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ABSTRACT
The Red-headed Woodpecker (Melanerpes erythrocephalus) has experienced strong population declines during the
past 3 decades. Using North American Breeding Bird Survey (BBS) and Audubon Christmas Bird Count (CBC) data, we
investigated 4 hypotheses that may explain this decline, including: (1) interspecific competition with native Red-bellied
Woodpeckers (Melanerpes carolinus) and nonnative European Starlings (Sturnus vulgaris); (2) predation by Cooper’s
Hawks (Accipiter cooperii) and Sharp-shinned Hawks (Accipiter striatus); (3) climate change; and (4) changes in forested
area within their range. In analyses of both the breeding and overwintering periods, our results indicated a role of
increased accipiter populations in driving Red-headed Woodpecker declines through increased predation. We also
found evidence for significant effects of warmer winter temperatures and increased forest cover, both directly and
indirectly through their effects on enhancing accipiter populations. In contrast, our results failed to support the
hypothesis that interspecific competition with either Red-bellied Woodpeckers or European Starlings has played a role
in Red-headed Woodpecker declines. Despite considerable evidence for nest-site competition and aggression between
Red-headed Woodpeckers and both Red-bellied Woodpeckers and European Starlings, these interactions do not
appear to be limiting Red-headed Woodpecker populations.

Keywords: avian declines, climate change, European Starling, habitat change, nest-hole competition, predation,
Red-bellied Woodpecker, Red-headed Woodpecker

Evaluando hipótesis alternativas sobre la causa de descensos poblacionales: el caso de Melanerpes
erythrocephalus

RESUMEN
Melanerpes erythrocephalus ha experimentado descensos poblacionales marcados a lo largo de las tres últimas
décadas. Usando datos del Muestreo de Aves Reproductivas de América del Norte (BBS por sus siglas en inglés) y del
Conteo de Aves de Navidad de Audubon (CBC por sus siglas en inglés), investigamos cuatro hipótesis que podrı́an
explicar esta disminución, incluyendo: (1) competencia interespecı́fica con la especie nativa Melanerpes carolinus y la
especie no-nativa Sturnus vulgaris; (2) depredación por Accipiter cooperi y Accipiter striatus; (3) cambio climático; y (4)
cambios en el área boscosa dentro de su rango. Nuestros análisis de los perı́odos de reproducción y de invernada
indicaron que el incremento de las poblaciones de Accipiter juega un rol en el descenso de M. erythrocephalus a través
de un aumento de la depredación sobre adultos y juveniles. También encontramos evidencia de efectos significativos
de inviernos con temperaturas más calurosas y un aumento en la cobertura del bosque, ambos directa e
indirectamente relacionados con un aumento de las poblaciones de Accipiter. En contraste, nuestros resultados no
apoyaron la hipótesis de que la competencia interespecı́fica, ya sea con M. carolinus o con S. vulgaris, haya jugado un
rol en los descensos de M. erythrocephalus. A pesar de la cantidad considerable de evidencia que indica competencia
por los sitios de anidación y agresión entre M. erythrocephalus con M. carolinus y S. vulgaris, estas interacciones no
parecen estar limitando las poblaciones de M. erythrocephalus.

Palabras clave: cambio climático, cambio de hábitat, competencia por huecos para nidos, depredación,
descensos poblacionales de aves, Melanerpes carolinus, Melanerpes erythrocephalus, Sturnus vulgaris

INTRODUCTION

The causes of population declines can be notoriously

difficult to determine, even when the species of interest is

charismatic and the scope of the decline unambiguous. For

example, whether the decline of the California Condor

(Gymnogyps californianus) from being a widespread

scavenger within western North America during historical
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times to near extinction by the 1980s was due to habitat

loss, human disturbance, food scarcity, pesticide contam-

ination, or lead poisoning remains a controversial and

critically important issue as recovery efforts continue

(Walters et al. 2010, D’Elia et al. 2016). Similarly, whether

the apparent decline of more than 100 species of North

American migratory songbirds has been primarily driven

by events occurring on their overwintering or breeding

grounds is contentious (Robbins et al. 1989, Rappole and

McDonald 1994, Faaborg 2002, Stutchbury 2007). Part of

the difficulty is that only rarely can population declines be

attributed to a single, unambiguous factor. More com-

monly, the cause of declines is multifactorial, as exempli-

fied by amphibian declines in Latin America (Young et al.

