decreased from 61+ 10 A, which corresponds to the vicinal
Si(100) surface, to an equilibrium value of 45+7 A after deposition of ~23 ML. Further In
coverage showed a transition of the RHEED pattern from (4X3) to (1 X 1) and the growth of
rounded In islands (average height of ~1 nm and width of ~25 nm), as examined by ex situ

atomic force microscopy. © 2008 American Institute of Physics. [DOI: 10.1063/1.2909923]

I. INTRODUCTION

The growth of In on Si(100)-(2X 1) surfaces induces
different surface reconstructions depending on the In cover-
age and the substrate temperature (7). The growth of In on
Si(100)-(2 X 1) at high temperatures results in the formation
of a well ordered In(4 X 3) superlattice.l_4 For an In cover-
age of ~0.15 ML [1 ML=6.8X 10" atoms/cm? for the
unreconstructed Si(100) surface], the In(4X3) surface
grown on Si(100)-(2X 1) at 500 °C was identified to be
composed of nearly identical-size nanoclusters that were ran-
domly distributed. The In(4 X 3) surface became ordered ar-
rays at an ~0.5 ML In coverage.5 The structural and elec-
tronic properties of these nanoclusters show that they have
the potential for future nanoscale and electronic device
applications.ﬁ_9

The In(4 X 3) surface was studied by Auger electron
spectroscopy, reflection high-energy electron diffraction
(RHEED), low energy electron diffraction (LEED), scanning
tunneling microscopy (STM), impact-collision ion-scattering
spectrometry, and Xx-ray diffraction."*'%'* The In(4x3)
structural model has been a subject of debate. Theoretical
and experimental studies using first principles total energy
calculations, STM image simulations, and photoelectron ho-
lography were performed to solve the structural model of the
In(4 X 3) on Si(100).">"' Their results favored the x-ray dif-
fraction analysis by Bunk et al.,”® in which the 4 X 3 unit cell
comprises a stable pyramidlike Si;Ing cluster. The results
showed that the initial structure is a mix of In(4X3) and
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Si(2 X 1) until the surface becomes fully In(4 X 3) at a cov-
erage of 0.5 ML. By using STM, Baski et al’ suggested that
the growth of the In(4 X 3) at 0.5 ML In is accompanied by
the displacement of the underlying Si surface atoms. Knall
et al.*? grew In on nominally flat Si(100)-(2 X 1) surfaces by
molecular beam epitaxy (MBE) and observed the In(4 X 3)
phase by RHEED and LEED for T,=150-600 °C. For In
coverages >2 ML, the (4 X 3) surface was decorated with
three-dimensional (3D) islands or replaced by a disordered
phase. This transition between the (4 X 3)+3D island mor-
phology to a disordered two-dimensional (2D) layer +3D
islands occurred as T was raised above ~450 °C. Scanning
electron microscopy (SEM) showed hemispherical-shaped
islands grown on the In(4X3) surface at 15 ML of In.
Changes in surface morphology that are induced by the ad-
sorption of In on Si(100)-(2 X 1) surfaces were studied by
STM and low energy electron microscopy (LEEM).'®" The
(4 X 3) structure was found to transform to a (4 X 1) structure
when the Si(100)-In(4 X 3) surface was exposed to atomic
hydrogen at 300 °C and at room temperature.zo’21 In addi-
tion, the film morphology was changed from 2D layers to In
clusters.

Compared to MBE and conventional evaporation
sources, pulsed laser deposition (PLD) produces highly en-
ergetic species with high instantaneous deposition rates.”
The energetic species in PLD increases the deposit surface
diffusion and promotes epitaxy. The high nucleation density
of deposits in PLD improves 2D growth, and this property
led to the growth of high quality metallic thin films.”*** An
imposed 2D growth mode due to the pulsed nature of PLD
followed by a relaxation time was demonstrated.”> RHEED

© 2008 American Institute of Physics
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intensity modulation by each deposition laser pulse was used
to estimate the surface diffusion parameters.26 While most
published studies focused on the determination of surface
phases induced by a submonolayer of In on Si, the kinetic
parameters and morphology changes during the growth of
In(4 X 3) need further study. The growth of In on Si(100) by
femtosecond PLD at high temperatures can be used to inves-
tigate the effect of PLD characteristics on the growth mode
and kinetics of In(4 X 3) formation.

We have studied femtosecond PLD of In on a vicinal
Si(100)-(2 X 1) surface within the temperature range of
350-420 °C. RHEED was used to probe the growth dynam-
ics of In(4 X 3) on Si(100)-(2 X 1). The film morphology was
examined ex sifu by atomic force microscopy (AFM) and
STM. The activation energy and diffusion frequency for the
formation of In(4 X 3) were estimated from the RHEED in-
tensity relaxation at an In coverage of ~0.5 ML. The terrace
width dynamics was studied at different deposition condi-
tions to investigate the associated surface processes during
the growth of In(4 X 3). The variation in the average terrace
width with In coverage and its effect on the growth mode
and morphology were examined.

