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Florida Straits deglacial temperature and salinity change:
Implications for tropical hydrologic cycle variability
during the Younger Dryas

Matthew W. Schmidt1 and Jean Lynch‐Stieglitz2

Received 22 April 2011; revised 19 July 2011; accepted 20 July 2011; published 18 October 2011.

[1] The prevailing paradigm of abrupt climate change holds that rapid shifts associated
with the most extreme climate swings of the last glacial cycle were forced by changes in
the strength and northward extension of Atlantic Meridional Overturning Circulation
(AMOC), resulting in an abrupt reorganization of atmospheric circulation patterns with
global teleconnections. To determine the timing of tropical Atlantic atmospheric
circulation changes over the past 21 ka BP, we reconstruct high resolution sea surface
temperature and d18OSW (a proxy for surface salinity) records based on Mg/Ca ratios and
oxygen isotope measurements in the planktonic foraminifera Globigerinoides ruber from a
sediment core located on the western margin of the Florida Straits. As a proxy for
meltwater discharge influence on Florida Straits surface water salinity, we also measured
Ba/Ca ratios in G. ruber from the same core. Results show that riverine influence on
Florida Straits surface water started by 17.2 ka BP and ended by 13.6 ka BP, 600 years
before the start of the Younger Dryas (YD) cold interval. The initiation of the YD is
marked by an abrupt increase in Florida Straits d18OSW values, indicating a shift to
elevated sea surface salinity occurring in 130 years, most likely resulting from increased
regional aridity and/or reduced precipitation. In order to resolve the timing of tropical
atmospheric circulation change relative to AMOC variability across this transition, we
compare the timing of surface water changes to a recently published record of Florida
Current variability in the same core reconstructed from benthic oxygen isotope
measurements. We find synchronous changes in atmospheric and ocean circulation on the
transition into the YD, consistent with an abrupt reduction in AMOC as the driver of
tropical Atlantic atmospheric circulation change at this time.

Citation: Schmidt, M. W., and J. Lynch‐Stieglitz (2011), Florida Straits deglacial temperature and salinity change: Implications
for tropical hydrologic cycle variability during the Younger Dryas, Paleoceanography, 26, PA4205, doi:10.1029/2011PA002157.

1. Introduction

[2] The last glacial termination was marked by several
abrupt climate events, including the Younger Dryas (YD)
cold interval that lasted from 12.9–11.7 ka BP. It is gener-
ally believed that this last return to glacial conditions in the
North Atlantic was caused by a dramatic reduction in North
Atlantic Meridional Overturning Circulation (AMOC) trig-
gered by a catastrophic release of freshwater stored in
proglacial Lake Agassiz to the northern Atlantic [Broecker
et al., 1989; Kennett and Shackleton, 1975] or into the
Arctic Ocean [Murton et al., 2010], or from the release of
freshwater from exceptionally thick sea ice in the Arctic
Ocean [Bradley and England, 2008]. Regardless of the
source of the freshwater, the prevailing paradigm holds that

this rapid and extreme climate shift was forced by a reduction
in the strength and northward extension of AMOC through
its regulation of poleward heat flux [Alley and Clark, 1999;
Boyle, 2000; Rahmstorf, 2002], resulting in a synchronous
reorganization of global atmospheric circulation patterns,
including the weakening of the Asian monsoon system
[Wang et al., 2001] and a shift to drier conditions in the
tropical North Atlantic [Haug et al., 2001; Haug et al., 2003;
Hughen et al., 1998; Peterson et al., 2000; Peterson and
Haug, 2006].
[3] Coupled ocean‐atmosphere general circulation model

(GCM) simulations show that a freshwater‐induced collapse
of AMOC causes an atmospheric circulation response that
alters the tropical/subtropical hydrologic cycle by shifting
the mean annual position of the Intertropical Convergence
Zone (ITCZ) and the North Atlantic Hadley circulation
southward [Dahl et al., 2005; Lohmann, 2003; Stouffer et al.,
2006; Vellinga and Wood, 2002; Zhang and Delworth,
2005]. As a result, water vapor removal from the North
Atlantic is enhanced as freshwater input into the South
Atlantic increases. In someGCMsimulations, this atmospheric
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feedback mechanism is responsible for an increase in North
Atlantic salinity that then stabilizes AMOC [Krebs and
Timmermann, 2007a, 2007b; Lohmann and Lorenz, 2000;
Lohmann, 2003; Stouffer et al., 2006; Vellinga and Wu,
2004]. Accordingly, sea surface salinity (SSS) is predicted
to have gradually increased in the tropical/subtropical North
Atlantic during periods of reduced AMOC as a result of
reduced salt export via North Atlantic Deep Water and/or
enhanced hydrologic cycle removal of freshwater out of
the North Atlantic basin. According to this ‘salt‐oscillator
hypothesis,’ salinity would have gradually increased in
North Atlantic surface and upper thermocline waters,
eventually reaching a threshold that would force AMOC to
restart and shift the climate system into a mild interstadial
mode [Broecker et al., 1990; Lohmann and Lorenz, 2000;
Lohmann, 2003; Zaucker and Broecker, 1992]. Export of salt
from the North Atlantic via AMOC would then gradually
reduce North Atlantic salinity and precondition the system
for a return to stadial conditions.
[4] Several proxy reconstructions of tropical Atlantic

salinity variation over the last glacial cycle are consistent
with an increase in low‐latitude SSS during high‐latitude cold
periods. Schmidt et al. [2004] and Schmidt and Spero
[2011] combined Mg/Ca‐sea surface temperature (SST) with
d18OCALCITE (d18OC) measurements on the surface‐dwelling
foraminifera Globigerinoides ruber (white variety) from
western Caribbean sediment cores to reconstruct past varia-
tion in tropical Atlantic d18OSEAWATER (d

18OSW) (a proxy for
sea surface salinity (SSS)) over several of the last glacial
periods. Their results demonstrated that Caribbean d18OSW

is highly variable and linked to inferred changes in AMOC.
In particular, enrichments in d18OSW occurred during glacial
intervals and then return to modern or more negative values
during interglacials. Using the same methodology, Weldeab
et al. [2006] found parallel d18OSW enrichments in the
western tropical Atlantic during cold phases of the last
deglacial and Carlson et al. [2008] showed that cold‐phase
d18OSW enrichments extended into both the northern and
southern subtropical gyres of the Atlantic. d18OSW enrich-
ments were also calculated for the North Atlantic subtropical
gyre during the cold Dansgaard‐Oeschger stadial events of
Marine Isotope Stage (MIS) 3 [Schmidt et al., 2006] and in
the Florida Current during the Little Ice Age [Lund and
Curry, 2006]. These researchers conclude that North Atlan-
tic SSS enrichments during cold phases in the North Atlantic
resulted from a combination of 1) changes in the tropical/
subtropical hydrologic cycle and/or 2) large‐scale changes in
ocean circulation resulting in reduced heat and salt transport
to the North Atlantic. However, age model uncertainties and
resolution limitations in these studies make it difficult to
determine the phasing between low‐latitude hydrologic
system change relative to AMOC variability across abrupt
climate events.
[5] Here, we reconstruct tropical SST and SSS change over

the last 21 ka BP using combined Mg/Ca‐paleothermometry
and stable oxygen isotope measurements in the planktonic
foraminifera Globigerinoides ruber (white variety) from a
high‐sedimentation rate core located on the western margin
of the Florida Straits. Because riverine water has a much
higher concentration of dissolved barium ([Ba2+]) [Weldeab
et al., 2007], we also measured Ba/Ca ratios in G. ruber
tests as a proxy for the influence of deglacial meltwater on the

salinity of Florida Straits surface water across the deglacial. In
order to resolve the phasing between atmospheric versus
ocean circulation changes across the YD cold interval, we
then compare the timing of surface water hydrographic var-
iability to the recently published record of oxygen isotope
change in benthic foraminifera (a proxy for Florida Current
transport) in the same core [Lynch‐Stieglitz et al., 2011].