2001, Collins and Storfer 2003, Whittaker et al. 2013).

The Red-headed Woodpecker (Melanerpes erythroce-

phalus) is a conspicuous, cavity-nesting species, locally

common throughout much of central and eastern North

America, that has experienced a survey-wide decline of

�2.5% yr�1 in breeding populations since 1966 (Sauer et al.

2014), qualifying it for the Yellow Watch List in the 2015

State of the Birds Report (North American Bird Conser-

vation Initiative 2014) and warranting listing as ‘‘near

threatened’’ by the IUCN Red List authority (IUCN 2015).
Although seasonally migratory, its range is largely confined

to the United States, and thus data on populations during

both the breeding and nonbreeding seasons spanning

decades are readily available. Here, using data from the

North American Breeding Bird Survey (Bystrak 1981,

Sauer et al. 2014) and the Audubon Christmas Bird Count

(Raynor 1975, Bock and Root 1981), we test whether the

dramatic population declines that this species has experi-

enced during the past several decades may be due, directly

or indirectly, to interspecific competition, increased

predation on adults and juveniles, climate change, or

landscape-scale changes in forested areas within their

range.

The most general hypothesis for declines is climate

change, which has been implicated as a causal factor in the

changing distribution and abundance of a wide range of

flora and fauna in the past several decades (Walther et al.

2002, Root et al. 2003, Schimel et al. 2013). Climate

change, most obviously expressed by increasing mean

temperatures (global warming), also has an important

influence on patterns of rainfall (Wheeler and von Braun

2013), increased temperature extremes (Seneviratne et al.

2014), and even increased spatial synchrony (Koenig and

Liebhold 2016), and affects nearly all other potentially

important ecological factors either directly or indirectly.

Thus, climate change can be a proxy for other environ-

mental factors, including many that we otherwise do not

consider here, such as changes in food supply.

The second most general hypothesis that we consider is

landscape change, particularly reforestation as a conse-

quence of land-use changes during the past several

decades. Red-headed Woodpeckers are a species of oak

savanna and forest edges (Frei et al. 2013), and an

important constraint on their nesting success and range

expansion is the lack of savanna habitat with a low

density of tall dead trees (Emlen et al. 1986, Hudson and

Bollinger 2013, Berl et al. 2015). Thus, loss of savanna and

edge habitat within the range of Red-headed Woodpeck-

ers may be an important driver of recent population

declines.

The third hypothesis that we consider is interspecific

competition. Several species compete with Red-headed

Woodpeckers for either food or nest cavities, but Red-

bellied Woodpeckers (Melanerpes carolinus) and European

Starlings (Sturnus vulgaris) have been identified repeatedly

in the literature as being involved in aggressive interactions

with Red-headed Woodpeckers and other cavity-nesting

species. The hypothesis that the Red-bellied Woodpecker

is an important interspecific competitor with the Red-

headed Woodpecker is suggested by observations of

aggression between the 2 species (Kilham 1958, Willson

1970, Reller 1972) and by Root’s (1988, p. 134) statement,

based on winter abundance from Christmas Bird Counts,

that ‘‘The abundance peaks of these two species show
complementarity, which provides circumstantial evidence

for interspecific interactions.’’ These congeneric wood-

peckers are similar in size (56–91 g), rendering competi-

tion for nesting cavities a potentially important factor

contributing to Red-headed Woodpecker population

declines (Ingold 1989).

The second potential competitor that we consider is the

European Starling (hereafter, starling), a nonnative species

introduced to North America in the late 1800s (Cabe 1993)

that is known to usurp nesting cavities of Red-headed

Woodpeckers (Jackson 1976, Ingold 1989, 1994, Frei et al.

2015a). An earlier analysis found no evidence of starlings

having adversely affected most native cavity-nesting

species, including the Red-headed Woodpecker (Koenig

2003), but in Great Britain, where starlings are native, the

starling’s recent population decline has been suggested to

have been instrumental in facilitating increases of Great

Spotted Woodpeckers (Dendrocopos major; Smith 2005).

