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RESEARCH ARTICLE
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of Ecology and Evolutionary Biology University of Kansas Haworth Hall Lawrence, Kansas, United States of

America, 6 Department of Biological Sciences Old Dominion University Norfolk, VA, United States of

America, 7 Mathematics, Statistics and Computer Science University of KwaZulu-Natal Durban, South Africa
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Abstract

The recent spread of mosquito-transmitted viruses and associated disease to the Americas

motivates a new, data-driven evaluation of risk in temperate population centers. Temperate

regions are generally expected to pose low risk for significant mosquito-borne disease; how-

ever, the spread of the Asian tiger mosquito (Aedes albopictus) across densely populated

urban areas has established a new landscape of risk. We use a model informed by field

data to assess the conditions likely to facilitate local transmission of chikungunya and

Zika viruses from an infected traveler to Ae. albopictus and then to other humans in USA cit-

ies with variable human densities and seasonality. Mosquito-borne disease occurs when

specific combinations of conditions maximize virus-to-mosquito and mosquito-to-human

contact rates. We develop a mathematical model that captures the epidemiology and is

informed by current data on vector ecology from urban sites. The model demonstrates that

under specific but realistic conditions, fifty-percent of introductions by infectious travelers to

a high human, high mosquito density city could initiate local transmission and 10% of the in-

troductions could result in 100 or more people infected. Despite the propensity for Ae. albo-

pictus to bite non-human vertebrates, we also demonstrate that local virus transmission and

human outbreaks may occur when vectors feed from humans even just 40% of the time.

Inclusion of human behavioral changes and mitigations were not incorporated into the mod-

els and would likely reduce predicted infections. This work demonstrates how a conditional

series of non-average events can result in local arbovirus transmission and outbreaks of

human disease, even in temperate cities.
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Author Summary

Zika and chikungunya viruses are transmitted by Aedes mosquitoes, including Ae. albopic-
tus, which is abundant in many temperate cities. While disease risk is lower in temperate

regions where viral amplification cannot build across years, there is significant potential

for localized disease outbreaks in urban populations. We use a model informed by field

data to assess the conditions likely to facilitate local transmission of virus from an infected

traveler to Ae. albopictus and then to other humans in USA cities with variable human

densities and seasonality. The model demonstrates that up to 50% of infectious travelers

returning to the U.S. could initiate local transmission in temperate cities if are infectious

and are exposed to high mosquito densities. This work highlights the need for high-reso-

lution spatial data on Ae. albopictus density, biting behavior, and seasonality to better

understand, predict and manage arboviral transmission risk in temperate cities.

Introduction

The Asian tiger mosquito (Aedes albopictus) is a global nuisance, with self-sustaining popula-

tions established on nearly every continent. Like its relative, Ae. aegypti, the Asian tiger mos-

quito is a day-time biter and lays eggs that are resistant to drought. In its native range, the

juveniles develop in water-holding tree holes and emerging adult females feed opportunisti-

cally on vertebrate species in the surrounding sylvan habitats. Limited vagility of adult mosqui-

toes restricts natural dispersal distances to a few hundred meters [1,2], but international trade

and travel has dispersed the species well beyond its native forests of southeast Asia to urban

and peri-urban landscapes throughout the Americas and Europe in the 1980s and Africa in

the 1990s [3,4]. Similar to the earlier invasion by Ae. aegypti from Africa, Ae. albopictus has

become increasingly associated with urban and peri-urban landscapes as it has expanded its

geographic range [5]. Within these landscapes, the species has become increasingly capable of

exploiting human-made container habitat and human blood meal hosts.

In recent years the introduction of Aedes-transmitted chikungunya and Zika arboviruses to

the Western Hemisphere has raised important questions regarding the role that Ae. albopictus
might play in arboviral transmission, especially in temperate regions where Ae. aegypti is rare

but Ae. albopictus is increasingly abundant. Numerous lab studies indicate that Ae. albopictus
can be equally competent (able to acquire and transmit pathogens) as Ae. aegypti for a suite of

arboviruses, including chikungunya and Zika [6–11]. Ae. albopictus has also been associated

with local arboviral transmission and disease outbreaks, specifically in temperate regions

where Ae. aegypti is absent or uncommon[12–17]. However, Ae. albopictus is generally con-

sidered less important than Ae. aegypti for transmitting viral infections to humans because

it has been shown to feed on a range of vertebrate species beyond human [18–20]. An Ae.