2. Oceanographic Setting

[6] For this study, we used a high‐sedimentation rate
core recovered from the western margin of the Florida Straits
near the Dry Tortugas, KNR166‐2‐26JPC (24°19.61′N,
83°15.14′W; 546 m depth) (Figure 1). Waters from the
Caribbean and the tropical Atlantic are directly connected
with waters on the eastern margin of the Florida Straits via
flow through the Yucatan Current [Murphy et al., 1999;
Schmitz and Richardson, 1991]. As such, waters on the
western margin of the Florida Straits are predominantly
characteristic of the Caribbean and form an important link
between waters of the Caribbean, the Gulf of Mexico and
North Atlantic.
[7] The modern seasonal SST cycle in the Florida Straits

varies from a low of 25 to 26°C (0 m depth) from December
through March and then increases to a maximum of 29.0 to
29.4°C from July to mid‐September [Locarnini et al., 2006].
The modern average annual SST is 27.5°C [Locarnini et al.,
2006]. Mesoscale cyclonic eddies form near the Dry Tor-
guas during periods of strong Loop Current development
[Fratantoni et al., 1998]. These frontal eddies associated
with the Loop Current can persist for about 100 days and
their presence acts to cool SSTs during winter and spring
when surface temperatures in the Gulf of Mexico are cooler
than in the Florida Current [Fratantoni et al., 1998].
[8] In the modern tropical Atlantic and Caribbean region,

annual salinity variability is primarily controlled by the
seasonal migration of the ITCZ between 15°N and 5°S
[Waliser and Gautier, 1993]. Evaporation/precipitation (E/P)
ratios decrease during the boreal summer months when the
ITCZ is located farthest to the north and then increase during
the cool, dry season as the ITCZ migrates southward during
boreal winter [Stidd, 1967]. Modern annual SSS varies from
a high of 36.1 to 36.2 from January to June and decreases to a
low of ∼35.9 from August to December [Antonov et al.,
2010]. Modern annual SSS (0 m depth) near the Dry Tor-
tugas averages ∼36.1 [Antonov et al., 2010].

3. Materials and Methods

3.1. Age Model Development

[9] As previously discussed in Lynch‐Stieglitz et al.
[2011], out of sequence radiocarbon dates were found in a
section of 26JPC from 344–408 cm. Closer examination of
the core revealed layers of coarse material from 352–418 cm
[see Lynch‐Stieglitz et al., 2011, Figure 3]. The coarse layers
do not show evidence for turbidite deposition and often do
not extend across the entire core. Instead, the coarse layers
resemble contourite deposits like those found in the deep
western boundary current, indicative of high bottom current
speeds. It is possible that discrete layers in this section of the
core experienced lateral transport of older sediments and we
therefore consider this entire section of the core as poten-
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tially disturbed (gray bar on Figure 2). However, no other
sections of the core contained coarse layer deposits or out of
sequence radiocarbon dates, so it is likely that any lateral
sediment transport was confined to this one section of
26JPC. Radiocarbon dates from this section of the core were
not used in the age model.
[10] The age model for 26JPC was developed using pre-

viously published accelerator mass spectrometry 14C dates
given by Lynch‐Stieglitz et al. [2011] (Table 1). The 14C ages
were converted to calendar age using Calib 6.0 (M. Stuiver
et al., Calib calibration program, version 6.0, 2011) using
the standard marine reservoir correction [Hughen et al.,
2004] (Figure 2d) and assuming linear sedimentation rates
between the age control points. The resulting age model
indicates highest sedimentation rates of 170 cm/ka from
13–11 ka BP and lower sedimentation rates of 30 cm/ka
from 21–13 ka BP. The disturbed interval occurs during a
period of extremely high sedimentation rates between 344
and 418 cm and corresponds to a 450‐year period between
11.50–11.95 ka BP, noted by a gray bar on Figure 2.
However, it is important to note that the transition into the
YD at 12.9–13.0 ka BP and the first 500 years of the YD
does not fall within the disturbed section of the core.

3.2. Isotopic Analysis

[11] The planktonic and benthic stable oxygen isotope
data presented in this paper were previously published by
Lynch‐Stieglitz et al. [2011]. In summary, sediment from
each 2 cm interval was disaggregated in deionized water,
sieved and dried at room temperature. To minimize onto-
genetic and growth rate effects on shell geochemistry, spe-
cimens of G. ruber (white variety) were only collected from
the 250–350 mm size fraction [Lea et al., 2000] and the
benthic foraminifera Cibicidoides pachyderma were col-
lected from the >250 mm size fraction. All samples were first
sonicated in methanol for 3–8 s and oxygen isotope values
were then measured using a GV Instruments Isoprime mass
spectrometer with Multiprep (Georgia Tech), Finnigan
MAT 253 mass spectrometer with Kiel Device (WHOI and
Georgia Tech), and GV Instruments Optima with Multiprep
(LDEO) and calibrated with NBS‐19 and NBS‐18. G. ruber
oxygen isotope values are based on 10–12 individuals per
interval and 31% of the intervals were run in duplicate. The
average standard deviation on intervals with at least two
d18O analyses based on 12 individuals each is 0.18‰. Nat-
ural d18O variability within a population will result in a larger
standard deviation when two groups of 12 individuals are

Figure 1. Mean annual sea surface salinity in the northern Caribbean, Florida Straits and Gulf of Mexico
[Antonov et al., 2010]. The location of KNR166‐2‐26JPC on the western margin of the Florida Straits and
the Orca Basin in the northern Gulf of Mexico are indicated with black circles. Surface current flow
through the Caribbean and the Florida Straits is shown with the black arrows. Salinity in the Florida
Current is dominated by the advection of low salinity surface waters from the Caribbean and tropical
North Atlantic.
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analyzed as compared to crushing and homogenizing 24
individuals and running the split twice. Benthic oxygen
isotope values are based on groups of 3–5 individuals per
interval.

3.3. Trace Metal Analysis

[12] Metal/Ca (Me/Ca) ratios were measured on the same
population and size fraction of G. ruber specimens used for
the stable isotope analyses. Whenever enough sample
material was available, ∼570 mg of G. ruber shell/sample
(∼45–55 shells) was crushed, homogenized, split and then
cleaned for trace element analysis according to the proce-
dures by Lea and Martin [1996] and Mashiotta et al. [1999]
without the DTPA step. In brief, samples underwent a
multistep process consisting of initial rinses in ultra‐pure
water, followed by treatments with hot reducing and oxi-
dizing solutions, transfers into new acid‐leached micro‐
centrifuge vials, and finally leaches with a dilute ultra‐pure
acid solution (0.001 N HNO3). All clean work was con-

ducted in laminar flow benches under trace metal clean
conditions. Samples were then dissolved and analyzed for
Me/Ca ratios on a Jobin Yvon ICP‐OES at Georgia Tech
according to the methods of Schrag [1999] or on a Thermo
Scientific Element XR High Resolution Inductively Cou-
pled Mass Spectrometer (HR‐ICP‐MS) at Texas A&M
University using isotope dilution, as outlined by Lea and
Martin [1996] and Lea et al. [2000]. The average Mg/Ca
ratio of samples analyzed by both methods varied by less
than 2.5%. A suite of elements including Na, Mg, Ca, Sr,
Ba, U, Al, Fe and Mn, were analyzed and reported as Me/Ca
ratios. Analyses with anomalously high (>100 mmol/mol)
Al/Ca, Fe/Ca or Mn/Ca ratios or with low percent recovery
(<20%) were rejected. Analyses with high Al/Ca indicate
the presence of detrital clays that were not removed during
the cleaning process. Elevated levels of Fe/Ca or Mn/Ca
indicate the presence of diagenetic coatings that were not
removed during the cleaning process. Low percent recovery
values indicate the loss of shell material during the cleaning