The fourth and last hypothesis that we consider is

increased predation by Cooper’s Hawks (Accipiter cooperii)

and Sharp-shinned Hawks (Accipter striatus), both of

which are geographically widespread and common bird

predators (Bildstein and Meyer 2000, Curtis et al. 2006). A

role for increased predation in driving declines in Red-

headed Woodpeckers is suggested circumstantially by the

overall increase in populations of Cooper’s Hawks in North

America in the past several decades (Curtis et al. 2006)

combined, more directly, with work on Red-headed

Woodpeckers in South Carolina, USA, which indicated

that predation by accipiters, including both Cooper’s and
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Sharp-shinned hawks, accounted for 85% of all deaths in

the population (Kilgo and Vukovich 2012).

Predictions
Our goal was to test hypotheses for the cause of observed

declines in Red-headed Woodpecker populations. Conse-

quently, the predictions of the interspecific competition

and predation hypotheses were that population trends of

the competitor or predator would be inversely related to

population trends of Red-headed Woodpeckers; that is,

trends of Red-bellied Woodpeckers, starlings, and accip-

iters should be positive and inversely correlated with

declines in Red-headed Woodpecker populations. If

climate change has driven population declines of Red-

headed Woodpeckers, population abundance should be

inversely correlated with range-wide environmental con-

ditions that have increased during the past several decades,

and positively correlated with any condition that has

decreased. Finally, if population declines have been driven

by reforestation, we predicted that the relationship

between change in forest cover and Red-headed Wood-

pecker abundance would be negative, since these birds are

primarily found in open woodlands, not closed-canopy

forests (Frei et al. 2015b).

METHODS

Data
Population abundance data for Red-headed Woodpeckers,

Red-bellied Woodpeckers, European Starlings, and 2

accipiter species (Cooper’s and Sharp-shinned hawks

combined) were obtained from the North American

Breeding Bird Survey (BBS) and Audubon Christmas Bird

Count (CBC). Each BBS ‘‘site’’ consists of the summed

counts of birds detected during 3-min surveys at a series of

50 stops located 0.8 km apart along road transects

conducted during the main breeding season (usually May

or June; Bystrak 1981), and data were available for 1966

through 2014. Relatively few counts were performed in the

first year, however, and thus we restricted our analyses to

the 48 yr from 1967 to 2014. We refer to the BBS data

below as representing populations during the breeding

season. Each CBC survey consists of a one-day intensive

census conducted by a variable number of observers within

a 2-week period around Christmas within a specific 24-

km-diameter circle, and thus represents population

estimates during the winter. CBCs were begun at the start

of the 20th century, but data from early years are generally

variable in quantity and quality, and thus we restricted our

analyses to the 55 yr from 1960 to 2014.

As an index of relative abundance, we ln-transformed

(ln[n þ 1]) the number of birds counted (BBS) and the

number of birds per party hr (CBC). In both cases, ln-

transformation helped to normalize and stabilize the

variance of the data (Koenig 2003). Analyses of population

trends using the BBS and CBC databases generally restrict

consideration to a subset of sites where abundance values

are above a minimum threshold (Thomas and Martin

1996). Here, we first limited analyses to the main

distributional range of Red-headed Woodpeckers. For the

winter, this was defined as states in the USA where the

overall mean birds per CBC party hr was .0.20, which

included surveys in 8 states (Arkansas, Illinois, Indiana,

Iowa, Kansas, Kentucky, Missouri, and Oklahoma), rough-

ly corresponding to the main wintering range as mapped

by Root (1988). For the breeding season, the core

distributional range was defined by U.S. states where the

mean number of birds counted on BBS routes was .1.

This overlapped with the 8 states within the main

wintering range, but also included Minnesota, Nebraska,

Ohio, and Wisconsin. Within the main distributional

range, we further restricted our analyses to sites where

Red-headed Woodpeckers were recorded in at least 25% of

survey years (13þ yr for the CBC; 11þ yr for the BBS). This
limited analyses to 655 BBS and 248 CBC sites.

Analyses of climate are invariably complicated by the

wide range of weather factors that may be ecologically

relevant. For all analyses, we included mean maximum and
mean minimum temperatures during the breeding season

(for the BBS routes) and during the winter (for the CBC

surveys). For the analyses of mean annual data, we

included the winter North Atlantic Oscillation (NAO)

index (mean of monthly data from December through

March), a large-scale pattern of natural climatic variability

that has been found to significantly affect many ecological

processes, in some cases more strongly than local weather

conditions (Hallett et al. 2004). Restricting our analyses to

this small number of environmental variables was

necessary in order to keep the analyses tractable and

focused on the most general and obvious environmental

variables that were most likely, a priori, to reflect the

effects of climate change.