Il. EXPERIMENT

The growth was performed in an ultrahigh-vacuum
(UHV) PLD system. The base pressure during deposition
was in the low 10~ Torr range. An amplified Ti:sapphire
laser [pulse width ~130 fs full width at half maximum
(FWHM)], operating at a wavelength of 800 nm and at a
repetition rate within the range of 1-50 Hz, was used to
ablate the In target. The laser was incident on a 99.99% pure
In target at ~45° and focused on the In target by using a
convex lens with a 30 cm focal length. The target was rotated
at a speed of 2 rpm in order to minimize particulate forma-
tion. The target-to-substrate distance was fixed at ~5 cm.
RHEED was used to observe the surface structure of the
substrate and the film growth during deposition. The RHEED
electron gun was operated at an electron energy of 8.6 keV. A
charge-coupled device camera was used to image the diffrac-
tion patterns. Real-time evaluation of the intensity and
FWHM of the RHEED beams were performed and correlated
with the deposition conditions. RHEED analyses along and
across the diffracted beams were obtained in the reciprocal
space and then converted to length scales after taking into
account the instrumental response. The uncertainties in the
electron energy and the RHEED camera length were deter-
mined by measuring the in-plane lattice parameter of the
Si(100) surface. The surface morphology of the In films was
imaged and characterized ex sifu with noncontact AFM and
STM.

The ~5X 10 mm Si substrates were cut from a low-
resistivity Si(100) wafer (p type, boron doped, 500 um
thick, and 0.01-0.03 ) cm resistivity). The Si surfaces were
misoriented from the low-index (100) plane by 1.0° toward
(110) £0.5°. The Si(100)-(2X 1) surface was prepared by
chemical etching just prior to being loaded into the UHV
chamber. This was followed by in situ heat cleaning to
600 °C for several hours by using a direct current, then flash
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heating at ~1100 °C to remove native oxides and carbon.
Just prior to In deposition, Si(100)-(2 X 1) was raised in tem-
perature to ~1000 °C for ~2 min by direct-current heating.
During flash heating of the substrate, the chamber pressure
was in the low 10~8 Torr. The heating was then terminated,
and the substrate cooled down to the growth temperature.
RHEED patterns acquired after annealing were characteristic
of clean reconstructed Si(100)-(2 X 1).

Calibration of the deposition rate per laser pulse was
accomplished by using the phenomenon of RHEED intensity
oscillations, which provides a highly accurate method of ob-
taining the film thickness. RHEED oscillations were ob-
served at substrate temperatures near the melting point of In.
Thus, we performed several depositions at this condition to
observe RHEED oscillations. The deposition rate was esti-
mated to be ~0.05 ML/pulse. This was confirmed by a post-
deposition estimate of film thickness by using a profilometer.

lll. RESULTS AND DISCUSSION
A. Growth of In(4X3) on Si

The growth of In on the vicinal Si(100)-(2 X 1) surface
was performed at different deposition conditions. Figures
I(a) and 1(b) show the RHEED patterns of clean
Si(100)-(2 X 1) surface before deposition that were taken

along the [011] and [011] azimuths, down and up the stair-
case, respectively. Short streaks in the RHEED Laue semi-
circles and Kikushi lines were visible. For In growth at T
within the range of 350-420 °C, the RHEED pattern began
to change from that characteristic of the initial Si(100)-
(2 X 1) reconstruction to that of the In(4 X 3) reconstruction
at a coverage of ~0.5 ML of In. Figures 1(c) and 1(d) show
the RHEED patterns of the In(4X3) superstructure on
Si(100)-(2% 1) in the [011] and [011] azimuths, respec-
tively. The laser was operated at a 2 Hz repetition rate with
an energy density of 0.50 J/cm?. The In(4 X 3) RHEED pat-
terns show streaky integral and fractional orders with sharp
spots, indicating a smooth and high quality epitaxial In film.
It was noticed that the Si(100)-(2 X 1) RHEED pattern im-
proved when In was deposited on Si at lower than 500 °C
and then desorbed by heating the Si surface at ~1000 °C.
After In desorption and cooling the substrate, the diffracted
spots became more pronounced at the higher Laue zones
with less background on the RHEED screen. This was ob-
served to considerably enhance the appearance of the
In(4 X 3) structure with subsequent In deposition. This is
consistent with a previous study, which reported that In can
be evaporated on a hot Si surface in UHV to eliminate native
oxide without indiffusion of In and introduction of surface
defects into Si during the desorption pI‘OCCSS.27