aegypti mosquito that bites a human is highly likely to bite another human if it survives to feed

more than once, making this species an important vector of arboviruses transmitted between

humans [8,21–24]. Ae aegypti is also predominant in tropical regions where transmission

cycles and viral amplification can be facilitated by longer seasons and greater opportunity

for human-mosquito contacts. By contrast, Ae. albopictus has a far greater capacity than Ae.

aegypti for exploiting a range of climates and habitat types, with established Ae. albopictus pop-

ulations in rural and urban landscapes across both tropical and temperate regions [4,25] (Fig

1). Likewise, while Ae. albopictus host biting behavior is variable across its introduced range,

urban regions can be focal areas of predominantly human biting [6,26–30]. In the United

States, Ae. albopictus is now widespread throughout the eastern portion of the country, with

increasingly urban association as the species has spread northward [5,31,32]. Increases in

Zika and Chikungunya Risk Eastern United States
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geographic range, urban occupation, and human biting, would all seem to intensify the poten-

tial for this vector to transmit arboviruses to humans. A quantitative evaluation is required to

better understand how this behavioral plasticity and variable urban densities influence risk of

local outbreaks of arboviral infection in temperate regions, including the densely populated

eastern United States.

Many modeling efforts and risk predictions generate inference based on mean vector densi-

ties, human biting rates and other parameters that inform vectorial capacity. There are two

limitations in this approach. First, data limitations mean that parameters are derived from

data collected across very different landscapes in the species’ native and invasive range. Sec-

ond, emergent outbreaks like the spreading Zika crisis and the more limited but still alarming

human impacts of dengue emergence in Japan or chikungunya in Italy are not the outcome of

average conditions–outbreaks occur when a suite of (often extreme or unusual) conditions

align. Our goal in this paper is to quantitatively evaluate the potential for Ae. albopictus vec-

tored transmission cycles and local disease outbreaks of emerging Zika and chikungunya

viruses in temperate U.S. cities. We define probabilistic parameter distributions that represent

mosquito densities, human host-use, and specific vector competencies reported in the litera-

ture and employ a mathematical model that explores the full range of observed parameter val-

ues to identify conditions that would facilitate local outbreaks in human population centers.

Results

Our model draws on parameter values defined by field data and demonstrates how combina-

tions of realistic parameter distributions can generate significant outbreak potential for chi-

kungunya and Zika viruses in temperate U.S. cities (New York City, Philadelphia, Washington

D.C., and Atlanta), where high Ae. albopictus densities are already reported. As expected, a

majority of the model runs predicted that no outbreak would occur (R0<1). However, across

the scenarios evaluated there is a persistent subset of runs where suites of realistic parameter

combinations generate high R0 conditions that result in locally-transmitted human infections,

including almost 45% leading to more than 10 new human infections if the mosquitoes bite

humans even 40% of the time (Fig 2). For Zika virus, the average value of R0 across all 12 sce-

narios (encompassing 4 urban densities and 3 season lengths) was 1.1 with a median of 0.82

Fig 1. Global distribution of Aedes albopictus (orange dots) with superimposed major urban areas (blue triangles). Ae. albopictus occurrence data

were from the database provided by [4]. Note in particular the extensive occurrence of cities in the United States within areas inhabited by this mosquito.

doi:10.1371/journal.pntd.0005255.g001

Zika and Chikungunya Risk Eastern United States
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and a range of 0 to 13.1 (S1 Table). For chikungunya, the average value of R0 was 0.91 with a

median of 0.68 and a range of 0 to 7.4 (S1 Table).

We specifically evaluated how duration of active mosquito season following the arrival of

an infectious traveler and propensity for biting diverse vertebrate species, where every non-

human bite slows the transmission process, influence outbreak potential for different urban

densities. As might be expected, higher probability of human host-use is associated with

greater R0 (Fig 3). For a given seasonal duration and human population density, increasing the

proportion of bites on humans in the mosquito population above 40% resulted in more model

runs that returned R0 >1, signifying increased potential for local transmission and human dis-

ease even when a significant proportion of blood meals are from non-human animals (Fig 2).

The average number of times a human was bitten per day in the model ranges from 0 to 4

bites. Even for number of bites per person per day below 1, there were several scenarios with

significant onward transmission (Fig 4).

Potential human infection was positively associated with seasonal duration representing the

length of time with active, high-density mosquito populations following the introduction of an

infectious traveler. For example, the 90-day scenario for Zika in Philadelphia resulted in 51.8%

of runs with at least one new human infection from a single primary introduction and 14.4%

resulted in more than 100 people infected. Across all scenarios, the 90-day season results in

14.4% of runs with greater than 100 people infected, 120-day season in 20.4% of runs with

greater than 100 people infected and 150-day season in 24.8% of runs with greater than 100

people infected (S1 Table, Fig 5). So, while on average there is only one new infection gener-

ated following a single primary introduction during a season, the chance of a relatively large

outbreak increases substantially with season length as more mosquitoes become infected.