Across the core range of the Red-headed Woodpecker,

mean maximum summer temperatures generally declined

between 1967 and 2014, whereas mean maximum winter

temperatures increased (Table 1). Thus, were climate

change to have driven population declines of Red-headed

Woodpeckers, population trends during the breeding

season were expected to be positively correlated with

declines in mean maximum summer temperature, but

trends during the winter were expected to be negatively

correlated with increases in mean maximum winter

temperatures. For each BBS route and CBC survey,

temperature data for the appropriate months of each year

were taken from the nearest 30-arcsecond grid point in the

PRISM Climate Group dataset (http://prism.oregonstate.

edu). For BBS routes in year x, summer temperature data

were taken from May through August (roughly the
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breeding season) of year x. For CBC surveys, winter

temperature data were taken from October to December

of year x � 1, just prior to the survey period for year x,

which starts at the end of December of year x – 1 and ends

in early January of year x.

Mean maximum and minimum temperatures at the

sites included here were highly collinear during the

winter (r ¼ 0.89, n ¼ 211, t ¼ 28.9, P , 0.001) and, even

though the correlation was lower during the summer (r¼
0.23, n ¼ 458, t ¼ 5.1, P , 0.001), conclusions from

analyses (both summer and winter) were unchanged

using either mean maximum temperature, mean mini-

mum temperature, or both variables, and thus we only

report results using mean maximum temperatures.

Monthly NAO data were derived from the National

Weather Service Climate Prediction Center (http://www.

cpc.ncep.noaa.gov/products/precip/CWlink/pna/norm.

nao.monthly.b5001.current.ascii).

As an index of the total amount of (un)suitable habitat

for Red-headed Woodpeckers, we determined the total

forested land area by state for 6 time periods (1953, 1977,

1987, 1997, 2007, and 2012) from the Forest Inventory and

Analysis (FIA) National Program (Smith et al. 2009,

Oswalt et al. 2014). Although crude, total forested area is

reasonably assumed to be inversely related to the total

amount of savanna and edge habitat preferred by Red-

headed Woodpeckers (Frei et al. 2015b). In order to

estimate forest cover for the years between surveys, we

summed the state totals and assumed a linear relationship

between each pair of time periods for which data were

available (Figure 1).

Analyses
Both interspecific competition and predation are potential

proximate drivers of the changes observed in Red-headed

Woodpecker populations. Changes in either or both of

these factors are in turn potentially driven in part by

landscape changes in habitat (increased forest cover), and

even more ultimately by climate change. Our analyses

attempted to deal with the hierarchical nature of these

factors by means of structural equation modeling, a

multivariate technique designed to test causal relationships

among variables (Shipley 2009).

We first calculated mean changes in each of the

independent variables of interest and presented results in

terms of the change per decade and the percentage of sites

in which populations or the variable increased over the

course of the study period. Tests of trends were made using

mixed-effects models (procedure lme in package nlme in

R; Pinheiro et al. 2016, R Core Team 2016). For each

model, the value or relative abundance (ln-transformed for

each survey 3 year combination in the case of the bird

populations) was the dependent variable and year was the

independent variable. The BBS route or CBC survey was

included as a random factor, and year was modeled as a

TABLE 1. Mean changes in Red-headed Woodpecker, Red-bellied Woodpecker, European Starling, and accipiter populations and in
mean maximum seasonal temperatures for Red-headed Woodpecker sites between 1967 and 2014 (Breeding Bird Survey; BBS) and
1960 and 2014 (Christmas Bird Count; CBC). Values are mean slope per decade based on regressions of values (ln-transformed for
bird populations) on year.

Species or factor

BBS CBC

Mean 6 SE change
per decade

% sites
increasing a n sites

Mean 6 SE change
per decade

% sites
increasing a n sites

Red-headed Woodpecker �0.225 6 0.022*** 15*** 655 �0.049 6 0.006*** 21*** 248
Red-bellied Woodpecker 0.179 6 0.011*** 84*** 597 0.052 6 0.006*** 78*** 248
European Starling �0.020 6 0.017*** 47 653 0.128 6 0.042*** 63*** 248
Accipiter spp. 0.027 6 0.003*** 81*** 457 0.020 6 0.002*** 89*** 247
Mean maximum seasonal

temperature
�0.118 6 0.021*** 43** 655 0.474 6 0.093*** 73*** 248

a Significance of mean change per decade based on mixed-effects models. Significance of percentage of sites increasing based on
binomial tests. ** P , 0.01; *** P , 0.001; other P . 0.05.