Figure 2 shows the RHEED intensity of the specular
beam during the growth of In at 7,=400 °C. The laser was
operated at a 50 Hz repetition rate and an energy density of
0.07 J/cm?. At these deposition conditions, the In(4X 3)
was still observable for ~50 s after starting the deposition.
With increasing In coverage, a continuous increase in the
RHEED background intensity was observed, and the
(4 X 3) RHEED pattern was replaced by a streaky (1X1)
pattern. Knall et al? reported that at temperatures less than
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450 °C, only a continuous decrease of the diffraction spots
and weak In(4 X3) RHEED and LEED patterns were still
visible at 1000 ML of In, which is the highest coverage used
in their experiment, indicating a 3D growth on top of the
In(4 X 3) layer. In our case, the high RHEED background

Before dqtosn‘on

- —
-
- .
-
-
-

RHEED intensity (arb. units)

20

80 100 120 140 160 180 200 220
Time (s)

20 40 60

FIG. 2. RHEED intensity of the specular beam during growth of In at a
substrate temperature of 400 °C. The laser was operated at a 50 Hz repeti-
tion rate and an 0.07 J/cm? laser energy density on the In target. The sur-
face structure changed successively from (2X 1) to (4 X3) then to (1 X 1)
after ~1500 laser shots, as shown in the inset RHEED patterns. The
RHEED patterns are taken in the [011] azimuth before and during In depo-
sition for 33 and 100 s. The arrows indicate the time at which the ablating
laser was turned on and off.

J. Appl. Phys. 103, 093510 (2008)

FIG. 1. [(a) and (b)] RHEED patterns
of Si(100)-(2X 1) surface before In
deposition taken along the [011] and

[011] azimuths, respectively. [(c) and
(d)] RHEED patterns of In(4 X 3)
grown on Si(100)-(2X 1) by femto-
second PLD taken along the [011] and

[011] azimuths, respectively. The laser
was operated at a 2 Hz repetition rate
with an energy density of 0.50 J/cm?
on the In target.

indicated the growth of In islands on the surface. As growth
proceeded, shadowing of the incident electron beam by the
islands decreased reflections from the In(4 X 3) underlayer
and caused a reduction in the specular beam intensity. For
laser energy densities on the In target in the range of
0.07-0.50 J/cm?, the transition from Si(100)-(2X 1) to
In(4 X 3) reconstruction was followed by a transformation to
the (1X 1) pattern with increasing In coverage. We did not
observe bulk transmission diffraction features in RHEED
throughout the entire deposition conditions. The morphology
of the grown In films was examined ex situ by using AFM.
Figure 3(a) shows an AFM image of an In film grown on
Si(100)-(2 X 1) at 386 °C at a coverage of ~38 ML of In. At
this coverage, the In(4 X 3) RHEED pattern was still observ-
able but had a higher background as the In coverage was
increased. The laser was operated at a 2 Hz repetition rate
and the energy density on the In target was 0.50 J/cm?. The
AFM image shows In islands of almost identical sizes grown
on the surface. Figure 3(b) shows a line scan taken over an In
island with a rounded shape that is characterized by a height
of ~1 nm and a width of ~25 nm. Figure 3(c) is a 3D STM
image of the film morphology, which shows In islands of
comparable shapes and sizes distributed over the surface. In
a previous MBE growth of In on Si(100)-(2 X 1), SEM im-
ages showed hemispherical In islands of an average diameter
of 300 nm with a minimum separation of 500 nm between
islands at a film coverage of 15 ML.> The streaky (1 X 1)
RHEED pattern, as shown in Fig. 2 at 100 s, and the AFM
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FIG. 3. (a) AFM image of the grown
In film on Si(100)-(2X 1) at 386 °C
for an In coverage of ~38 ML. The
laser was operated at a 2 Hz repetition
rate and the laser energy density was
0.50 J/cm? on the In target. (b) Line

Height (nm)
2

I
15

Length (nm)

profile of an In island shows a rounded
shape with a height of ~1 nm and a
width of ~25 nm. (c) 3D STM image
of the In film morphology showing
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profile indicate the growth of In 2D rounded islands on top
of the In(4 X 3) surface. The rounded shape of the islands
show that the In deposits have an isotropic growth on the
In(4 X 3) surface compared to the In(2 X 1) surface structure
that forms on Si(100)-(2 X 1) at room temperature, where an
anisotropic growth leads to the formation of elongated In
islands.>*

Next, the RHEED intensity was monitored to determine
the growth mode and kinetic parameters associated with the
formation of the initial In(4 X 3) structure in the femtosecond
PLD of In on Si(100)-(2 X 1). Figure 4 shows the specular
beam RHEED intensity during the growth of In(4X3) on
Si(100)-(2 X 1) at T,=390 °C. The laser was operated at a 2
Hz repetition rate with an energy density of 0.50 J/cm? on
the In target. In the first ~1 ML, the RHEED intensity re-
laxes between the deposition laser pulses. After terminating
In deposition, recovery of the RHEED intensity to its initial

-1400.0

0o
-13500

value was observed. The inset in Fig. 4 shows a similar be-
havior of the RHEED intensity for In film deposited at T
=400 °C and 0.37 J/cm? ablating laser energy density.