Extending the season also reduced the value of Ph needed to result in potentially severe out-

breaks (S1 Fig). Although season length varies from year to year in the cities we investigated,

the climate in Atlanta and Washington D.C. tends to support longer mosquito seasons of at

Fig 2. Proportion of the human population in a neighborhood infected with Zika virus at the end of the

90-day season in Atlanta (colorbar) as a function of R0 and Ph, the proportion of blood meals that are

human. The solid line is at R0 = 1. When Ph> = 0.4, then 62.5% runs have R0>1 and 44.8% of runs result in at

least 10 people infected after a single introduction. On the other hand, when Ph <0.4, then only 10.8% of runs

have R0>1 and 4.0% of runs result in at least 10 people infected.

doi:10.1371/journal.pntd.0005255.g002

Zika and Chikungunya Risk Eastern United States
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least 4–5 months, corresponding to our 120 and 150-day seasons. On the other hand, New

York City and Philadelphia would be more likely to have 90-day peak mosquito seasons, on

average. However, anomalously warm (or cold) years could change mosquito season length

and thus, risk.

To quantify sensitivity of output to specific parameter combinations and inform targets for

surveillance and mitigation, partial rank correlation coefficients were calculated separately for

Zika and chikungunya. Values of R0 for Zika were most sensitive to variation in the percent of

bites on humans, initial mosquito density, and mosquito biting frequency (Table 1). Chikun-

gunya’s R0 was also highly sensitive to percent of bites on humans versus dead-end hosts and

had similar sensitivies to the other parameters as Zika. For New York City, with the shorter

90-day mosquito season, large outbreaks are generally characterized by a vector to host ratio

larger than 2, time between bloodmeals less than 4.5 days and proportion of bites on humans

greater than 0.5 (upper right triangle of Fig 6). If one of these parameters is on the high end

of its range, then the other two can be in mid-range and still result in a large outbreak. As

the mosquito season lengthens, the range over which large absolute numbers of people may

be infected increases. For Atlanta with a 150-day peak mosquito season, large outbreaks are

occurring with vector to host ratios as low as 1, time between bloodmeals as high as 5 days and

proportion of bites on humans as low as 0.3 (lower left triangle of Fig 6). The highest R0 values

are seen for frequent biting (less than 3 days between bloodmeals) and high proportion of bites

on humans (diagonal, Fig 6).

Fig 3. Distribution of R0 for Zika virus across ranges of human feeding rates, Ph, for New York City.

With Ph�0.4 probability of an outbreak increases significantly, resulting in 62.7% of runs with R0>1. However,

when Ph < 0.4, the percent of runs with R0>1 decreases to 10.1% (for Ph�0.8, 76.3% of runs have R0>1).

When Ph < 0.4, the mean value of R0 is 0.46, while for Ph�0.4, the mean value of R0 is 1.55 and if Ph�0.8, the

mean value of R0 jumps to 1.97.

doi:10.1371/journal.pntd.0005255.g003

Zika and Chikungunya Risk Eastern United States
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While variable human density across the representative cities does not influence the mean

R0 values or percent of runs with more than 100 human infections, the absolute size of the

Fig 4. Proportion humans in a neighborhood infected with Zika virus (colorbar) as a function of

number of bites per person per day and R0. The solid line is at R0 = 1. Even when the average number of

bites per person per day is less than 1 (68% of all runs), many runs result in autochthonous transmission. Of

the runs with number of bites less than 1, 34% result in at least one new infection, 10% result in at least 10

infections, and 2% result in at least 100 infections. If the season is extended to 120 days, that increases to

34%, 14%, and 4%, respectively.

doi:10.1371/journal.pntd.0005255.g004

Fig 5. Season length (days, x axes) is positively associated with a) the proportion of model runs that resulted

in 100 or more human infections with chikungunya virus and b) potential mean numbers of infected humans

per square mile. Significant human infection is possible at even 90 days and uncertainty shown captures

variability across cities, as well as human biting propensity and other parameter states. The mean number of

people infected moves from 396 to 892 to 1376 and the median from 2.1 to 2.4 to 2.5 as season increases

from 90 to 150 days.

doi:10.1371/journal.pntd.0005255.g005

Zika and Chikungunya Risk Eastern United States
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outbreaks and mean percent of the population infected are associated with human density. For

very low human density regions, outbreaks with more than 100 infections would become

Table 1. Sensitivity Analysis. PRCC values computed for R0 and proportion of the human population infected at the end of season for Zika and chikungu-

nya (Philadelphia, 90-day season). Absolute values close to zero indicate low sensitivity and absolute values close to one indicate high sensitivity. Negative

values indicate an inverse relationship between the parameter and the quantity of interest (output).

