LINK BETWEEN LOCAL PHENOLOGY AND CLIMATE CHANGE

Blake Steiner and Tatyana Lobova Contact: bstei001@odu.edu, tlobova@odu.edu Department of Biological Sciences Old Dominion University, Norfolk, VA. Presented at 2017 VCHC Conference, April 8, 2017 | Norfolk, Virginia

INTRODUCTION

- Phenology is the study of cyclic and seasonal biological phenomena of plants and animals.
 - 20-1,200 years of data is used to make conclusions in Europe and Japan (Menzel *et al.* 2006; Aono and Kazui, 2008; and Primack *et al.* 2009).
- The Southeastern Virginia Phenology Network is a partnership between Old Dominion University (ODU) and Norfolk Botanical Gardens.
 - Started in 2010 with the purpose of assessing phenological change in native plants in respect to climate change.
- **Objectives**:
 - 1. Determine which plants' phenophases are sensitive to temperature changes.
 - 2. Show which plants' phenophases are shifting over time as the climate changes.
 - 3. Interpret the impact of these shifts on the ecosystem, human health, and recreation.

SE Virginia Phenology Network Logo (top) Flowers of Red Maple (Acer rubrum, bottom) © Norfolk Botanical Garden 2

MATERIALS AND METHODS: SPECIES SELECTION

- A taxonomically diverse set of 7 native species were Location chosen:
 - *1.* Acer rubrum (Red maple), n = 3.
 - 2. *Podophyllum peltatum* (Mayapple), n = 1.
 - *3. Pancium virgatum* (Switchgrass), n = 1.
 - 4. Cornus florida (Flowering dogwood), n = 3.
 - *5. Cephalanthus accidentalis* (Common buttonbush), n=3.
 - 6. *Vaccinium corymbosum* (Highbush blueberry), n = 3.
 - 7. *Pinus taeda* (Loblolly pine), n = 3.

All three sites are located in the Norfolk

Botanical Garden:

- 1. Mirror Lake (36.90° N, 76.21° W),
- 2. VA Native Garden (36.90° N, 76.20° W),
- 3. Enchanted Forest (36.91° N, 76.20° W).

MATERIALS AND METHODS: LOCATION

Mirror Lake	1 Red Maple	1 Mayapple	2 Common Buttonbushes	1 Highbush Blueberry	1 Loblolly Pine	2 Flowering Dogwoods	that where a second sec
VA Native Garden	1 Red Maple	1 Switchgrass	1 Common Buttonbush	1 Highbush Blueberry	1 Loblolly Pine	Х	Entrance
Enchanted Forest	1 Red Maple	Х	Х	1 Highbush Blueberry	1 Loblolly Pine	1 Flowering Dogwood	Botanical Gardens Ac.Rd
					Total =	16	Norfolk Botanical Garden

Table and Map of the three study sites with observed individuals in the Norfolk Botanical Garden where triangle = Mirror Lake; Oval = VANative; and rectangle = Enchanted Forest.

MATERIALS AND METHODS: PHENOPHASE AND TEMPERATURE

- Adopted the USA National Phenology Network's (USA-NPN) methodology.
- Looked for four phenophases:
 - 1. First Flowering Date (FFD)
 - 2. First Leafing Date (FLD)
 - 3. First Fruiting Date (FFrD)
 - 4. First Date of Senesence (FDS).
- Used average daily temperature data from NOAA's Norfolk INTL Airport Station (36.90°N, 76.19°W).