B. RHEED intensity relaxation and activation
energy

Deposition of In on Si(100)-(2 X 1) was performed at T
within the range of 386—405 °C and the growth was moni-
tored by RHEED. For an In coverage of ~6 ML, the
RHEED intensities showed full recovery after growth termi-
nation similar to Fig. 4. Figure 5 shows the RHEED specular
peak intensity during the growth of the first ~2 ML of In at
different 7. These films were grown with a total coverage of
~6 ML. The laser was operated at a 2 Hz repetition rate with
an energy density of 0.50 J/cm? on the In target. The pri-
mary electron beam was incident along the [011] azimuth,
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FIG. 4. RHEED intensity of the specular beam during the growth of In on
Si(100)-(2 X 1) by femtosecond PLD. The In film was grown at a substrate
temperature of 390 °C at a 2 Hz laser repetition rate and an energy density
of 0.50 J/cm? on the In target. The specular beam intensity is shown in the
inset for an In film grown at 400 °C by using a 2 Hz laser repetition rate and
an energy density of 0.37 J/cm? on the In target. Recovery of the RHEED
intensity occurred after termination of the deposition. The arrows indicate
the time at which the ablating laser was turned on and off.

down the staircase of the vicinal Si surface. At 7,=386 °C,
the RHEED specular beam intensity decreased and reached a
steady value after deposition of ~1 ML, whereas for T
=390 and 400 °C, the specular beam intensity increased,
initially reaching a peak value, then decreased with deposi-
tion time. The increase in the specular beam intensity was
higher at T,=400 °C compared to that at 390 °C. At T|
=405 °C, the specular beam intensity increased to a peak
value in the first ~0.5 ML, reaching almost a flat peak that
slowly decreased with further deposition. RHEED intensity
relaxations were observed in the early stages of the growth of
In(4X3) up to the first ~2 ML. The relaxations of the
RHEED intensity indicate that surface smoothing took place
between pulses during the In growth. The In(4 X 3) RHEED
pattern showed sharp spots lying on the RHEED zeroth Laue
semicircle similar to Fig. 1(c). The smoothing of the growth
is attributed to the energetic effect of the incident In deposits
on the substrate surface. The inset of Fig. 5 shows a magni-
fied RHEED intensity of the specular beam for the 6th to the
11th laser pulses during In deposition at 7,=390 °C. The
RHEED intensity oscillates with a period corresponding to
the laser pulse repetition rate of 2 Hz. Each laser pulse ab-
lating the In target deposits ~3.4X 103 atom/cm? of In on
the surface. This causes the specularly reflected RHEED in-
tensity to instantaneously decrease because of the increased
random distribution of the incoming In deposits on the sur-
face. Then, the deposited In atoms and the formed clusters
rearrange on the surface, leading to the increased RHEED
specular intensity until the arrival of the next In flux. During
femtosecond PLD of In on Si, the surface smoothness
changed with each laser pulse in a periodic fashion, which
can be viewed as a kind of interrupted growth. In contrast,
due to the continuous nature of MBE, this feature does not
appear. The RHEED intensity relaxations between laser
pulses during growth of In were observed to decay after
deposition of the first ~2 ML of In.

J. Appl. Phys. 103, 093510 (2008)
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FIG. 5. RHEED intensity of the specular beam was monitored during
growth of In within the first ~2 ML at different substrate temperatures. The
laser was operated at a 2 Hz repetition rate with an energy density of
0.50 J/cm? on the In target. The primary electron beam was incident along
the [011] azimuth down the staircase of the vicinal Si surface. The inset
shows a magnified time scale of RHEED intensity relaxation observed after
laser pulses during femtosecond PLD of In on Si(100) at 7 of 390 °C from
the 6th to the 11th laser pulse.
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FIG. 6. The RHEED intensity relaxation measured at different growth tem-
peratures. The inset shows the time dependence of the normalized RHEED
intensity taken after the eighth laser deposition pulse, for a coverage of ~0.5
ML of In. The solid lines are exponential fit. The time constant 7 has an
Arrhenius temperature dependence. The activation energy E,; and the diffu-
sion frequency constant v, of the surface diffusion are determined.