FIGURE 1. Change in overall forested area within the range of
Red-headed Woodpeckers (BBS: breeding season range; CBC:
overwintering range) based on statewide summaries of Forest
Inventory and Analysis data (Smith et al. 2009, Oswalt et al.
2014) between 1953 and 2012. Annual values were estimated by
linearly connecting the available (plotted) points.
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continuous autoregressive time series to account for

temporal autocorrelation (Crawley 2007). The percentage

of sites increasing was tested using binomial tests.

Analyses were conducted in R 3.3.1 (R Core Team 2016);

unless otherwise stated, values presented are means 6

standard errors.

Structural equation modeling was conducted using

package lavaan in R (Rosseel 2012). Two sets of

confirmatory analyses were performed. The first set was

conducted using individual survey routes. Structural

equation models (SEMs) focusing on the BBS and CBC

data were run separately, but both had an identical

structure in which climate (mean maximum seasonal

temperature) potentially influenced all variables, densities

of accipiters (as a proxy of predation) potentially affected

populations of the other 3 bird species, and both Red-

bellied Woodpeckers and starlings (the 2 interspecific

competitors) potentially influenced Red-headed Wood-

pecker populations. Variables included in the models

were the trends in the variables through time measured at

each BBS or CBC site. Thus, for each BBS route and CBC

survey, we calculated the correlations between year and

the relevant variables and used the correlation coeffi-

cients in the SEMs. Also included within each subsection
of the SEMs, but not shown in the figure illustrating the

results, was an inverse distance-weighted autocovariance

term that was included to control for spatial autocorre-

lation and to minimize prediction error (Wintle and

Bardos 2006, Koenig et al. 2010). Changes in forest cover

were not included in this analysis because such data were

not available at the temporal and spatial scale of the

analysis.

In order to test the role of changes in forested area, we

performed a second set of structural equations using mean

data for each year rather than trends through time. Mean

(ln-transformed) densities of Red-headed Woodpeckers,

Red-bellied Woodpeckers, starlings, and accipiters were

calculated for each year across the main distributional

(summer or winter, depending on the analysis) range of

Red-headed Woodpeckers, as defined above. For environ-

mental variables, we included the winter NAO index and

the mean maximum seasonal temperature (summer for

BBS, winter for CBC) for each year calculated as the mean

across all sites included in the analysis.

The structure of the SEMs was as described above for

the analysis of trends, but with the addition of forest cover

(estimated from the FIA data summed across the breeding

or winter range and interpolated between sampling

periods for each year) and winter NAO as factors

potentially influencing populations of all 4 bird species.

Preliminary analyses, however, indicated that neither mean

maximum summer temperature nor the NAO index had a

significant effect on any other variable in the model in the

BBS analysis. For the CBC analysis, mean maximum winter

temperatures had no significant effect on any other

variable, whereas the winter NAO index significantly

affected the abundance of accipiters (standardized effect

size [SES]¼ 0.14 6 0.05, z ¼ 2.64, P ¼ 0.008), but had no

significant effect on any of the other species, including

Red-headed Woodpeckers (SES¼�0.06 6 0.10, z¼�0.57,
P ¼ 0.57). Thus, for clarity, we eliminated both environ-

mental variables (mean maximum seasonal temperature

and the winter NAO index) from the figures, although

values reported are from analyses that included all

variables.

RESULTS

As expected, populations of Red-headed Woodpeckers

generally declined during the study period, with ~85% of

sites exhibiting overall decreases during the breeding

season and ~79% exhibiting overall decreases during the

winter (Table 1). In contrast, populations of Red-bellied
Woodpeckers and accipiters increased during both sea-

sons, while starling populations increased significantly in

winter but decreased significantly during the breeding

season.

Visual inspection indicated that, at least in some cases,

population trends were nonlinear (Figure 2). In partic-
ular, Red-headed Woodpecker populations were stable

or increased slightly during both the breeding season

and in winter until the early 1980s, declined through

2000, and subsequently have remained consistently low

(summer populations; Figure 2A) or appear to have

increased somewhat in the past several years (winter

populations; Figure 2B). In contrast, Red-bellied Wood-

pecker populations consistently increased during the

study period (Figures 2C and 2D). European Starling

populations were variable (Figures 2E and 2F), but

increased slightly during the winter, possibly reflecting

increased overwintering within the region by this

species. Finally, accipiters generally increased during

both seasons, at least after the early 1970s (Figures 2G

and 2H), consistent with trends elsewhere in North

America (Curtis et al. 2006).