Figure 2. (a) Oxygen isotope values in the planktonic foraminifera G. ruber (white) from 26JPC, pre-
viously published by Lynch‐Stieglitz et al. [2011]. (b) Mg/Ca ratios and (c) Ba/Ca ratios in G. ruber
(white) from the same core plotted versus depth. (d) Age model for 26JPC, based on radiocarbon ages
plotted with solid black circles. The radiocarbon ages with open circles located between 344 and 408 cm
were not used in the age model. All radiocarbon ages were converted to calendar ages using Calib 6.0
(M. Stuiver et al., Calib calibration program, version 6.0, 2011) using the standard marine reservoir
correction [Hughen et al., 2004]. The gray shaded region notes the interval in the core containing the out
of sequence radiocarbon dates and should be interpreted with caution.
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process, most likely due to human error. All trace metal and
oxygen isotope data will be archived at the World Data
Center‐A for Paleoclimatology located in Boulder, Colorado
at the U.S. National Oceanic and Atmospheric Administra-
tion (NOAA) National Climatic Data Center (NCDC)
Paleoclimatology Program.

3.4. Calculations

[13] Mg/Ca ratios were converted to SST using the all‐
species planktonic relationship of Anand et al. [2003]:

Mg=Ca ¼ 0:38 exp 0:09*Tð Þ ð1Þ

This equation (1) was derived from the calibration of Mg/Ca
ratios to SST in 10 species of planktonic foraminifera col-
lected from sediment traps in the Sargasso Sea. Given the
shallow depth of 26JPC (542 m), we chose to use this
equation because it does not have dissolution biases inherent
in core top calibrations developed from deeper sites. To
compute d18OSW, the Mg/Ca‐based SST is removed from
the d18OC record using the following temperature: d18O
relationship from Bemis et al. [1998]:

SST �Cð Þ ¼ 16:5� 4:80 �18OC � �18OSW � 0:27‰
� �� � ð2Þ

Lea et al. [2000] and Schmidt et al. [2004] found that this
relationship determined for Orbulina universa in laboratory
culture experiments [Bemis et al., 1998] yields excellent
results when applied to fossil G. ruber (white variety) to
calculate modern d18OSW in the equatorial Pacific and
Caribbean.
[14] On glacial time scales, d18OSW is also affected by

variations in continental ice volume because the formation
of continental ice sheets preferentially removes H2

16O from
the ocean. In order to remove the continental ice volume

contribution from the Florida Straits d18OSW record, we
generated a high‐resolution record of global d18OSW change
over the last glacial termination using the sea level data by
Siddall et al. [2009] and assume the 120 m Last Glacial
Maximum (LGM) sea level drop corresponds to a 1.05‰
change in global seawater d18OSW change [Schrag et al.,
2002]. Removal of global d18OSW change resulting from
the melting of continental ice sheets results in the record of
regional ice volume free‐d18OSW (IVF‐d18OSW) change,
allowing for the evaluation of high‐resolution regional sur-
face water d18O variability.

3.5. Error Analysis

[15] Long‐term analytical precision for the d18OC mea-
surements is better than ±0.08‰. The long‐term analytical
reproducibility of a synthetic, matrix‐matched Mg/Ca stan-
dard analyzed by ICP‐OES based on a synthetic standard
with a matched foraminiferal Mg/Ca concentration is 0.65%,
and the long‐term analytical reproducibility of a synthetic,
matrix‐matched Mg/Ca standard analyzed by HR‐ICP‐MS
over the course of this study is ±0.48%. The pooled standard
deviation of all replicate Mg/Ca analyses measured by both
methods is ±3.8% (1 SD, degrees of freedom = 164) based
on 214 analyzed intervals. Given the average Mg/Ca ratio of
3.96 mmol/mol for samples from this study, this equates to
an error of ±0.15 mmol/mol, or ±0.41°C using equation (1).
[16] In order to estimate the error on our calculated

d18OSW values, we propagate the 1s analytical error on our
d18OC values and the pooled standard deviation value of our
Mg/Ca replicates with the reported error on calibration
equations (1) and (2), resulting in an error of ±0.25‰. Using
a variety of methods, previous studies report similar error
propagations for the d18OSW residuals based on d18OC and
Mg/Ca‐SSTs in G. ruber, ranging from ±0.18‰ to ±0.26‰
[Carlson et al., 2008; Lea et al., 2000; Lund and Curry, 2006;
Oppo et al., 2009; Schmidt et al., 2004, 2006;Weldeab et al.,
2006].
[17] The long‐term analytical reproducibility of our syn-

thetic Ba/Ca standard is ±0.50%. The pooled standard
deviation on replicate Ba/Ca analyses from 26JPC is ±5.07%
(1 SD, degrees of freedom = 45) based on 165 analyzed
intervals. The average Ba/Ca ratio in the record is 1.03 mmol/
mol so the analytical error for the reported Ba/Ca ratios is
±0.05 mmol/mol.

4. Results and Discussion

4.1. Deglacial Sea Surface Temperature Reconstruction

[18] Using equation (1), the calculated core top SST for
26JPC is 27.6°C (core top age = 635 years). The modern
seasonal SST cycle in the Florida Straits varies from ∼25.5
to 29.4°C (0 m depth) with a modern average annual SST of
27.5°C [Locarnini et al., 2006]. Therefore, the calculated
core top temperature is well within the ±1°C calibration
uncertainty [Anand et al., 2003].
[19] The 26JPC deglacial temperature record calculated

from equation (1) indicates minimum SSTs of ∼24.0°C
during parts of the early YD and from 18.9 to 17.4 ka BP
(Figure 3b), resulting in a maximum cooling of ∼3.0°C
during the YD and the early deglaical relative to the modern.
Combining the analytical uncertainty on the Mg/Ca mea-
surements (±0.41°C) with the Mg/Ca:SST calibration error

Table 1. Twenty‐Six JPC Radiocarbon Datesa

Depth
(cm) Species 14C Age Error

Calendar
Age

Error
(±yr)

0.75 G. sacculifer 1070 70 635 118
48.25 G. sacculifer 2990 30 2772 66
112.25 G. sacculifer 6720 40 7250 95
144.25 G. sacculifer 8100 80 8613 229
216.25 G. sacculifer 9550 40 10398 121
280.25 G. sacculifer, G. ruber 10100 45 11115 94
344.25 G. sacculifer 10000 110 10913b 275
356.25 G. sacculifer 11750 95 13190b 217
364.25 G. sacculifer, G. ruber 10600 70 11795b 384
374.25 G. sacculifer 10500 50 11643b 268
392.25 G. ruber 10850 65 12337b 236
408.25 G. sacculifer, G. ruber 10300 60 11392b 229
442.25 G. sacculifer, G. ruber 10700 65 12095 251
464.25 G. sacculifer, G. ruber 10800 55 12278 249
544.25 G. sacculifer, G. ruber 11000 65 12505 154
592.25 G. ruber 11400 65 12880 199
606.25 G. sacculifer 11600 35 13064 156
648.25 G. sacculifer 12350 200 13885 583
704.25 G. ruber 13500 55 15834 615
752.25 G. ruber 15550 70 18326 297
848.25 G. ruber 20300 120 23776 419

aCalibrated using Calib 6.0 and Marine09 curve with a 400 year surface
reservoir age.