Parameter nu_v mu_v beta_hv K_v sigma_v sigma_h nu_h beta_vh gamma_h P_h

PRCC value R0 ZIKA 0.1575 -0.5235 0.5668 0.6132 0.5514 0.2267 -0.0061 0.559 -0.4739 0.8871

PRCC value proportion infected ZIKA 0.2027 -0.4182 0.5804 0.6263 0.5669 0.2382 0.0269 0.5716 -0.4066 0.8918

PRCC value R0 CHIK 0.1158 -0.4793 0.6956 0.6148 0.5469 0.215 -0.0034 0.3039 -0.281 0.8847

PRCC value proportion infected CHIK 0.148 -0.3891 0.702 0.6227 0.5541 0.2203 0.008 0.3115 -0.2543 0.8873

doi:10.1371/journal.pntd.0005255.t001

Fig 6. Plots of the top three most sensitive parameters for Zika as they relate to each other and to the percent of the population infected by the

end of the outbreak for New York City (upper right triangle) and Atlanta (lower left triangle) and to R0 (diagonal). The range of parameters resulting

in large absolute numbers infected is larger for longer mosquito seasons (Atlanta). Large outbreaks tend to be restricted to high biting rates (time between

bloodmeals) and high proportions of bites on humans.

doi:10.1371/journal.pntd.0005255.g006

Zika and Chikungunya Risk Eastern United States
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highly improbable or even impossible, but these results hold for human densities seen in

urban areas. For example, the mean number of people infected for a 90-day season in Atlanta

(lowest human density) is 175, while for New York (highest human density) it is 676 (S1

Table). Note that we are considering local transmission within a square mile plot, so the per-

cent infected is the percent of people living in or spending significant time in that local area

(Table S4 in the S1 Text gives number of people per square mile).

Discussion

Our model indicates that risk of local transmission of Zika and chikungunya viruses and

human disease outbreaks in temperate U.S. cities is considerable. Regardless of season length,

there is a greater than 50% chance of some onward transmission if a human case is introduced

to a temperate, urban landscape with high Ae. albopictus population density. This means that

one of every two infectious travelers could initiate local transmission under the right conditions.

This is, of course, not a prediction that we expect to be validated by documented human out-

breaks. For one thing, both viruses can be predominantly asymptomatic in humans. But per-

haps more importantly, the suite of parameters that is necessary to achieve this R0 represents a

pretty specific chain of events and conditions and while the parameter values are each realistic,

we actually don’t have the data to assess how frequently the suite of conditions occur, in real

space, that support mosquito exposure to an infectious traveler, extrinsic incubation and then

subsequent transmission to a second human host. The first necessary condition is high popula-

tion abundance of Ae. albopictus. Studies confirm high densities and growing populations of

this species across the eastern U.S. and as far north as New York [31–33]. A second necessary

condition is that the female Ae. albopictus must bite humans at least 40% of the time. The Asian

tiger mosquito’s vectorial capacity is persistently questioned because the propensity for biting

humans versus other vertebrates varies widely, as the species appears to opportunistically bite

the most available vertebrates [19,20,26,28–30,34–37]. We show that while a higher probability

of human host-use is associated with greater R0, increasing the proportion of bites from humans

above 40% increased potential for local transmission and resulting human disease. This per-

centage threshold of human biting is frequently exceeded in studies within urban landscapes

[26,28–30,37]. A third condition that our model confirms is the importance of seasonal dura-

tion. When mosquito density and biting activity remains high for a longer period of time there

is greater potential for local transmission. This duration is influenced by seasonal temperatures

as well as the timing of when the first infectious traveler is accessible to mosquito bites.

The ability to manage mosquito population growth and associated arboviral transmission to

humans requires early recognition of conditions that facilitate high vector population density and

human biting behavior. When these conditions are favorable, transmission following the arrival

of an infectious traveler can progress rapidly, as demonstrated in the 2014 urban dengue outbreak

vectored by Ae. albopictus in Tokyo, Japan [38,39]. Although some researchers consider non-zoo-

notic arboviruses (e.g., Zika, chikungunya, and dengue viruses) unlikely to become endemic in

temperate regions where seasonality is a strong filter on transmission, we demonstrate that a con-

ditional series of non-average events can result in local pathogen transmission and outbreaks of

disease in humans. This study confirms that non-average conditions likely to facilitate transmis-

sion after the introduction of an infectious traveler include years with particularly long, warm

seasons in regions with high densities of competent vectors, high biting rates, and higher propor-

tions of bites on humans, which often corresponds to high human density (Fig 6).