SAMPLE DATASHEET

	Date:							
Do you see	Time:							
Breaking leaf buds	y n ?	yn?	yn?	yn?	yn?	yn?	y n ?	yn?
Leaves	y n ?	yn?	y n ?	yn?	yn?	y n ?	y n ?	yn?
Increasing leaf size	y n ?	y n ?	y n ?	y n ?	y n ?	yn?	y n ?	y n ?
Colored leaves	yn?	y n ?	y n ?	y n ?	y n ?	yn?	y n ?	yn?
Falling leaves	y n ?	y n ?	y n ?	y n ?	yn?	yn?	y n ?	yn?
Flowers or flower buds	y n ?	y n ?	y n ?	yn?	yn?	yn?	yn?	yn?
Open flowers	y n ?	y n ?	y n ?	y n ?	yn?	yn?	y n ?	yn?
Fruits	y n ?	y n ?	y n ?	y n ?	y n ?	yn?	y n ?	y n ?
Ripe fruits	y n ?	y n ?	y n ?	y n ?	y n ?	yn?	yn?	yn?
Recent fruit or seed drop	y n ?	y n ?	y n ?	y n ?	y n ?	yn?	y n ?	y n ?
Check when data entered online:								
Comments:								

MATERIALS AND METHODS: ANALYSIS

- For sensitivity:
 - Used a 3-mo summed temperature window (threshold = 0°C) from 2009-2016 (Cook *et al.*, 2012).
 - $GDD_{daily} = max(Tmean GDDthresh, 0)$
 - $GDD_{sum}(years) = \sum GDD$
 - These values were standardized.
 - Dates of occurrence was averaged as number of days in the year. (Mazer *et al.*, 2013).
 - If regression was significant (*F*<0.05), then there is a strong relationship between date of occurrence and growth based on temperature (GDD).

- For determining a phenophase shift:
 - The average temperature for the 3-mo window for each year, respective to each phenophase.
 - If there were multiple individuals, the average date of occurrence was used per year.
 - If phenophase showed a significant (*F*<0.05) regression over time, then it was concluded that a shift was occurring.
- Univariate and multivariate linear regression in Microsoft Excel (2016) was used for statistical analysis.

RESULTS: SENSITIVITY

TEMPERATURE RESULTS

ANNUAL AVERAGE TEMPERATURE, ORF

This graph displays the annual average temperature for the past 36 years (F=0.0045). Specifically, it shows the annual average temperature during the time of this study. In our area, it as been getting warmer with a rate of about 0.0265°C/year.

SENSITIVITY RESULTS

1													
			<u>P</u>	henophase <i>F</i> -	value (F<0.05	5)		<u>Phenopha</u>	<u>se R² (SE)</u>				
	Species	Ν	FLD	FFD	FFrD	FDS	FLD	FFD	FFrD	FDS			
	<i>A. rubrum</i> (Red maple)	3	0.5027	0.4278	0.8085	0.3471	0.0944 (6.843)	0.1295 (8.820)	0.0165 (15.71)	0.1771 (18.87)			
	<i>P. peltatum</i> (Mayapple)	1	0.3555	0.4583	0.0056	Х	0.1716 (10.50)	0.1143 (7.111)	0.8803 (4.298)	Х			
*	<i>P. virgatum</i> (Switchgrass)	1	0.0901	0.2002	0.0940	X	0.4679 (9.109)	0.3033 (8.088)	0.5446 (8.093)	Х			
3	<i>C. florida</i> (Flowering dogwood)	3	0.2190	0.8015	0.0155	0.0073	0.2831 (8.124)	0.0139 (21.80)	0.8040 (9.801)	0.7911 (7.501)			
	C. occidentalis (Common buttonbush)	3	0.4675	0.0107	0.0372	0.0368	0.1099 (11.25)	0.7590 (3.473)	0.7024 (8.069)	0.6152 (14.51)			
	V. corymbosum (Highbush blueberry)	3	0.4104	0.0120	0.2444	0.0013	0.1388 (10.89)	0.7478 (5.367)	0.3173 (13.25)	0.8936 (7.116)			
			FLD	FPCD	FSCD								
	<i>P. taeda</i> (Loblolly pine)	3	0.0688	0.4465	0.3111	Х	0.4197 (12.26)	0.1200 (16.61)	0.3300 (14.16)	Х			

Results of the sensitivity linear regression tests. Bold-faced species and numbers represent a significant relationship between average date of occurrence and growth degree day (GDD). © from top to bottom: Norfolk Botanical Garden (NBG, Red Maple), Wplynn (Mayapple), Bob Klips (Switchgrass), Larry Korhnak (Flowering Dogwood), NBG (Common Buttonbush), Francis Carpenter (Highbush 9 Blueberry), and University of Texas (Loblolly Pine).