bNot used in age model.
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(±1°C), this amount of cooling during the YD and early
deglacial exceeds our estimated combined error. The 26JPC
SST record also indicates a warm interval from 17.2 to
15.4 ka BP when average SSTs were ∼26.2°C. Temperatures
then decreased to 24°C at 15.3 ka BP before rapidly
increasing to near modern temperatures at the start of the
Bølling‐Allerød (BA) at 14.7 ka BP. The transition into the
YD is not associated with an abrupt cooling. Instead, SSTs
gradually decrease after the brief BA warm interval, reaching
minimum values near 24°C by the start of the YD at 13.0 ka
BP. Temperatures then remain cool from 12.9 to 12.2 ka BP,
averaging 25.1°C. The 26JPC SST record suggests that
temperatures began to warm in the Florida Straits sometime
around 12.1 ka BP and reached near‐modern values by
11.8 ka BP; however, these dates are within the section of the
core with the out of sequence 14C dates, so the timing of
temperature change on this transition should be viewed with
caution.

[20] Previous modeling studies have shown that a cooling
in the North Atlantic associated with a weakening of AMOC
is transmitted to the tropical Atlantic through both atmo-
spheric [Chiang et al., 2008] and oceanic processes [Chang
et al., 2008]. In an effort to isolate the impact of these
changes on western tropical Atlantic SST, Wan et al. [2009]
used a set of GCM experiments to show that atmospheric
circulation changes result in a minor surface cooling (1–2°C)
while ocean circulation changes result in a larger, subsurface
warming in the tropical Atlantic. Wan et al. [2009] showed
that locations influenced by local upwelling could have
experienced a surface warming during periods of reduced
AMOC. Therefore, it is not surprising that some proxy‐based
SST reconstructions from the western tropical Atlantic
indicate a warming during the YD [Hüls and Zahn, 2000;
Rühlemann et al., 1999] and others a significant cooling [Lea
et al., 2003; Guilderson et al., 2001]. Although Lea et al.
[2003] calculated a 4°C cooling in the Cariaco Basin at the

Figure 3. (a) Ice volume free (IVF) G. ruber d18OC values from 26JPC plotted versus age from 8 to
21 ka BP. The oxygen isotope values have been corrected for whole ocean d18OSW change due to the
melting of continental ice sheets using the sea level data in Siddall et al. [2009]. (b) Mg/Ca‐SSTs in
26JPC converted to SST using equation (1) [Anand et al., 2003]. (c) Computed IVF‐d18OSW calculated
from the Mg/Ca‐derived SST and d18OC using equation (2) [Bemis et al., 1998]. The dashed horizontal
line indicates the modern local d18OSW value. Note the reverse axis with positive down. (d) Oxygen
isotopes in the NGRIP ice core showing the timing of colder conditions (low d18O) in Greenland
[Andersen et al., 2004; Rasmussen et al., 2006]. Shaded regions indicate the Younger Dryas (YD) and
Heinrich Event 1 (H1), and the data plotted in lighter shades are from the interval in the core with the
out of sequence radiocarbon ages.
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start of the YD,Wan et al. [2009] showed that this magnitude
of cooling was not consistent with most GCM hosing
experiments and instead reflects a local dynamic response
restricted to inside the Cariaco Basin rather than being rep-
resentative of the open Caribbean.
[21] Today, water flows more directly from the Yucatan

Channel into the Florida Straits during periods of reduced
Loop Current penetration [Lee et al., 1995]. Periods of
reduced Loop Current penetration also result in the forma-
tion of fewer Tortugas eddies [Lee et al., 1995]. This results
in a shift in the axis of the Florida Current northward and
warmer SSTs at our study site due to an increase in the
component of warm Caribbean surface water. Although
instrumental data suggests that eddy formation today is
stochastic and unrelated to climate forcing [Maul and
Vukovich, 1993; Vukovich, 1988; Sturges and Leben, 2000],
a reduction in the penetration of the Loop Current into the
Gulf of Mexico during past climate events could have
resulted in a slight warming in our record. Nürnberg et al.
[2008] showed that Loop Current influence on SSTs in the
northeastern Gulf of Mexico diminished during glacial
periods, suggesting a weakening of the Loop Current during
cold phases in the North Atlantic. If Loop Current pene-
tration and Tortugas eddy formation was dramatically
reduced during the YD and H1, atmospheric cooling at our
study site may have been moderated by a slight warming
caused by the presence of more warm Caribbean surface
water near the Dry Tortugas at these times. This may explain
the relatively small amount of SST cooling observed in our
record during the YD and for most of the early deglacial.

4.2. Deglacial d18OSW and Sea Surface Salinity

[22] By combining the G. ruber Mg/Ca‐SST values with
paired d18O analyses, we calculate d18OSW change across the
deglacial using equation (2). Correcting for global d18OSW

change due to continental ice volume variation [Siddall et al.,
2009] results in the record of local IVF‐d18OSW (Figure 3c).
Because d18OSW covaries linearly with SSS [Charles and
Fairbanks, 1990], reconstructed IVF‐d18OSW values can be
used to estimate past SSS change. Most of the waters on the
western margin of the Florida Straits originate in the Carib-
bean and tropical Atlantic [Schmitz and Richardson, 1991],
so we can use the modern d18OSW:SSS relationship for the
open Caribbean (d18OSW ‰ = 0.26 * SSS − 8.44) [Schmidt
et al., 1999] to estimate a modern d18OSW value based on
the modern annual salinity. Lund and Curry [2006] used this
same approach when reconstructing late Holocene SSS and
d18OSW variability in another Florida Margin core located
near our study site. Given the modern average SSS at our
study site of 36.1 [Antonov et al., 2010], the modern local
d18OSW value is estimated to be 0.95‰. This is in good
agreement with the average Holocene IVF‐d18OSW value of
0.90‰ (9.8–6.1 ka BP) calculated for 26JPC.
[23] The 26JPC deglacial IVF‐d18OSW record indicates

that d18OSW values in the Florida Straits were more positive
(saltier) than the modern prior to 15.5 ka BP and again
during the YD (Figure 3c). The most positive IVF‐d18OSW

values across the deglacial occur prior to and during Hein-
rich Event 1 (H1) when values were more than 1.0‰
heavier than modern. The YD was also a time of enriched
IVF‐d18OSW when values averaged 0.43‰ heavier than the
modern from 12.9–11.8 ka BP (Figure 3c).

[24] Although most waters flowing through the Florida
Straits today originate in the Caribbean and tropical Atlantic,
large meltwater discharges into the Gulf of Mexico from the
Mississippi River and the southeastern United States most
likely impacted d18OSW values in the Florida Straits at certain
times during the deglacial period, making it difficult to
constrain the d18OSW:SSS relationship at times in the past.
This issue was encountered by Flower et al. [2004] when
they used Mg/Ca‐SSTs and d18OC analyses in fossilG. ruber
specimens from the Orca Basin (northern Gulf of Mexico) to
generate a record of d18OSW change across the deglacial
(Figure 4c). The Orca Basin IVF‐d18OSW record indicates a
period of elevated meltwater discharge into the Gulf of
Mexico starting around 16 ka BP and lasting until the start of
the YD at around 12.9 ka BP. Because meltwater discharges
originating from the Laurentide ice sheet had a much more
negative d18O value (−25‰ to −35‰ [Fairbanks, 1989])
relative to local precipitation (−7‰ [Ortner et al., 1995]),
past meltwater inputs would have significantly changed the
local d18OSW:SSS relationship. Therefore, in order to esti-
mate SSS change from our deglacial IVF‐d18OSW record, we
need to determine when glacial meltwater potentially
impacted d18OSW values in the Florida Straits and when local
d18OSW values reflect regional E/P ratios.