Recent introductions of both chikungunya virus and Zika virus to the Western Hemisphere

have been followed by rapid intensification of human disease and/or broad geographical

spread, particularly in and near urban centers [40,41]. Public health officials need validated

Zika and Chikungunya Risk Eastern United States
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assessments of how likely these viruses will be locally transmitted, even in temperate regions

where Ae. albopictus populations are abundant and introduction of an infected traveler is

likely. There has been repeated documentation of return and visiting travelers infected with

chikungunya and more recently, Zika, over the past four years (Fig 7). For example, in the first

six months of 2016 alone, 182 (5%) of 3605 residents of New York City who had returned

from an area with ongoing Zika virus transmission were infected with Zika virus, as confirmed

by RT-PCR or serologic testing [42]. These travelers can serve as sources of local transmission

particularly if they are asymptomatic.

The R0 models quantify the probability of at least one local transmission event for each

infected individual entering one of the cities at the beginning of the transmission season.

Arrivals later in the season would lead to lower outbreak sizes, but multiple infected individu-

als arriving at once would increase the probability of a larger outbreak. While local chikungu-

nya transmission has not yet led to significant human disease in the contiguous United States,

our results suggest that the chance for local Zika transmission is greater. Our predictions show

that the risk of local transmission and human infection with Zika is, on average, slightly higher

than for chikungunya virus in temperate cities, which is consistent with differences in human

infection rates reported on Yap island (73% human population with Zika infection [43]) versus

chikungunya prevalence on Reunion Island (35% population prevalence[44]). Number, tim-

ing, and location of introductions will affect probability of successful introduction as well. In

2015, there were 38 chikungunya introductions to the state of New York, 3 introductions to

Pennsylvania, 0 to Washington D.C., 9 to Maryland, and 4 to Georgia from June to August

(http://diseasemaps.usgs.gov/mapviewer/). Greater certainty in specific parameter values, par-

ticularly vector competence of Ae. albopictus for Zika transmission, will increase the precision

of our model predictions.

We chose to focus on urban areas dominated by Ae. albopictus, which has a much larger

distribution in the temperate zone worldwide than does Ae. aegypti. Consequently, we did not

include Gulf States such as Florida, Louisiana, and Texas in our analysis. High-density urban

areas in these states are often dominated by Ae. aegypti or a mixture of Ae. aegypti and Ae. albo-
pictus. For example, Miami’s urban regions (and the Florida Keys), where local transmission of

dengue, chikungunya, and Zika have taken place, have high densities of Ae. aegypti [45–49].

Although published data are sparse for Houston, where local dengue transmission has

Fig 7. A map of 2016 introductions of Zika virus to the United States (CDC Zika website, http://www.

cdc.gov/zika/geo/united-states.html, accessed January 3, 2017). As of January 1, 2017 there were 4,592

travel-associated Zika cases and 216 locally acquired Zika cases reported in the United States in 2015–2016.

In 2015, a total of 896 travel-related chikungunya cases and 1 locally acquired case were reported in the

United States.

doi:10.1371/journal.pntd.0005255.g007
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occurred, there is evidence for similar mosquito distribution patterns there [50]. Adapting the

model to include Ae. aegypti and mixtures of Ae. aegypti and Ae. albopictus would be an impor-

tant next step. Based on our model results, we predict that the much longer peak mosquito sea-

sons in the Gulf States along with higher mosquito feeding rates and very high proportion of

bites on humans by Ae. aegypti would result in even higher risk of arboviral outbreaks (see, e.g.

Fig 6).

As with any modeling effort, the results presented are contingent on the assumptions

made in defining structure and parameterization. Our model assumes that all parameters are

independent. However, it is likely that some are correlated; for instance temperature may

simultaneously influence vector competence, biting rate, and vector life history [51,52]. To our

knowledge, there have been no lab or field studies examining the effects of temperature on

Zika replication in mosquitoes and there is very little on the affect of temperature on chikun-

gunya’s EIP [9,52,53]. Although for dengue, increased temperature tends to decrease the EIP

up to a point [54,55], increased temperature also tends to decrease mosquito lifespan, leading

to nonlinear and complex relationships between temperature and transmission rates[9].