The surface morphology prior to the deposition influ-
enced the growth mode. For the vicinal Si(100)-(2 X 1) sur-
face, the nucleation sites, such as vacancies and kinks, are
located at terrace step edges at which atoms have lower co-
ordination, making them more reactive. A RHEED investiga-
tion showed that the In surface segregation strength is re-
duced on vicinal substrates due to the effect of surface
steps.29 It was shown that no RHEED intensity relaxation
takes place after each laser pulse when the growth mode is
2D layer by layer, while RHEED intensity relaxation is ob-
served when the growth mode is step flow.*” Step flow
growth in PLD was previously observed and showed relax-
ation of RHEED intensity after each laser pulse.30’31 The
RHEED specular beam intensity development in Figs. 4 and
5 is indicative of step flow growth. No RHEED oscillations
characteristic of layer-by-layer growth were observed. More-
over, the recovery of the specular spot intensity after growth
termination observed in Fig. 4 rules out the increased surface
roughness associated with columnar growth. The amount of
In deposited in a single pulse, 0.05 ML/pulse, was much
smaller than what was needed to grow a single monolayer.
Depending on surface diffusion energy, the deposits diffused
on the surface reaching terrace step edges.

The RHEED intensity relaxation depends on the growth
temperature, as shown in Fig. 6. The time dependence of the
normalized RHEED intensity for different 7 is shown in the
inset of Fig. 6. The RHEED relaxation intensities were taken
after the eighth laser pulse, for an In coverage of ~0.5 ML,
for each deposition temperature. The relaxations have a rise
that is well described by a single exponential in the form
1(r)=A[1—-exp(~t/7)], where A is a constant and 7 represents
a time constant for intensity rise. From the curve fits to the
RHEED intensity, the time constant 7 was found to decrease
from 0.10 to 0.03 s for 7, of 386 and 405 °C, respectively.
The characteristic time constant 7 of the RHEED intensity
relaxation following a laser pulse is related to the activation
energy of surface diffusion by 1/7=v, exp(—E,/kzT,), where
v is the diffusion frequency constant, E; is the activation

J. Appl. Phys. 103, 093510 (2008)

energy, and kg is Boltzmann’s constant. The time constant 7
has an Arrhenius temperature dependence, as shown in Fig.
6. The data are plotted in a log 7 versus 1/7, scale. A least-
squares fit is used to yield E; and v,. The activation energy
E, of the surface diffusion for In(4 X 3) on Si(100)-(2X 1)
by femtosecond PLD was 1.4*0.2 eV. The diffusion fre-
quency v, measured from the plot is (1.0=0.1) X 10'! s7!,
The vertical and horizontal error bars in the Arrhenius plot
represent the statistical error and systematic uncertainty in
the temperature measurements.

In general, the thin film growth mechanism depends on
the deposition conditions, such as the deposition rate, the
incident atom energy, and the surface condition. The activa-
tion energy depends on these various parameters. In the
growth of superconducting thin films by PLD, an activation
energy of 0.7*=0.1 eV for the diffusion of material units was
estimated from the RHEED intensity oscillations.”®** The
growth of homoepitaxial SrTiO;5 thin films by PLD at high
temperatures (900—1380 °C) showed RHEED  intensity
modulation at the laser pulse repetition rate. Activation ener-
gies of the surface diffusion of 3.8*+0.3 and 3.3+0.2 eV
were estimated from the slow surface recovery after growth
termination.”’ Such large activation energies were associated
with detaching unit cells from kink sites at the edge of small
islands.’’ In a MBE study of In on GaAs, the activation
energy for the migration of In adatoms, at a temperature of
450-530 °C, was reported to be 1.6 eV.? The activation
energy of surface diffusion for the growth of In(4 X 3) on
Si(100)-(2 X 1) has not been previously reported. Both the
energy of the ejected material from the In target and the
substrate temperature influence the In(4X3) film growth
process. The substrate temperature can affect the mobility of
deposits on the surface. According to a Monte Carlo simula-
tion of PLD, the incident particles’ kinetic energies can play
a similar role in film growth as the increase in substrate
temperature.34 The influence of the former on the activation
energy is complex due to the interaction between the incident
particles and the surface atoms.”* Femtosecond PLD is
known to result in the formation of a plume containing en-
ergetic species.35 The growth of In on Si(100)-(2X 1) by
femtosecond PLD at room temperature showed the formation
of the initial In(2 X 1) layer instead of an In(2 X 2) layer, as
in MBE growth. The In(2X 1) is formed by removing the
reconstruction of Si(100)-(2 X 1) surface because of the en-
ergetic effect of the In species. This process affects the de-
velopment of the film morphology.28 Surface diffusion to the
terrace step edges is influenced by the high kinetic energy of
In deposits and the local surface lattice heating. The inelastic
energy transfer from different In plume species to the surface
causes surface lattice heating, enhancing surface diffusion.