4.3. Deglacial Ba/Ca Reconstruction

[25] To determine when major meltwater discharges into
the Gulf of Mexico influenced d18OSW values in the Florida
Straits, we measured Ba/Ca ratios in G. ruber from 26JPC
across the deglacial (Figures 2c and 4b). The desorption of
Ba2+ from suspended sediments in rivers results in a much
higher riverine [Ba2+] relative to seawater. Once the par-
ticulate sediments are deposited in river estuaries, the dis-
solved [Ba2+] exhibit conservative mixing with seawater,
resulting in a linear inverse correlation between salinity and
[Ba2+] [Coffey et al., 1997; Edmond et al., 1978; Hanor and
Chan, 1977]. Culturing experiments indicate that Ba2+

incorporation into living planktonic foraminifera shells is
linear, dependent primarily on the [Ba2+] of the water in
which the shell grows [Hönisch et al., 2011; Lea and Spero,
1994]. Therefore, Ba/Ca ratios in foraminifera living in a
region influenced by a source of high dissolved Ba2+ input
(such as the Mississippi River) can be used to estimate past
SSS changes based on the regional [Ba2+]:SSS relationship
[Hall and Chan, 2004; Weldeab et al., 2007].
[26] Although the modern Mississippi River discharge is

too small to directly impact SSS in the Florida Straits today,
it is likely that discharge rates were much higher during
major meltwater events of the last deglacial period. Large
meltwater discharges would have caused elevated rates of
erosion with the potential to supply more river borne clay to
local estuaries. During these times, it is possible the riverine
[Ba2+] was significantly higher than modern. Therefore, it is
not possible to assume the barium flux is proportional to
river discharge rates. In fact, Mitchell et al. [2001] showed
the rate of barium flux in alpine glacier meltwater can sig-
nificantly increase at elevated discharge rates. Because we
do not have data constraining past Gulf of Mexico riverine
[Ba2+], it is not possible to quantify SSS change at our core
site based on shell Ba/Ca ratios. Instead, we use the Ba/Ca
record to identify periods when riverine input into the Gulf
of Mexico was greater than the modern.
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[27] Alternatively, an additional source of dissolved bar-
ium is coastal sediments [Moore, 1999]. Barium adsorbed
onto clays in a freshwater environment can desorb in salt-
water as sea level rises across a continental shelf during a
deglacial period. In addition, Moore and Shaw [1998]
documented a release of dissolved barium in groundwater
as saltwater encroached into previously freshwater aquifers
in Florida. However, the first period of elevated G. ruber

Ba/Ca ratios in 26JPC (17.2–15.6 ka BP) (Figure 4b)
occurs during a pause in sea level rise from about 17.2–
16.1 ka BP [Siddall et al., 2009]. Although the second period
of elevated Ba/Ca ratios (14.9–13.6 ka BP) does correspond
to the first period of rapidly rising sea level across the
deglacial, the abrupt decrease in Ba/Ca at 13.6 ka BP does
not correspond with decreasing rates of sea level rise.
Instead, sea level continued to rise through the YD, a period

Figure 4. (a) Computed Florida Straits IVF‐d18OSW calculated from the Mg/Ca‐derived SST and d18OC

using equation (2) [Bemis et al., 1998]. The dashed horizontal line indicates the modern local d18OSW

value. (b) G. ruber Ba/Ca ratios in 26JPC. The predicted Ba/Ca ratio for a modern planktonic foraminifera
living on the western margin of the Florida Straits is indicated by the horizontal dashed line. Intervals of
increased riverine input as defined by elevated Ba/Ca are indicated by the blue shaded boxes. The data
plotted in lighter shades in Figures 4a and 4b are from the interval in the core with the out of sequence
radiocarbon ages. (c) Orca Basin (northern Gulf of Mexico) IVF‐d18OSW record from Flower et al.
[2004]. Periods of increased meltwater into the Gulf of Mexico are characterized by highly depleted
IVF‐d18OSW values. The modern d18OSW value for the Orca Basin is indicated by the horizontal dashed
line. (d) Oxygen isotopes in the NGRIP ice core showing the timing of colder conditions (low d18O) in
Greenland [Andersen et al., 2004; Rasmussen et al., 2006]. (e) Deglacial sea level change from Siddall et
al. [2009]. Gray shaded region indicates the Younger Dryas.
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marked by lower than modern Ba/Ca ratios in 26JPC. Given
the close correspondence between elevated Ba/Ca ratios in
26JPC and negative d18OSW values in the Orca Basin
(Figures 4b and 4c), the most likely cause for elevated [Ba2+]
in the Florida Straits is elevated riverine discharge into the
Gulf of Mexico associated with periods of elevated Mis-
sissippi River runoff.
[28] Given the reported [Ba2+] in the modern Gulf of

Mexico of 11.2 mg/L [Hanor and Chan, 1977] and the
average Ba2+ concentration in the northern Caribbean is
8.5 mg/L [Turekian and Johnson, 1966], we estimate a
modern [Ba2+] of 9.0 to 10.0 mg/L for the Florida Straits.
Using the empirical relationship by Lea and Spero [1994],
the calculated shell Ba/Ca ratio in equilibrium with this
modern water mass would be ∼0.95 mmol/mol. Using this
value as a baseline to identify periods of elevated Ba2+ input

into the Gulf ofMexico across the deglacial, the 26JPCBa/Ca
record indicates two prolonged periods when shell Ba/Ca
ratios were significantly higher than the modern value: from
17.2 to 15.6 ka BP and 14.9 to 13.6 ka BP (blue boxes on
Figure 4). The Orca Basin IVF‐d18OSW record [Flower et al.,
2004] also suggests two pulses of isotopically depleted
meltwater into the Gulf of Mexico (Figure 4c). The decrease
in the Orca Basin IVF‐d18OSW record starts 1 ka BP later than
the initial rise in Ba/Ca ratios in 26JPC at 17.2 ka BP, but a
new Orca Basin IVF‐d18OSW record based on the Marion
Dufresne core MD02–2550 indicates the presence of isoto-
pically depleted meltwater starting at ∼17 ka BP [Williams
et al., 2010]. After 13.6 ka BP, Ba/Ca ratios in 26JPC drop
to near modern values until 11.8 ka BP. On the transition
out of the YD, a few intervals in the section of the core
with the out of sequence 14C dates show an increase in

Figure 5. (a) Detail of the benthic (C. pachyderma) ice volume free d18OC record from 26JPC [Lynch‐
Stieglitz et al., 2011]. Low values during the Younger Dryas are interpreted as a reduction in the cross
straits density gradient and reduced Florida Current flow. (b) The ice volume free d18OSW record from
26JPC reconstructed from G. ruber using equations (1) and (2). The dashed horizontal line indicates the
modern local d18OSW value. The higher than modern values during the Younger Dryas reflect increased
SSS during this interval. Data plotted in lighter shades in Figures 5a and 5b are from the interval in the
core with the out of sequence radiocarbon ages. (c) Cariaco Basin gray scale record [Hughen et al., 2004;
Hughen et al., 1998], reflecting variations in upwelling intensity associated with north‐south migrations
of the ITCZ. (d) Oxygen isotopes in the NGRIP ice core showing the timing of the Younger Dryas and
colder conditions (low d18O) in Greenland [Andersen et al., 2004; Rasmussen et al., 2006]. Gray shaded
area denotes the Younger Dryas. Red triangles on the upper axis show the calibrated radiocarbon ages in
this section of the core and their associated 2s error.