Moreover, most studies have been done in the lab and at constant temperatures for mosquito

populations from one location. How this translates to field conditions and different mosquito

populations is unclear since there is evidence for mosquito adaptation to local climate [9] and

different dengue EIP responses to daily temperature fluctuations [51,54]. More data, including

relationships between temperature regimes common to temperate regions and EIP and mos-

quito lifespan, are needed to better understand co-variation in mosquito and pathogen dynam-

ics in real field conditions.

Likewise, current studies demonstrate considerable variation in Ae. albopictus density and

human biting within a city and across land-use types [21,39,56]. More field data and behavioral

evaluation are needed to refine model assumptions and parameters regarding when and where

mosquito density and percent human feeding is likely to facilitate onward human transmis-

sion. For dengue and Ae. aegypti, mosquito density and virus transmission are closely related,

but at different spatial scales [57], with the scale to best consider dengue transmission still

unclear. Although there has been some success correlating vector abundance or environmental

factors with risk for dengue[58], other studies have shown poor correlation [59], particularly

for urban areas with mosquitoes that breed in human-created habitat and thus depend less on

environmental factors such as rainfall[60]. Percent human feeding and mosquito density data

are needed to rigorously assess the thresholds and scales at which mitigations of mosquito

abundance and human biting rates might be effective.

The model assumes that mosquito population density (and vector:human ratio) are at the

carrying capacity (and vector:human ratio) used to initialize the model throughout the speci-

fied seasonal duration (i.e., 90, 120 or 150 days). This density level defines the vector to human

ratio and strongly influences R0 and numbers of additional human infections within a season.

Our parameters represent ranges that capture real observed densities, but due to limitations in

available field data, do not necessarily represent the relative duration of how long peak densities

are generally maintained. Ongoing work in Maryland supports the assumption that a 90 day

season of high Ae. albopictus density is likely in most years in that region [32]. It takes mosquito

populations several weeks to ramp up to high densities. The beginning of our season is assumed

to be when mosquitoes are at the high densities that can persist throughout the summer and

early fall across the range of cities included. Likewise, the model does not incorporate mitiga-

tions or behavior changes, so it represents potential outbreak size rather than probable outbreak

size since once autochthonous transmission is detected, significant mitigation efforts are likely.

However, it should be noted that because 80% of Zika infections are asymptomatic[43], time to

detection of an outbreak and response could be longer than for other diseases. Chikungunya,
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on the other hand, is highly symptomatic (around 80–90% of those infected exhibit symptoms,

[61,62]), so it is more likely to be detected and motivate mitigation efforts.

Finally, the model assumes that within the square-mile area considered, mosquitoes and

humans are homogeneous in space and can be characterized by mean densities. The scale is

consistent with CDC’s assessment of risk in Miami (one sq mile around area with known

transmission, https://www.cdc.gov/zika/intheus/florida-update.html). However, both mos-

quito and human densities can vary across space, resulting in varying risk of human-mosquito

contact. Depending on human movement, daily activities, and vector exposure (which will

depend upon socioeconomic factors, among other things), our model may under- or over-esti-

mate risk, as has been illustrated by data and in individual-based models for mosquito-borne

disease that incorporate more heterogeneity [63–66]. However, models that assume even mix-

ing have performed relatively well and been useful in understanding risk of urban mosquito-

borne disease transmission [67–69].

Scientists and public health officials involved with arbovirus transmission have had limited

ability to make credible predictions, in part based on limited information about conditions

that permit an outbreak and the likelihood those conditions will be met. Our model provides

quantitative assessments of the probability of an outbreak (R0) and the potential numbers of

human victims when key parameter values can be specified. Guided by published data on virus

and mosquito vital rates, the model indicates that outbreaks can plausibly occur in major cities

in the eastern United States, with hundreds of potential victims in localized areas, under condi-

tions that are not atypical. The model suggests that outbreaks are more likely in urban areas

with higher human and mosquito population densities, in years and cities with longer growing

seasons, when infected travelers arrive early in the growing season, and when Ae. albopictus
have fewer non-human hosts that result in wasted bites. These conditions are most likely met

in urban landscapes where social, structural and environmental inequities facilitate human-

mosquito contact and potentially limit early detection and mitigation of local transmission.

Climate change, urban wildlife ecology, and human behavior all would appear to strongly

influence the probability of new outbreaks in major U.S. cities.

Methods

Ethics Statement

The published literature we used does not reveal confidential information regarding human

participants, so this study did not require IRB approval and no confidential human data has

been revealed here.