The diffusion parameters during the growth of the In(4
X 3) layers depend on the type of the diffusing species. The
diffusion frequency w, of the adatoms over a surface is
known to be in the range of 10'3 s~! (the vibrational
frequency).’ During the growth of In(4 X 3) by femtosecond
PLD, the diffusion frequency constant determined from the
Arrhenius plot vy=(1.0+0.1)X10'"" s7! is two orders of
magnitude lower than that for adatoms. This indicates that
the rate limiting process is due to the surface diffusion of
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clusters rather than of adatoms. The kinetics of In growth can
be explained by the energetic and pulsed nature of PLD. The
plume species that are mainly In atoms reach the surface and
initially occupy disordered sites. The high instantaneous
deposition rate results in a high nucleation density on the
surface. Subsequently, the In atoms form small clusters that
diffuse on the surface before they reach the terrace step
edges. The diffusion frequency constant v, which is ob-
tained from RHEED intensity relaxation, is that of cluster
diffusion. Previous experimental observations of fast diffu-
sion of clusters and 2D island diffusion on surfaces were
reported.36_38 In a proposed model of heteroepitaxy by PLD,
a diffusion frequency constant of 10’ s~! was obtained and
referred to as the diffusion of material units rather than
adatoms.”® For the In(4X3) growth on vicinal Si(100)
-(2X1) by femtosecond PLD, formation of small In clusters
occurred during the high supersaturation period of a deposi-
tion pulse followed by surface diffusion of the small clusters
to surface step edges with E;=1.4+0.2 eV.

C. Terrace width growth dynamics

The use of a vicinal Si(100)-(2X 1) surface as a sub-
strate enables the study of the influence of terrace step edges
on In growth by PLD. Real-time RHEED patterns were ac-
quired in the out-of-phase diffraction condition in order to
measure the average terrace width during the growth of In on
Si. In the out-of-phase condition, incident electrons scattered
from different surface layers destructively interfere. This re-
sults in a splitting of the specular RHEED beam for a vicinal
surface when the electron beam direction has a component
down the staircase. The diffracted beam profiles are sensitive
to terrace periodicity and step edge disorder. Kinematical
approaches were previously utilized for quantitative analysis
of RHEED during thin film growth on vicinal surfaces.””*

The average terrace width of the clean vicinal
Si(100)-(2 X 1) surface is expected to be affected by chemi-
cal etching and heat cleaning. Prior to In deposition, the
average terrace width of the Si(100)-(2 X 1) substrate was
measured along the [011] azimuth. The specular beam
showed split peaks at the out-of-phase condition, which is
defined by 2d sin 6,,.=(n+1/2)\, where d is the monolayer
step height, 6., is the incident angle corresponding to the
out-of-phase condition, 7 is an integer, and A\ is the electron
wavelength. Figure 7 is a RHEED pattern of the vicinal
Si(100)-(2 X 1) that shows splitting of the specular beam in
the S, direction, where S, and S, are the components of the
momentum transfer parallel and perpendicular to the electron
beam, respectively. The angle of incidence 6.,. correspond-
ing to the out-of-phase condition was ~65 mrad. The aver-
age terrace width was determined from the spacing of the
split peaks L=27/(d6)k sin 6., where k=47.78 A~! is the
Ewald sphere radius and d6=32.7 mrad is the splitting
angle. Taking into account the RHEED instrumental re-
sponse of 0.20=0.02 A~', the average terrace width of the
Si(100)-(2 X 1) surface was obtained to be L=61+10 A.
The instrumental response was obtained from the FWHM
along the specular beam in the S, direction at the Bragg
diffraction condition. The corresponding misorientation
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FIG. 7. RHEED pattern of the vicinal Si(100)-(2X 1) surface taken at the
out-of-phase condition corresponding to 6;,.~65 mrad. The primary elec-
tron energy of 8.6 keV incident was down the staircase of the vicinal surface
along the [011] azimuth. S, and S, are the components of the momentum
transfer parallel and perpendicular to the electron beam, respectively. The
specular beam was split in the S direction into two peaks around a central
part, which is located within the RHEED zeroth Laue zone.

angle for the vicinal Si(100)-(2X 1) substrate with a step
height of 1.36 A is approximately 1.3°, which is consistent
with the 1.0*£0.5° miscut angle specified by the manufac-
turer. The average terrace width depends on the misorienta-
tion angle from the low-index (100) plane. For a cleaned
vicinal Si(100) surface tilted 4° toward [011], STM showed
terraces of 40-45 A in width.'? No inner potential correc-
tion is needed since the interference condition in RHEED
depends only on the extra external path length; a refraction
correction at the top or bottom of a step would be identical
and thus cancels.” Dynamic interaction due to surface wave
resonance does not change the splitting or streak
asymmetry.*!