Results of the first set of SEMs analyzing trends within

individual BBS and CBC sites are summarized in Figure 3.

Using the BBS data, 2 variables significantly affected Red-

headed Woodpecker trends: trends in accipiter popula-

tions (SES¼�0.13 6 0.05, z¼�2.76, P¼ 0.006) and trends

in starling populations (SES ¼ 0.18 6 0.05, z ¼ 3.67, P ,

0.001). Only the former, however, was in the direction

consistent with being a potential driving factor of Red-

headed Woodpecker declines. Using the CBC data, all 4

factors significantly affected Red-headed Woodpecker

trends, but only 2—the highly significant effects of

increasing mean maximum winter temperatures and

accipiter population trends—were in the direction pre-
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dicted by the hypothesis that they played a role in Red-

headed Woodpecker declines (SES: mean maximum

temperature ¼ �0.22 6 0.06, z ¼ �3.52, P , 0.001;

accipiter population trends¼�0.26 6 0.07, z¼�3.73, P ,

0.001). Otherwise, increased populations of accipiters

paralleled increases in populations of Red-bellied Wood-

peckers in the CBC analysis and starlings in the BBS

analysis.

Results of the second set of SEMs analyzing temporal

trends are summarized in Figure 4. For the summer (BBS)

analysis, only forest cover significantly influenced Red-

headed Woodpecker densities (SES ¼ �0.96 6 0.14, z ¼
�6.68, P , 0.001), whereas for the winter (CBC) analysis,

only accipiter densities had a significant effect (SES¼�0.85

6 0.27, z ¼ �3.19, P ¼ 0.001). Both effects were in the

direction predicted for having a potential role in Red-

headed Woodpecker declines. Also notable in both

analyses was the strong positive effect of increased forest

cover on densities of accipiters.

DISCUSSION

Our analyses suggest that 3 of the 4 hypotheses that we

considered were potential drivers of Red-headed Wood-

pecker declines during the past several decades. Arguably

the strongest evidence was for a role of predation by

accipiter hawks; the relationship of accipiter abundance

with Red-headed Woodpecker abundance was significantly

FIGURE 2. Mean abundance of (A, B) Red-headed Woodpeckers, (C, D) Red-bellied Woodpeckers, (E, F) European Starlings, and (G,
H) Accipiter spp. over the length of the study within the core distributional range of Red-headed Woodpeckers, based on Breeding
Bird Surveys (left column) and Christmas Bird Counts (right column).
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FIGURE 3. Results of structured equation models of trends in Red-headed Woodpecker populations based on (A) BBS routes (n¼
344) and (B) CBC surveys (n¼ 213); analyses are based on relationships within individual survey routes. Nonsignificant relationships
are indicated by gray, dashed lines; significant relationships are shown with black lines, the width of which is proportional to their
statistical significance. The black dashed lines are significant relationships in opposition to the pattern expected had the factor been
instrumental in Red-headed Woodpecker declines. Not shown, but included in analyses, are autocovariance terms accounting for
spatial autocorrelation. * P , 0.05; ** P , 0.01; *** P , 0.001. Photos courtesy of Jessica Runner/GBBC (Red-headed Woodpecker);
Sagamore66 (Cooper’s Hawk); Ken Thomas (Red-bellied Woodpecker); and naturespicsonline.com (European Starling).
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FIGURE 4. Results of structured equation models of Red-headed Woodpecker densities by year based on (A) BBS routes (n¼ 47 yr)
and (B) CBC surveys (n¼ 53 yr) using annual estimates of forest cover and relative bird abundance. Nonsignificant relationships are
indicated by gray, dashed lines; significant relationships are shown with black lines, the width of which is proportional to their
statistical significance. Not shown, but included in analyses, are the effects of mean maximum temperature and the winter North
Atlantic Oscillation (NAO) index on the bird populations. ** P , 0.01; *** P , 0.001. For photo credits, see Figure 3.
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negative, as predicted, in 3 of our 4 analyses. In turn,

increases in accipiter numbers were affected by some

combination of increased winter temperatures (Figure 3B)

and increased forest cover (Figures 4A and 4B). We found

evidence that both increased temperatures and increased

forest cover played a more direct role in driving Red-

headed Woodpecker declines in the highly significant

negative correlation between increasing mean maximum

winter temperature and Red-headed Woodpecker trends

revealed in Figure 3B and the strong negative correlation

between forest cover and Red-headed Woodpecker densi-

ties shown in Figure 4A. Thus, the only hypothesis for

which we found no supporting evidence for playing a role

in Red-headed Woodpecker declines was interspecific

competition with Red-bellied Woodpeckers or European

Starlings.