SCHMIDT AND LYNCH‐STIEGLITZ: YOUNGER DRYAS HYDROLOGIC CYCLE PA4205PA4205

9 of 16



Florida Straits [Ba2+], but the increases are much less than
those recorded in the period before the YD (Figure 4c).
[29] Therefore, we interpret the elevated Ba/Ca ratios

starting at 17.2 ka BP and ending at 13.6 ka BP to constrain
the period of increased riverine influence on Florida Straits
surface waters from the melting of the Laurentide ice sheet.
During this time, meltwater with depleted d18O values from
the northern Gulf of Mexico mixed with Caribbean surface
waters with a d18OSW value near 0‰, making it difficult to
constrain the d18OSW:SSS relationship for the Florida
Straits. Nevertheless, it is interesting to note that the inter-
vals with elevated Ba/Ca ratios (blue boxes on Figure 4) are
not associated with highly depleted IVF‐d18OSW values. In
fact, the rise in Ba/Ca at 17 ka BP corresponds to a period
with the most enriched IVF‐d18OSW values (H1), suggesting
that riverine input only had a minor impact on Florida Straits
IVF‐d18OSW at this time. The enriched IVF‐d18OSW values
during the early deglacial and H1 most likely reflect arid
conditions in the tropical North Atlantic when the average
position of the ITCZ was located south of its modern
position.
[30] Regardless, geochemical and sedimentological evi-

dence suggest that meltwater input into the Gulf of Mexico
dramatically decreased to near modern levels by the start of
the YD. Ba/Ca ratios in 26JPC decreased to modern values
600 years before the start of the YD, so the abrupt increase
in Florida Straits IVF‐d18OSW values starting at 13.0 ka BP
cannot be explained by an abrupt shut off of riverine input.
Furthermore, IVF‐d18OSW values in the Orca Basin return to
near modern values at 12.9 ka BP (Figure 4d), providing
additional evidence that Mississippi River discharge had
significantly diminished by the start of the YD. Addition-
ally, two recent sedimentological studies from the Orca and
Pigmy Basins suggest that Mississippi River discharge rates
dramatically decreased by 12.9 ka BP and remained low
through the YD interval [Montero‐Serrano et al., 2009;
Sionneau et al., 2010]. Therefore, the abrupt shift to heavier
than modern IVF‐d18OSW values at the start of the YD
probably reflects an increase in Florida Straits surface
salinity resulting from increased regional E/P ratios.

4.4. Estimating Sea Surface Salinity Change Across
the Younger Dryas

[31] Based on the modern tropical Atlantic d18OSW:SSS
relationship (see above), the IVF‐d18OSW increase of 0.43‰
above modern values from 13.04–12.91 ka BP would indi-
cate a SSS increase of +1.7 in about 130 years. However, the
assumption that the modern d18OSW:SSS relationship was
the same during the YD is probably not valid. The results of
an oxygen isotope‐enabled GCM hosing experiment show a
significant decrease in precipitation d18O values over the
Caribbean and Gulf of Mexico associated with an AMOC‐
related cooling in the North Atlantic [Lewis et al., 2010].
This is because the amount effect leads to an enrichment in
precipitation d18O values associated with the ITCZ, so the
southward shift of the ITCZ during cool phases in the North
Atlantic results in an increase in precipitation d18O values
over the tropical South Atlantic and a decrease in precipita-
tion d18O values in the Caribbean (by about −2‰) [Lewis
et al., 2010]. A decrease of −2‰ in the freshwater end‐
member would increase the slope of the regional d18OSW:

SSS relationship to about 0.32, therefore reducing the
magnitude of the estimated SSS increase to +0.85. However,
because it is not possible to determine changes in past
freshwater end‐member values with certainty, any estimates
of actual SSS change based on calculated d18OSW values
should be viewed with caution. Instead, we interpret the
IVF‐d18OSW record to indicate periods when SSS was most
likely saltier or fresher relative to the modern.
[32] The abrupt increase in IVF‐d18OSW values at the start

of the YD occurs within 10 cm or 130 years (Figure 5a). The
midpoint of this transition is at 13.0 ka BP (±199 years) and
is within age model error of the start of the YD in the
NGRIP d18O ice core record (12.896 ka BP; ±138 years)
(Figure 5d). Although the transition out of the YD occurs
within the section of 26JPC with the out of sequence 14C
dates, this transition is also rapid, occurring within 200 years
with a midpoint at 11.73 ka BP. In the NGRIP d18O ice core
record, the transition at the end of the YD occurs at 11.703 ka
BP (maximum counting error of 99 years) [Rasmussen et al.,
2006]. It is encouraging that the IVF‐d18OSW transition in
26JPC at the end of the YD is synchronous (within age model
error) with the NGRIP d18O record, suggesting that whatever
process caused the anomalous 14C‐dated intervals did not
compromise this entire section of 26JPC.

4.5. Multivariate SST and SSS Reconstructions

[33] Although both culturing studies [Kisakürek et al.,
2008; Lea et al., 1999; Mashiotta et al., 1999; Nürnberg
et al., 1996; Russell et al., 2004] as well as core top and
sediment trap studies [Anand et al., 2003; Dekens et al.,
2002; Elderfield and Ganssen, 2000; Hastings et al., 1998;
Lea et al., 2000; McConnell and Thunell, 2005; McKenna
and Prell, 2004; Rosenthal et al., 1997, 2000] show that
temperature is the primary control of Mg/Ca ratios in fora-
miniferal calcite, recent studies found a relationship between
Mg/Ca ratios in core top planktonic foraminifera and
salinity [Arbuszewski et al., 2010; Ferguson et al., 2008;
Mathien‐Blard and Bassinot, 2009]. By analyzing Mg/Ca
and d18OC in core tops across an Atlantic meridional transect,
Arbuszewski et al. [2010] developed new multivariate equa-
tions to calculate mean annual SST and SSS that take into
account the effect of salinity on shell Mg/Ca. Their new
multivariate equations use both the measured shell Mg/Ca
ratio and d18OC value to calculate SST and SSS:

SST �Cð Þ ¼ 16:06þ 4:62* ln Mg=Cað Þ � 3:42 �18OC

� �

� 0:1 DCO2�
3

� � ð3Þ

SSS ¼ 34:28þ 1:97* ln Mg=Cað Þ þ 0:59 �18OCð Þ ð4Þ

Analytical uncertainty in our record contributes an additional
error of ±0.44°C when calculating SST using multivariate
equation (3). When calculating SSS using multivariate
equation (4), analytical uncertainty contributes an additional
error of ±0.12.
[34] Arbuszewski et al. [2010] found a 27% increase in

shell Mg/Ca per 1 salinity unit increase when SSS was above
35. Although it is still not clear why elevated SSS would
have such a large impact on shell Mg/Ca ratios, we wanted to
determine how Arbuszewski et al.’s [2010] newly proposed
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multivariate equations would affect our results. Therefore,
we recalculated deglacial SST and SSS change using
equations (3) and (4) and compare the results with those
obtained using equations (1) and (2) (Figure 6). Given the
shallow depth of 26JPC, we did not include the correction
factor to account for changes in DCO3

2− in equation (3).
[35] In order to calculate SST using the multivariate

equation (3), both d18OC and Mg/Ca measurements on an
interval are required. The youngest interval in 26JPC with
both measurements is at 96.25 cm (6.13 ka BP). The esti-
mated SST for this interval based on equation (3) is 28.7°C,
or 1.8°C above the modern mean value. For comparison, the
calculated SST for this interval using equation (1) is 27.2°C.