The temporal evolution of the terrace width during
growth of In(4 X 3) was measured by directing the RHEED
electron beam down the staircase, along the [011] azimuth of
the Si surface, and line scans were taken over the splitting
peaks with a frame rate of 7—8 frame/s. The split peak spac-
ing was measured during In growth at different growth tem-
peratures and laser energy densities. Figure 8 shows the av-
erage terrace width L during the growth of In at 7, of
358 °C. The laser was operated at a 2 Hz repetition rate with
an energy density of 0.50 J/cm? on the In target. L de-
creased from 61+ 10 to 53+8 A during the growth of the
first ~11 ML of In. The width of the split peaks, which is
related to defects, slightly decreased with deposition time.
The inset of Fig. 8 shows RHEED intensity profiles taken
across one of the split peaks, in the S, direction, before and
during the deposition at ~1 and ~7.6 ML. The correspond-
ing FWHMs extracted from a Lorentzian fit to the intensity
profiles were 0.24, 0.21, and 0.20 A~!, respectively. The
growth of In(4 X 3) by two different laser ablation energy
densities of 0.25 and 0.50 J/cm? at T, of 400 °C showed a
decrease in the average terrace width to 49%7 and
52+8 A, respectively, as shown in Fig. 9. The decrease in
the average terrace width during growth of In indicates alter-
nation of the terrace edge morphology.
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FIG. 8. The average terrace width L during growth of In at 7| of 358 °C on
the vicinal Si(100)-(2 X 1) surface. The laser was operated at a 2 Hz repeti-
tion rate and an energy density of 0.50 J/cm? on the In target. The primary
electron energy of 8.6 keV incident was down the staircase along the [011]
azimuth of the Si surface. L was decreasing during the growth of the first
~11 ML of In. RHEED intensity profiles taken across one of the split peaks,
in the S| direction, before and during the deposition at ~1 and ~7.6 ML are
shown in the inset. The FWHM is measured from a Lorentzian fit to the
intensity profiles. A schematic of a vicinal surface is shown in the inset.

The variation in the average terrace width during In
growth on the vicinal Si(100)-(2 X 1) depends on the depo-
sition conditions. A STM study showed step rearrangement
on vicinal Si(100) induced by In adsorption and annealing.18
At an annealing temperature of 500 °C, STM showed an
increase in terrace width from 40 to =200 A, which oc-

curred by step bunching. The original step direction of [011]
changed to a preferred low-index [010] and [001] directions,
and the terraces widened to ~400 A after annealing at
510 °C.'® By using reflection electron microcopy, step
bunching on a Si(001) vicinal surface during Au deposition
resulted in an increase in the terrace width with deposition
time.*? Step bunching occurs when the steps on the vicinal
surface become unstable and come together to form strips of
high and low step densities. This results in change in the
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FIG. 9. The average terrace width L during femtosecond PLD of In by two
different laser energy densities of 0.25 and 0.50 J/cm? (inset) for ablation
of In target. The laser was operated at a 2 Hz repetition rate and the growth
temperature 7 was 400 °C. The 8.6 keV electron beam incident was down
the staircase along the [011] azimuth of the Si surface.
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terrace width distribution. If the RHEED electron beam is
incident along the miscut direction, step bunching causes a
decrease of the splitting angle d6. We observed an increase
in d6 during In growth, indicating a decrease in the split peak
spacing L. Previous studies showed that the average terrace
width of vicinal surfaces decreased with deposition time or
temperature.43_45 Moreover, roughening or meandering at the
step edges increases disorder at terrace edges, which, for a
stepped surface, causes fluctuation in the terrace width.*® If
the degree of disorder were high, the electrons would effec-
tively traverse more up and down steps along its path. This
causes the diffracted beam to broaden and the staircase could
be lined up in other low-index directions leading to a de-
crease in or a disappearance of the split peak spacing from
the miscut direction of the vicinal Si surface.*® In the present
study, the split peak spacing, which is measured for the [011]
azimuth, remained at its maximum with further In deposi-
tion.