SENSITIVITY RESULTS CONT.

Relationship between average day of first occurrence and GDD. For Common Buttonbush FFD, the relationship was significant (F=0.0107), and for FFrD it was significant (F=0.0372).

SENSITIVITY RESULTS CONT.

• The relationship between average day of first occurrence and GDD. For V. corymbosum FFD, the relationship was significant (F=0.0120), and, for FFrD it was not significant (F=0.2444).

RESULTS: PHENOPHASE SHIFTS

PHENOPHASE SHIFT RESULTS

		Mean phenophase date			SD of phenophase date					Days of Year			Temperature			
Species	N	FLD	FFD	FFrD	FDS	FLD	FFD	FFrD	FDS	Sig. Pheno.	Slope (d/yr)	SE	R ²	Slope (d/yr)	SE	R ²
<i>C.</i> <i>occidentalis</i> (Common buttonbush)	3	Х	18-Jun	14-Jul	9-Oct	Х	8.812	14.81	23.24	FFD, days (D,F=0.006; T,F=0.038) FFrD, days (F=0.005)	2.679 (FFD) 6.676 (FFrD)	3.114 (FFD) 4.873 (FFrD)	0.8026 (FFD) 0.8914 (FFrD)	-0.3106 (FFD) - 0.1413 (FFrD)	0.5849 (FFD) 0.8030 (FFrD)	0.6123 (FFD) 0.2691 (FFrD)
V. corymbosum (Highbush blueberry)	3	Х	17-Mar	Х	1-Oct	Х	11.09	Х	29.49	Х	0.4643 (FFD) - 4.405 (FDS)	10.63 (FFD) 19.16 (FDS)	0.0106 (FFD) 0.2284 (FDS)	0.0219 (FFD) 0.0397 (FDS)	0.9543 (FFD) 0.9511 (FDS)	0.0030 (FFD) 0.0097 (FDS)

Phenophase-shift results compared to temperature over time. Bolded terms are when a significant shift was observed, such as the terms contained within the red rectangle. On average, Common Buttonbush is flowering 2.7 days later; it is also fruiting later by 6.7 days.

PHENOPHASE SHIFT RESULTS CONT.

FFD and Temperature Over Time – Common Buttonbush

■ *FFD* and temperature vs. time, as well as linear trend lines. Overall, it would appear to be getting cooler from Apr-Jun. However, the key item to note is the shift in FFD from day 160 – 178, F=0.0064.

PHENOPHASE SHIFT RESULTS CONT.

■ *FFrD* and temperature vs. time, as well as linear trend lines. From May-July, there is a wide variation in temperature, with the notable exception of 2011 and 2016. However, the key item to note is the shift in FFrD from day 181 – 213, F=0.0046.

PHENOPHASE SHIFT RESULTS CONT.

FDS and Temperature Over Time - Common Buttonbush

Leaves of a Common Buttonbush experiencing senesence.

© Rotary Botanical Gardens

FDS and temperature vs. time, as well as linear trend lines. FDS did not have a significant shift, though it is close (F= 0.0679).

DISCUSSION

- In terms of sensitivity:
 - 4/7 species had at least one phenophase that would shift **as** the area gets warmer.
 - GDD strictly looks at temperature, not nutrient, water, or light availability (Lambers and Poorter, 1992; Cleland *et al.*, 2007).
 - However, shifts are shown to occur due to temperature (Root *et al.* 2003; Menzel *et al.* 2006).
 - 3/7 species did not show any sensitivity. This could be due to wider range of resiliency by species or a different mode of pollination.
- In terms of phenophase shift:
 - Only one species had shown a significant phenophase shift. This is most likely due to low sample size (Gunderson et al. 2012; Mazer et al. 2013).
 - Potentially, the Common Buttonbush phenophase shift could be influenced by the fact that two individuals are collated in the same microclimate.