The coolest temperatures calculated using equation (3) occur
from 17.2 to 17.8 ka BP when minimum SSTs are calculated
to have decreased to ∼22°C (Figure 6a). Taken at face value,
the multivariate SST equation (3) suggests a temperature
gradient as large as 6.7°C across the deglacial, much larger
than the estimated cooling of only ∼3°C in the Florida
Straits at the LGM based on the results of the MARGO
project [Waelbroeck et al., 2009]. Both equations (1) and (3)
suggest similar warm conditions at the start of the BA
around 14.5 ka BP. However, the multivariate equation (3)
indicates SSTs remained relatively warm until the start of
the YD at 13.0 ka BP when SST rapidly decreased by 4.4°C.
Multivariate equation (3) calculates an average SST of

Figure 6. (a) A comparison of the deglacial SST record calculated using the multivariate equation (3) by
Arbuszewski et al. [2010] (solid line with circles) and the traditional equation (1) from Anand et al. [2003]
(dashed gray line). (b) SSS calculated using the multivariate equation (4) by Arbuszewski et al. [2010].
The influence of global d18OSW change due to continental ice volume variation [Siddall et al., 2009] has
been removed, so the SSS values are ice volume corrected. The horizontal dashed line indicates the
modern mean annual SSS at our study site. (c) Computed IVF‐d18OSW calculated using the traditional
method from the Mg/Ca‐derived SST and d18OC using equation (2) [Bemis et al., 1998]. The dashed
horizontal line indicates the modern local d18OSW value. Note the reverse axis with positive down.
(d) Oxygen isotopes in the NGRIP ice core showing the timing of colder conditions (low d18O) in
Greenland [Andersen et al., 2004; Rasmussen et al., 2006]. Shaded regions indicate the Younger Dryas
(YD) and Heinrich Event 1 (H1), and the data plotted in lighter shades are from the interval in the core with
the out of sequence radiocarbon ages.
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24.4°C from 12.9 to 12.2 ka BP (0.7°C cooler than SSTs
calculated for this interval using equation (1)). Therefore,
use of multivariate equation (3) results in a very large,
abrupt temperature decrease in the Florida Straits at the start
of the YD rather than the gradual cooling calculated by
equation (1). Because coupled GCM water hosing experi-
ments predict a relatively small SST response (<2°C) in the
Florida Straits, even when AMOC is reduced by 75%
[Zhang and Delworth, 2005], the abrupt 4.4°C SST decrease
in the Florida Straits calculated using multivariate equation
(3) at the start of the YD is larger than what most regional
climate reconstructions and modeling experiments suggest is
reasonable.
[36] For comparison, we also calculate SSS change in

26JPC across the deglacial using multivariate equation (4)
[Arbuszewski et al., 2010] (Figure 6b). In order to construct
this SSS record, we used the same correction for the influ-
ence of global d18OSW change due to continental ice volume
variation [Siddall et al., 2009], so the estimated SSS values
on Figure 6b are ice volume free. Importantly, the timing of
deglacial SSS change calculated using the multivariate
equation is the same as the reconstructed IVF‐d18OSW

change using equations (1) and (2) (Figures 6b and 6c). The
periods prior to 15.5 ka BP and the YD stand out as the
saltiest (and most positive IVF‐d18OSW values) periods in
the record. The section of the core associated with H1
indicates a period of maximum SSS when the average
salinity was 36.8 (0.7 higher than modern). Surface salinity
then decreased at ∼15 ka BP and remained fresher or similar
to modern values until 13.0 ka BP when the start of the YD
is marked by an abrupt increase in SSS. Although the timing
of the salinity increase is the same using multivariate
equation (4), the magnitude of SSS increase is only +0.4
(Figure 6b).
[37] Because a change in the slope of the regional d18OSW:

SSS relationship would also affect accuracy of the multi-
variate SSS calculation, the actual SSS values calculated
using either the traditional or multivariate equations should
only be viewed as estimates. Regardless, both surface water
salinity reconstructions (Figures 6b and 6c) indicate a rapid
shift to saltier conditions at the start of the YD.

4.6. Paired Planktonic‐Benthic Oxygen Isotopes
in 26JPC

[38] Lynch‐Stieglitz et al. [2011] measured d18O in benthic
foraminifera from a suite of cores (including 26JPC) located
on both margins of the Florida Straits for the past 15 ka BP.
They found that the contrast in benthic d18O tests across the
Florida Straits was reduced during the YD, most likely
reflecting a reduction in the density gradient across the
channel and a decrease in the vertical shear of the Florida
Current at that time. Their results are consistent with a sig-
nificant weakening of the Florida Current resulting from
reduced flow of the surface branch of AMOC, similar to the
magnitude of AMOC reduction Lynch‐Stieglitz et al. [1999]
estimated for the LGM.
[39] Furthermore, Lynch‐Stieglitz et al. [2011] argued the

high‐resolution 26JPC benthic IVF‐d18OC record can be
used to determine the timing of Florida Current flow vari-
ability across the YD (Figure 5a). Therefore, the abrupt
decrease in benthic IVF‐d18OC at the start of the YD (within
4 cm or 78 years) reflects a dramatic change in ocean cir-

culation at the start of the YD, consistent with a significant
reduction of AMOC. In comparison, the abrupt increase in
IVF‐d18OSW values at the start of the YD occurs within 10
cm or 130 years (Figures 5a and 5b). Although age model
uncertainty does not allow us to quantify the exact duration
of these transitions, the more rapid benthic IVF‐d18OC

transition in our records suggests that Florida Current
transport has the potential to adjust faster than atmospheric‐
induced surface water salinity change in the tropics.
[40] The midpoint of the 26JPC benthic IVF‐d18OC chan-

ges occurs 9 cm or about 100 years before the midpoint of the
increase in IVF‐d18OSW (Figure 5b). However, McCorkle
et al. [1997] showed that the benthic species C. pachy-
derma can live in burrows within the sediment. This may
result in an offset of several centimeters in the core relative to
coeval planktonic foraminiferal species. Therefore, it is not
possible to definitively determine if ocean circulation chan-
ges recorded by the benthic foraminifera preceded or are
concurrent with the rapid increase in Florida Straits SSS
recorded by the planktonic foraminifera at the start of the YD.
Nevertheless, the nearly synchronous changes in both records
are consistent with an abrupt reorganization of tropical
Atlantic atmospheric circulation in response to a meltwater‐
induced reduction in AMOC at the start of the YD. If ocean
circulation changes were the main driver of IVF‐d18OSW

change in the Florida Straits, we would expect a more gradual
buildup of salt that would continue to increase as long as
AMOC remained in a reduced state.
[41] In comparison, the timing of the IVF‐d18OSW transi-

tion at the end of the YD precedes the more gradual ocean
circulation recovery recorded by the benthic foraminifera.
The decrease in IVF‐d18OSW values occurs in about 200 years
and is complete by 11.62 ka BP (±250 years) at 364 cm in the
core. In contrast, the benthic IVF‐d18OC increase takes over
350 years and is not complete until 11.47 ka BP (±250 years)
at 340 cm in the core. These results suggest atmospheric
circulation returned to a pre‐YD mode before AMOC fully
recovered. If correct, these results suggest a lead in atmo-
spheric circulation change on interstadial transitions.