The change in the terrace width distribution during In
growth suggests that collective surface processes occurred.
The sticking probability of In on Si(100) becomes apprecia-
bly less than unity as the temperature is increased above
550 °C, at which In desorption becomes considerable.**” In
our study, a strong (4 X 3) pattern was observed at substrate
temperatures of 350-420 °C. Li et al."® showed that the
In(4 X 3) on the Si(100) terraces did not desorb at tempera-
tures below 500 °C. This was consistent with the desorption
kinetic studies of Knall et al.,3 who determined that the bind-
ing energy of In on top of the (4 X 3) surface is lower than
that of In in the (4 X3) surface, 2.45 eV versus 2.85 eV,
respectively, implying that it is more difficult to desorb In
from a (4 X 3) surface than from In on top of it. The detach-
ment of In atoms from step edges is more likely than direct
desorption from the step edges because the former process
generally has a smaller activation energy.48

In the reciprocal lattice of a vicinal surface, the split
peak results from the intersection of the Ewald sphere with
the lattice rods of the terrace edges. Changes in the terrace
edge morphology can be qualitatively observed by the
RHEED diffraction pattern. Surface atoms at step edges have
lower coordination than atoms at terraces, making them less
stable, particularly at high temperatures. The observed de-
crease in the average terrace width could be attributed to the
detachment of In atoms from step edges followed by the
diffusion on the terrace surface. The In atoms can then form
clusters and/or desorb from the surface. A previous work by
dark-field LEEM showed that rearrangement of the Si(001)
surface occurred through etching of the Si surface by In at
temperatures greater than 650 °C." This suggests that etch-
ing by energetic In deposits preferentially occurs at terrace
edges of the Si surface, which could be the cause of the
observed decrease in the average terrace width at the begin-
ning of the deposition.

Figure 10 shows the time evolution of the average ter-
race width L during In growth at T, of 405 °C for a total
coverage of ~38 ML. The RHEED pattern of In(4 X 3) taken
after deposition of ~38 ML is shown in the inset of Fig. 10.
The splitting of the specular beam indicates that the In film
forms a staircase in the [011] azimuth of the Si surface due to



093510-9 M. A. Hafez and H. E. Elsayed-Ali

64
62 Lp‘ [011]

60 |
58
56 |

54 |
52
50 |
48
46
a4 t

Terrace width (A)

42 ' : '
50 100 150 200 250 300 350 400

Time (s)

FIG. 10. The average terrace width L during growth of In by femtosecond
PLD at T, of 405 °C on the vicinal Si(100)-(2 X 1) surface. The laser was
operated at a 2 Hz repetition rate and an energy density of 0.50 J/cm? on
the In target. The 8.6 keV electron beam incident was down the staircase
along the [011] azimuth of the Si surface. L decreased until an equilibrium
reached after deposition of ~23 ML of In. The arrow indicates the equilib-
rium L. The In(4 X 3) RHEED pattern remained observable during the depo-
sition. In the inset, RHEED pattern of In(4 X 3) for In coverage of ~38 ML
is shown. The splitting of the specular beam was along the [011] azimuth of
the vicinal Si(100) surface and parallel to the RHEED shadow edge.

the growth by step flow. The deposition was started at a time
of 20 s. The laser was operated at a 2 Hz repetition rate with
an energy density of 0.50 J/cm? on the In target. The terrace
width L decreased from 61+ 10 A to an equilibrium value
of 45+7 A after deposition of ~23 ML of In. From the start
of the deposition until the deposition time was ~230 s,
which is the range at which the terrace width was decreasing,
the In(4 X 3) film grew by step flow. At 230 s, corresponding
to a coverage of ~23 ML, the terrace width reached a steady
value. Because of surface processes such as the detachment
of In atoms from step edges, competition between growth by
step flow and growth on surface terraces arises as the film
coverage was increased. Also, with the increase in coverage,
the concentration of In on surface terraces increased and the
growth of the In film could be a mixture of In island forma-
tion and step flow growth over part of the surface. When the
equilibrium terrace width was reached, the possibility of
growth of In islands increased. At a high film coverage of
more than 38 ML, the density and size of islands increased
on surface terrace, which gave rise to a (1 X 1) RHEED pat-
tern and disappearance of the (4 X 3) RHEED pattern.

IV. CONCLUSIONS

The growth of In(4 X 3) on the vicinal Si(100)-(2 X 1)
surface by femtosecond PLD was studied by in situ RHEED
within the temperature range of 350—420 °C. Unlike ther-
mal evaporation, the energetic and pulsed nature of PLD lead
to the creation of mobile In clusters, enhancing the 2D
growth. The growth of the In(4 X 3) layers occurred by the
step flow mode. The growth stages of the In(4 X 3) layer,
which are probed by RHEED intensity relaxation, proceeds
in a two-step process: formation of small In clusters and
surface diffusion to the terrace step edges with a character-
istic activation energy E,; and a diffusion rate constant .

J. Appl. Phys. 103, 093510 (2008)

During growth of the In film, a reduction in the average
terrace width occurred and was attributed to the detachment
of In atoms from terrace edges. As the In coverage was in-
creased, the terrace width reached an equilibrium length,
where the possibility of growth of In islands increased. Ob-
servation of the RHEED pattern transition from (4 X 3) to
(1X1) was associated with the growth of In islands on the
terrace surfaces.
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