DISCUSSION

- In terms of ecosystem health:
 - Common Buttonbush is flowering and fruiting later, which has been shown to disrupt pollinators, though it is unknown as to how it affects seed dispersal.
 - Indeed, models have shown a reduction of 17-50% of pollinator reward and fruits, limiting pollinator and frugivore activity (Memmott *et al.*, 2007).
 - Phenological shifts are likely to change the composition of native pollinators, possibly with invading southern pollinators.
- In terms of human health and recreation:
 - This could mean an earlier, or longer, allergy season, especially with the understudied pines.
 - Pungo, as well as other local agricultural zones, are likely to have reduced yields (Tao *et al., 2006;* Nahar *et al., 2010*).

CONCLUSION AND FUTURE DIRECTIONS

- Overall, it would appear that for the past 5-6 years, the tested native plants have exhibited consistency in phenophases.
 - Mayapple, Flowering Dogwood, Common Buttonbush, and Highbush Blueberry had at least one phenophase show significant sensitivity to increasing temperature.
 - Loblolly Pine and Switchgrass are close to having significant sensitivities.
 - Only Common Buttonbush had shown a phenophase shift (FFD and FFrD).
- For the future:
 - Further observations are needed to make a more definitive assessment.
 - Training students to start observing the pollinator phenology of tested plants would help in piecing the puzzle together.
 - Genetic testing for variation would also help determine resiliency.

First leafing date across the southern U.S. as it relates to significant shifts in FLD and temperature. © USA-NPN.

ACKNOWLEDGMENTS

- USA-NPN for methodology.
- Norfolk Botanical Garden for collaboration.
- NOAA for climate data.
- All graduate and undergraduate volunteers: Pat Hunter Shanks, David Ingersoll, Sean, Elizabeth Kana Husa.
- Dr. Tatyana Lobova for supervising the project.

Fruit from a Highbush Blueberry © Norfolk Botanical Gardens

QUESTIONS?

LITERATURE CITED

- Aono, Y. & K. Kazui. (2008). Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. *International Journal of Climatology* 28:905-914.
- Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., & Schwartz, M. D. (2007). Shifting plant phenology in response to global change. Trends in ecology & evolution 22:357-365.
- Cook, B. I., E. M. Wolkovich, T. J. Davies, T. R. Ault, J. L. Betancourt, J. M. Allen, K. Bolmgren, E. E. Cleland, T. M. Crimmins, N. J. B. Kraft, L. T. Lancaster, S. J. Mazer, G. J. McCabe, B. J. McGill, C. Parmesan, S. Pau, J. Regetz, N. Salamin, M. D. Schwartz, and S. E. Travers. 2012. Sensitivity of Spring Phenology to Warming Across Temporal and Spatial Climate Gradients in Two Independent Databases. *Ecosystems* 15:1283-1294.
- Gunderson, C. A., N. T. Edwards, A. V. Walker, K. H. O'Hara, C. M. Campion, & P. J. Hanson. (2012). Forest phenology and a warmer climate growing season extension in relation to climatic provenance. *Global Change Biology* 18:2008-2025.
- Lambers, H., & Poorter, H. (1992). Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. *Advances in ecological research* 23:187-261.
- Mazer, S. J., S. E. Travers, B. I. Cook, T. J. Davies, K. Bolmgren, N. J. Kraft, N. Salamin, & D. W. Inouye. (2013). Flowering date of taxonomic families predicts phenological sensitivity to temperature: implications for forecasting the effects of climate change on unstudied taxa. *American Journal of Botany 100*:1381-1397.

Memmott, J., Craze, P. G., Waser, N. M., & Price, M. V. (2007). Global warming and the disruption of plant-pollinator interactions. *Ecology letters*, 10:710-717.

Menzel, A., T. H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm-KÜBler, P. Bissolli, O. G. BraslavskÁ, A. Briede, F. M. Chmielewski, Z. Crepinsek, Y. Curnel, Å. Dahl, C. Defila, A. Donnelly, Y. Filella, K. Jatczak, F. MÅGe, A. Mestre, Ø. Nordli, J. PeÑUelas, P. Pirinen, V. RemiŠOvÁ, H. Scheifinger, M. Striz, A. Susnik, A. J. H. Van Vliet, F.-E. Wielgolaski, S. Zach, and A. N. A. Zust. (2006). European phenological response to climate change matches the warming pattern. *Global Change Biology* 12:1969-1976.