We used a compartmental mathematical transmission model adapted from [70] to evaluate

the potential for Ae. albopictus transmission of Zika and chikungunya virus to humans follow-

ing the introduction of an infectious traveler. The model follows standard epidemiological

model structure and assumes that all humans are susceptible (Sh), exposed and incubating

(Eh), infectious (Ih), or recovered and immune (Rh). Likewise, mosquitoes are also assumed

to be susceptible (Sh), exposed and incubating (Eh), or infectious (Ih). The model includes

population dynamics for mosquitoes with density-dependent emergence of adult female

mosquitoes and a carrying capacity, Kv. We adapted the Manore et al. 2014 model to sample

from literature-informed variation in parameter space, and account for variability in use of

human blood meal hosts (see Fig 8 for equations and parameter definitions). Studies demon-

strate that propensity for human biting by Ae. albopictus across its invasive range varies widely

and that the species appears to opportunistically bite whatever birds or mammals most readily

available [18,20,26,28,30,34,35,71], although some studies indicate a human preference [37].

We assumed that of the total number of mosquito bites per day a certain proportion, Ph, are
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on humans and 1- Ph are on alternate hosts. We assumed that the non-human alternate hosts

are not susceptible to the pathogen and thus, when an infected mosquito bites a non-human

animal, the bite is “wasted” in the sense that the virus is not passed on to the animal. However,

if the infected mosquito survives to bite again and the next bite is on a susceptible human, then

the infected mosquito could pass on the virus to the human. The model does not consider

other modes of transmission such as male to female sexual transmission of Zika in humans.

A number of epidemiological models have considered arboviral transmissions (particularly

dengue and chikungunya) focusing on different aspects of disease transmission [67,70,72–76]

and characteristics such as seasonality, temperature dependence, cross-immunity with multi-

ple strains, and control measures [77–85]. Several recently published modeling studies for

Zika transmission have focused on fitting models to current transmission in the South Pacific

and South and Central America [68,86–88] with Ae. aegypti dominating transmission. Only

one, to our knowledge, has considered risk in temperate regions of Europe with transmission

by Ae. albopictus [89]. Our model assesses risk in temperate regions of the United States domi-

nated by Ae. albopictus and with no current local transmission of Zika or chikungunya, but

with frequent introductions from other regions. We explicitly include human and mosquito

dynamics and determine risk by computing both R0 and absolute size of a potential outbreak.

We used parameter values for chikungunya from [70] with an updated baseline and range

for chikungunya’s extrinsic incubation period (EIP) based on meta-analysis in [91]. Zika

parameters for human incubation and infectious periods (ranges are wide due to uncertainty,

3–12 days and 3–14 days, respectively), transmission probabilities given an infected contact

(again, ranges slightly larger than for chikungunya based on the few current models and high

uncertainty, 0.1–0.75 for Zika as opposed to 0–0.54 for chikungunya), and the EIP (higher

than chikungunya), were based on the most up-to-date Zika field and modeling literature (see

the S1 Text and S2 Table for references and data used).

In the model, mosquitoes bite infected or susceptible humans at a rate defined by the per-

human vector density and the propensity for biting humans versus other animals. Mosquitoes

become infectious and transmit virus to susceptible humans as a function of this biting rate,

Fig 8. Model equations. The model follows standard epidemiological model structure and assumes that all

humans are susceptible (Sh), exposed and incubating (Eh), infectious (Ih), or recovered and immune (Rh).

Likewise, mosquitoes are assumed to be susceptible (Sh), exposed and incubating (Eh), or infectious (Ih). The

force of infection terms, λv and λh, depend on total number of mosquitoes, Nv, and total number of humans,

Nh, along with the mosquito biting rates, σv, human bite availability, σh, and bites on alternate hosts, Qd. All

parameter definitions and values can be found in the Supplementary Text.

doi:10.1371/journal.pntd.0005255.g008
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the number of infected humans, and vector competence (S1 Text). Vector competence inte-

grates mosquito survival and EIP for the specific virus along with transmission probability

given a bite on a susceptible human. Parameter values informing Ae. albopictus life history and

specific vector competence for Zika and chikungunya virus transmission were estimated from

published studies (S1 Text and S2 Table). To inform parameters related to Ae. albopictus popu-

lation dynamics and vector competence, separate searches for Aedes albopictus survival, death,

emergence and egg-laying rates and for Zika and chikungunya and Ae. albopictus were per-

formed to supplement the studies and parameter values used in [70]. Details of the data and

studies chosen are in included in the S1 Text description of the model.