The conclusion that interspecific competition has been

unimportant in driving Red-headed Woodpecker declines

is in contrast to expectations based on the aggression

observed between these avian species and their potential to

be competitors for nest cavities. Competition with

European Starlings was previously investigated by Koenig

(2003), who found little or no relationship between

starlings and populations of either Red-headed Wood-
peckers or most other species of native cavity-nesting birds

in North America at a continental scale. Our results here

provide additional support for this conclusion, with

populations of starlings being, if anything, positively,

rather than negatively, associated with those of Red-

headed Woodpeckers during both the breeding and

nonbreeding seasons at the geographic scale that we

examined (Figure 2). This result is perhaps not surprising,

given that starlings and Red-headed Woodpeckers often

occupy similar habitats.

Although it has been well established that Red-bellied

Woodpeckers have been increasing their range since at

least 1910 (Kirchman and Schneider 2014), previous

behavioral and demographic evidence supporting the

hypothesis that this species has adversely affected Red-

headed Woodpeckers is mixed. On the side of there being

no negative effect of Red-bellied Woodpeckers on Red-

headed Woodpecker populations, Reller (1972) found that

interspecific aggression between these 2 species in the

nonbreeding season had little or no detrimental effect on

overall population levels of either species. Similarly, at least

2 behavioral studies during the breeding season failed to

find evidence that Red-bellied Woodpeckers caused

population-level declines of Red-headed Woodpeckers

(Selander and Giller 1959, Ingold 1990). On the side of

Red-bellied Woodpeckers having strong adverse effects on

their competitors, Walters and James (2010) found that

Red-bellied Woodpeckers were formidable competitors

and adversely affected populations of the much smaller

Red-cockaded Woodpecker (Picoides borealis) by compet-

ing for roost and nest holes at all times of the year.

Likewise, in a community of 3 species, Kappes and Davis

(2008) found that the experimental removal of southern

flying squirrels (Glaucomys volans) failed to benefit Red-

cockaded Woodpeckers, apparently because the procedure

resulted in competitive release of Red-bellied Woodpeck-

ers instead. Thus, although it is possible that interspecific

competition with Red-bellied Woodpeckers is expressed in

some sites and under some circumstances, our results

suggest that this species has not driven Red-headed

Woodpecker population declines range-wide.

In contrast, our results support the hypothesis that

predation on adults and immature birds, as indicated by

increases in accipiter populations, may be an important

factor driving Red-headed Woodpecker declines, a con-

clusion supported by the observation that Cooper’s and

Sharp-shinned hawks accounted for a large proportion of

the deaths of this species in a study conducted in South

Carolina (Kilgo and Vukovich 2012). In turn, increases in

accipiter populations have been facilitated by warmer

winter temperatures (Figure 3B) and increased forest cover

throughout the Red-headed Woodpecker’s range (Figure

4). The relatively strong apparent effect of accipiters is,

however, surprising, given that predation on adult and
juvenile birds is rarely thought to be as demographically

important as nest predation for most terrestrial bird

species (Martin 1995, Ibáñez-Álamo et al. 2015).

On the other hand, a role of warmer temperatures in
causing recent population declines of Red-headed Wood-

peckers is not surprising given the dramatic effects of

recent climate change on the geographical ecology of a

wide range of animal species (Root et al. 2003, Schimel et

al. 2013). The significance of habitat changes is also

expected given that changes in forestation and forest

structure due to forest diseases and changing land use

patterns are clearly capable of influencing the long-term

dynamics of avian populations and are known to affect

populations of Red-headed Woodpeckers. Robbins and

Easterla (1992), for example, suggested that Red-headed

Woodpeckers were one of the species to benefit from

increased availability of foraging and breeding habitat

through the clearing of forests following European

colonization. More recently, Red-headed Woodpecker

populations are likely to have benefited considerably from

the demise of the American chestnut (Castanea dentata)

due to chestnut blight in the first half of the 20th century,

and later from the devastation of American elms (Ulmus

americana) by Dutch elm disease (Ceratocystis ulmi; Frei

et al. 2015b). A role of the latter in population fluctuations

of Red-headed Woodpeckers has received further support

from regional reports (Kendeigh 1982, Osborne 1982,

Dinsmore et al. 1984).