LITERATURE CITED

Nahar, K., Ahamed, K. U., & Fujita, M. (2010). Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. *Notulae Scientia Biologicae*, 2:51.

- Primack, R. B., H. Higuchi, & A. J. Miller-Rushing. (2009). The impact of climate change on cherry trees and other species in Japan. *Biological Conservation 142*:1943-1949.
- Richardson, A. D., T. F. Keenan, M. Migliavacca, Y. Ryu, O. Sonnentag, & M. Toomey. (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. *Agricultural and Forest Meteorology 169*:156-173.
- Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, & J. A. Pounds. (2003). Fingerprints of global warming on wild animals and plants. *Nature* 421:57-60.
- Tao, F., Yokozawa, M., Xu, Y., Hayashi, Y., & Zhang, Z. (2006). Climate changes and trends in phenology and yields of field crops in China, 1981–2000. *Agricultural and Forest Meteorology*, *138*:82-92.
- USA NPN National Phenology Network. (n.d.). Retrieved February 11, 2017, from https://www.usanpn.org/home.

S2, a figure from Richardson et al. 2013.

ANNUAL AVERAGE TEMPERATURE, ORF

PHENOPHASE SHIFT RESULTS CHANGED

			Mean phen	ophase date			SD of phen	ophase date			Days of Year			Temperature		
Species	Ν	FLD	FFD	FFrD	FDS	FLD	FFD	FFrD	FDS	Sig. Pheno.	Slope (d/yr)	SE	R ²	Slope (d/yr)	SE	R ²
Podophyllum peltatum (Mayapple)	1	3-Apr	20-Apr	11-May	Х	10.53	6.897	11.11	х	x	-3.200 (FFrD)	10.47 (FFrD)	0.2903 (FFrD)	-0.2872 (FFrD)	1.086 (FFrD)	0.2344 (FFrD)
<i>Cornus florida</i> (Flowering dogwood)	3	X	Х	18-May	21-Sep	Х	Х	21.44	17.35	X	-3.143 (FFrD) - 4.238 (FDS)	21.14 (FFrD) 12.99 (FDS)	0.0882 (FFrD) 0.3734 (FDS)	-0.3011 (FFrD) 0.0254 (FDS)	1.009 (FFrD) 0.9530 (FDS)	0.2804 (FFrD) 0.0040 (FDS)
<i>Cephalanthus occidentalis</i> (Common buttonbush)	3	X	18-Jun	14-Jul	9-Oct	Х	8.812	14.81	23.24	FFD, days (D,F=0.00 6; T,F=0.038)) FFrD, days (F=0.005)	2.679 (FFD) 6.676 (FFrD)	3.114 (FFD) 4.873 (FFrD)	0.8026 (FFD) 0.8914 (FFrD)	-0.3106 (FFD) - 0.1413 (FFrD)	0.5849 (FFD) 0.8030 (FFrD)	0.6123 (FFD) 0.2691 (FFrD)
Vaccinium corymbosum (Highbush blueberry)	3	X	17-Mar	Х	1-Oct	Х	11.09	Х	29.49	X	0.4643 (FFD) - 4.405 (FDS)	10.63 (FFD) 19.16 (FDS)	0.0106 (FFD) 0.2284 (FDS)	0.0219 (FFD) 0.0397 (FDS)	0.9543 (FFD) 0.9511 (FDS)	0.0030 (FFD) 0.0097 (FDS)

Phenophase-shift results compared to temperature over time. These plants were chosen because they displayed significant growth sensitivity to temperature. Bolded terms are when a significant shift was observed, such as the terms contained within the red rectangle. On average, Common Buttionbush is flowering 2.7 days later; it is also fruiting later by 6.7 days. Temperature did not significantly change.