Vector densities were varied from 0.5 to 10 times the human density in a square mile (2.59

square kilometers). Vector density was assumed to be at carrying capacity, Kv, for the duration

of the season-length specified (90 to 150 days). We are thus assuming that fluctuations in vec-

tor abundance are minor within the time frame of our predictions and that those fluctuations

remain within our vector-to-host ratio range. We also used human biting rate experiments

to verify that the ratio we used resulted in a realistic number of bites per person per day (see

model description in S1 Text and S2 Table for a more detailed outline of our rationale). Carry-

ing capacity was drawn randomly from a uniform distribution bounded by values representing

0.5 to 10 mosquitoes per human host. A uniform distribution was chosen due to lack of more

informative data. We considered representative human density per square mile representing

four eastern U.S. cities with high to low urban residential densities: New York City (NY), Phil-

adelphia (PA), Washington (DC), and Atlanta (GA). The vector density range captures large

variability in published (S1 Text and S2 Table, mean vector-to-host ratios ranging from 3.1 to

10) and current data on Ae. albopictus populations in urban regions [25].

We varied the peak mosquito season lengths from 90 to 150 days to capture the effect of sea-

son length on risk. The short, 90-day season could represent either a later seasonal introduc-

tion of an infectious traveler or a shorter northeastern season (i.e., June-August), while a

150-day season represents a potential mid-May to mid-October season with early viral intro-

ductions. In general, Atlanta and Washington D.C./Baltimore would be expected to have lon-

ger mosquito seasons corresponding to the 150-day season in the model and New York and

Philadelphia would be expected to have shorter mosquito seasons corresponding to the 90-day

season in the model. In addition to human and vector density, percent of human blood meals,

and season length, we varied human and mosquito incubation periods, mosquito biting rate,

human biting tolerance, human infectious period, and transmission probabilities given an

infected contact, across ranges based on the literature (see S1 and S2 Tables and the S1 Text

for parameter and variable definitions and parameter values).

The quantities of interest computed from the model were the basic reproduction number

(R0) and the cumulative absolute number of people infected at the end of the season given an

introduction at the beginning of the season. The basic reproduction number is the expected

number of secondary cases from one introduced case in a fully susceptible population. We

used the next generation method to compute the basic reproduction number [90], which in

that framework is the geometric mean of the expected number of transmissions to mosquitoes

from one infected human and the expected number of transmissions to humans from one

infected mosquito in fully susceptible populations (S1 Text). The cumulative number of people

infected was computed by running numerical simulations of the model in MATLAB for the

given seasonal duration. The model was run for local transmission in a square mile using each

city’s specific human population density. The model was initialized with mosquitoes at carry-

ing capacity and fully susceptible and one infected human introduced on day 1.

In order to fully explore the variation in parameter values and risk, we sampled from the

given parameter ranges (S1 Text) and computed our quantities of interest using 10,000
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randomly selected parameter combinations for each of the four human densities and three sea-

sonal duration scenarios. We varied all but the two least sensitive parameters of the model

(human death rate and mosquito emergence rate, which does not affect mosquito densities

once the population is at carrying capacity). The model’s ability to generate realistic values for

bites per human per day and other derived statistics was confirmed. Model validation was

done previously using baseline parameters for chikungunya and dengue and compared favor-

ably to observed outbreaks [70]. We did not have access to data to validate the model’s ability

to predict observed Zika case data where Ae. albopictus transmission has been confirmed.

Supporting Information

S1 Fig. Proportion of the human population infected with Zika virus in New York City as a

function of Ph (proportion of blood meals on humans) and season length. From left to

right, 90-day, 120-day, and 150-day peak mosquito seasons are shown. As season length

increases, the percent of serious outbreaks increases and the needed percent of human feeding

to result in a serious outbreak decreases.

(TIFF)

S2 Fig. Proportion of the human population infected with chikungunya at the end of the

90-day season in Atlanta as a function of R0 and Ph (proportion of blood meals that are

human). The red line is at R0 = 1.

(TIFF)

S3 Fig. Distribution of chikungunya R0 across ranges of human feeding rates, Ph, for New

York City.

(TIFF)

S4 Fig. Proportion humans infected with chikungunya as a function of number of bites per

person per day and R0. The solid line is at R0 = 1.

(TIFF)

S5 Fig. Proportion of the population infected with chikungunya in New York City as a

function of Ph (proportion of blood meals on humans) and season length. From left to

right, 90-day, 120-day, and 150-day peak mosquito seasons are shown.

(TIFF)

S1 Table. Summary results for our quantities of interest, R0 and total number of people

infected, for each scenario (city, season length, virus).

(XLSX)

S2 Table. Summary of references and data used to determine parameter values.

(XLSX)

S1 Text. Detailed description of the model and parameter values used for simulations.

(PDF)
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