4.7. Tropical Atmospheric Circulation Change
and High Latitude Climate

[42] Several studies interpret sedimentological and geo-
chemical changes in the Cariaco Basin to indicate a coupled
high‐ to low‐latitude climate linkage over the last glacial
cycle [Haug et al., 2001, 2003;Hughen et al., 1998; Peterson
et al., 2000; Peterson and Haug, 2006]. Variations in the
trace metal content and color variations recorded in ‘gray
scale’ of Cariaco Basin sediment cores indicate a synchro-
nous shift to drier conditions in the western tropical Atlantic
at the onset of the YD. In particular, the gray scale record
[Hughen et al., 2004, 1996, 1998] indicates an abrupt shift to
lighter values at 12.85 ka BP (Figure 5c), reflecting enhanced
upwelling and stronger trade winds as the ITCZ shifted
southward in response to a cooling in the North Atlantic. The
abrupt increase in 26JPC IVF‐d18OSW values at the start of
the YD is synchronous (within age model error) with the
Cariaco record. Because Florida Current surface salinity is
strongly influenced by E/P changes in the Caribbean and
tropical Atlantic, the most likely cause of the elevated
IVF‐d18OSW values at the start of the YD is a combination of
increased evaporation (due to stronger trade winds) and/or
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decreased tropical Atlantic precipitation. As the Hadley Cells
and the corresponding position of the ITCZ shifted southward
at the start of the YD, the tropical Atlantic hydrologic cycle
shifted into a stable stadial mode characterized by increased
surface water salinity in the Florida Straits.
[43] This conclusion is also supported by coupled GCM

water hosing simulations of AMOC weakening. The result-
ing high‐latitude cooling shifts the ITCZ southward and
strengthens the NE trade winds [Dahl et al., 2005; Krebs and
Timmermann, 2007a, 2007b; Lohmann, 2003; Stouffer et al.,
2006; Vellinga and Wood, 2002; Zhang and Delworth,
2005]. These atmospheric circulation changes result in a
precipitation deficit in the tropical/subtropical North Atlantic
and the development of a positive salinity anomaly in the
northern tropical Atlantic that ultimately increases the upper‐
ocean density in the deep‐water formation regions of the
North Atlantic, thereby playing an important role in accel-
erating the recovery of AMOC [Krebs and Timmermann,
2007a, 2007b; Vellinga and Wu, 2004]. In another model-
ing study, Wan et al. [2010] showed that atmospheric pro-
cesses are primarily responsible for the increase in tropical
North Atlantic SSS during periods of reduced AMOC, while
ocean circulation changes result in increased surface salinity
in the equatorial and southern tropical Atlantic. Therefore,
the rapid increase in IVF‐d18OSW values in the Florida Straits
at the start of the YD is most likely caused by the tropical
hydrologic cycle’s response to high‐latitude cooling.
[44] Using Mg/Ca and alkenone paleothermometry along

with oxygen isotope measurements on planktonic forami-
nifera, Benway et al. [2006] and Leduc et al. [2007] recon-
structed deglacial d18OSW change in the eastern equatorial
Pacific (EEP) and estimated a YD salinity increase that was
2–3 times larger than those estimated for the YD Caribbean
[Schmidt et al., 2004]. In their study, Leduc et al. [2007]
argued for decreased water vapor transport from the Atlan-
tic to the Pacific during the YD and Heinrich events. How-
ever, it is not appropriate to directly compare the Leduc et al.
[2007] and Schmidt et al. [2004] d18OSW reconstructions
because of resolution differences between the records.
Sedimentation rates at the Leduc et al. [2007] study site are
10 times higher than those in the Colombian Basin, so the
true magnitude of Caribbean d18OSW change has most likely
been smoothed by bioturbation. However, a comparison of
the Leduc et al. [2007] data with our new high‐resolution
JPC26 IVF‐d18OSW record from the Florida Straits shows
similar IVF‐d18OSW increases at both study sites at the start
of the YD. Therefore, the elevated IVF‐d18OSW values in
both the western tropical North Atlantic and in the northern
EEP probably reflect a southward shift in the ITCZ during
the YD and a drier climate in both regions.
[45] Our new results also suggest the planktonic‐based

IVF‐d18OSW record returns to pre‐YD values before the
benthic‐based IVF‐d18OC record indicates a full recovery of
Florida Current transport. This implies that atmospheric cir-
culation changes may have preceded large‐scale ocean cir-
culation changes on transitions into warm intervals. A recent
geochemical and sedimentological study of a well‐dated lake
core from the Venezuelan Andes also found evidence for an
early tropical Atlantic warming during the YD that began
several hundred years before the termination of the event in
the high latitudes [Stansell et al., 2010]. Additionally, a recent
GCM hosing experiment using glacial boundary conditions

found that the ITCZ recovers from its southward displace-
ment before AMOC fully recovers [Otto‐Bliesner and Brady,
2010]. The 26JPC IVF‐d18OSW record may be further evi-
dence for a lead in tropical atmospheric circulation change on
interstadial transitions. Nevertheless, this conclusion must be
viewed with caution because this transition is located within
the section of 26JPC that may have disturbed intervals.

5. Conclusions

[46] Based on Mg/Ca paleothermometry and oxygen iso-
tope measurements on the planktonic foraminifera G. ruber
in Florida Straits sediment core 26JPC, we reconstructed a
high‐resolution record of IVF‐d18OSW change for the last
21 ka BP. In addition, we measured Ba/Ca ratios in G. ruber
shell material as a proxy for large meltwater injections into
the Gulf of Mexico across the deglacial. We have shown that
the surface water d18O values in the Florida Straits were most
likely influenced by isotopically depleted riverine input from
17.2 to 15.6 ka BP and 14.9 to 13.6 ka BP, complicating the
estimation of SSS change based on the IVF‐d18OSW record
during these intervals. However, Ba/Ca ratios in the 26JPC
record decreased about 600 years before the start of the YD,
suggesting a greatly diminished riverine component in
Florida Straits surface water at this time.
[47] The transition into the YD cold interval is marked by

an abrupt increase in Florida Straits IVF‐d18OSW values that
occurs within 130 years. This rapid increase in IVF‐d18OSW

is synchronous (within age model error) with atmospheric
circulation changes recorded in both the high‐latitude
NGRIP d18O ice core record and the low‐latitude Cariaco
Basin gray scale record. Therefore, the most likely expla-
nation for the elevated IVF‐d18OSW values at the start of the
YD is an abrupt shift in atmospheric circulation that resulted
in a net increase in evaporation and/or net decrease in pre-
cipitation in the tropical Atlantic. Furthermore, we com-
pared the timing of surface water changes in 26JPC to a
recently published record of Florida Current variability in
the same core based on benthic oxygen isotope data [Lynch‐
Stieglitz et al., 2011]. Our results indicate nearly synchro-
nous changes in atmospheric and ocean circulation on the
transition into the YD. These results are consistent with an
abrupt reduction in AMOC as the driver of tropical atmo-
spheric circulation at the start of the YD. Furthermore, the
pattern of reduced AMOC and elevated surface water
salinity in the tropical Atlantic seems to be consistent across
both millennial and orbital time scales [Schmidt et al.,
2004], suggesting that meridional shifts in the ITCZ
forced by North Atlantic climate are a robust feature of the
climate system.
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