There are, however, many factors not considered here

that could be playing an important role in driving Red-
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headed Woodpecker population trends. Interspecific

competition with species other than the 2 considered

here—for example, flying squirrels (Glaucomys spp.;

Kappes and Davis 2008)—is one. At least 2 other ecological

factors are also known to have strong effects on Red-

headed Woodpecker populations. First, Red-headed

Woodpeckers are strongly dependent on the acorn crop

(Smith 1986, Smith and Scarlett 1987), which varies

dramatically from year to year, often over large geographic

scales (Koenig et al. 1999, Koenig and Knops 2013).

Consequently, populations can be expected to decrease

following poor acorn years. However, annual acorn crops

tend to be irregularly cyclic (Sork et al. 1993, Koenig et al.

1994, Koenig and Knops 2002), and there is no evidence to

suggest that acorn production within the core Midwestern

range of Red-headed Woodpeckers has systematically

declined in the past 40 yr. Thus, despite the strong

influence that acorn crop size may have on numbers of

Red-headed Woodpeckers from one year to the next, it

does not provide a satisfactory explanation for the long-
term population declines observed in this species.

A second ecological factor known to be important to

Red-headed Woodpeckers is insect outbreaks. This in-

cludes emergences of periodical cicadas (Magicidada spp.),
which coincide with significantly reduced numbers of Red-

headed Woodpeckers (Koenig and Liebhold 2005) but are

highly synchronous and cyclic, appearing above ground

once every 13 or 17 yr depending on the locality. Even

more important historically were outbreaks of the Rocky

Mountain locust (Melanoplus spretus), a swarming locust

that irregularly occurred in huge numbers throughout the

Great Plains and was apparently heavily exploited by Red-

headed Woodpeckers (Frei et al. 2015b) until the locusts

were driven to extinction at the beginning of the 20th

century (Lockwood and DeBrey 1990, Lockwood 2001).

Outbreaks of gypsy moths (Lymantria dispar) have also

been shown to coincide with breeding season increases in

Red-headed Woodpeckers (Koenig et al. 2011). The

extinction of the Rocky Mountain locust and the patterns

of periodical cicada emergences and gypsy moth outbreaks

suggest that none of these species were likely drivers of the

recent declines observed in Red-headed Woodpeckers.

Documenting relationships between Red-headed Wood-

pecker populations and factors potentially important in

their declines does not imply that any of those factors are

causal (James and McCulloch 1995, Dhondt 2012).

Furthermore, there are always additional potentially

important factors that have not been considered. Some

effects are likely direct, but others may be indirect and

even more difficult to detect, as has been found, for

example, between Red-bellied Woodpeckers and Red-

cockaded Woodpeckers (Walters and James 2010). Based

on our analyses, we propose that the ultimate factors

driving the observed changes are primarily climate change

and changing land-use patterns acting in concert, resulting

in significant reforestation and increased predator popu-

lations (Cooper’s and Sharp-shinned hawks) within the

Red-headed Woodpecker’s range. However, our analyses

are only a first step toward understanding the factors that

may be important for affecting population declines of Red-

headed Woodpeckers. Additional analyses, taking into

account more detailed habitat information and the

possibility that distributional changes may track annual

environmental differences, will be needed in order to fully

understand population fluctuations in this species.

What is the prognosis for Red-headed Woodpeckers? As

Frei et al. (2015b) discuss, by opportunistically taking

advantage of favorable ecological conditions, this species

has undergone large-scale population fluctuations in the

past. It is therefore likely that the decline observed in

recent decades is not unusual and may eventually reverse.

If nothing else, the fact that Red-headed Woodpeckers are

able to successfully breed in highly modified habitats, such

as golf courses, attests to the ability of this species to adapt

and persist in the modern world (Rodewald et al. 2005).

Such an outcome should not, however, be taken for

granted, and until such time as populations stabilize or

begin to increase, the Red-headed Woodpecker continues

to warrant close monitoring.
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