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Electrically mediated delivery of vector plasmid DNA
elicits an antitumor effect

L Heller1 and D Coppola2

1Center for Molecular Delivery, University of South Florida, Tampa, FL, USA; and 2Department of Pathology, University of South
Florida College of Medicine, Tampa, FL, USA

In vivo electroporation is an efficient means of increasing
plasmid DNA delivery to normal tissues, such as skin and
muscle, as well as directly to tumors. In the experiments
described here, plasmid DNA was delivered by in vivo elec-
troporation to B16 mouse melanomas using two very differ-
ent pulsing protocols. Reporter expression increased 21- or
42-fold, respectively with electroporation over injection
alone. The growth of experimental melanomas with an
approximate diameter of 4 mm on the day of treatment was
monitored after electroporation delivery of reporter plasmid
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For gene therapy, in vivo delivery of plasmid DNA offers
an alternative to viral delivery methods. Since the
efficiency of plasmid delivery to tissues is generally
lower than viral delivery, several methods have been
introduced to augment in vivo plasmid delivery, includ-
ing in vivo electroporation, which has been used in phase
II clinical trials for the delivery of chemotherapeutic
agents to cancers.1,2 A number of preclinical studies have
been performed demonstrating that this technique also
enhances plasmid delivery and expression of both
reporter and therapeutic genes or cDNAs to many
tissues.3

Electroporation delivery has been performed to a num-
ber of normal tissues including skin,4–7 liver,8,9 and
testes,10 although since skeletal muscle injected with plas-
mid DNA alone expresses reporter genes,11 much of the
focus of in vivo electroporation has been on muscle deliv-
ery. Both intramuscular and systemic plasmid expression
are significantly augmented by the addition of electric
pulses.12–23

Electroporation directly into tumors also enhances
plasmid expression. This has been demonstrated using
reporter genes in rat brain tumors,24 mouse melanomas,25

mouse mammary tumors,26 and rat liver tumors.27 Thera-
peutic responses have also been described, including
human monocyte chemoattractant protein-1 in rat brain
tumors,24 a dominant negative Stat3 variant in mouse
melanomas,28 diphtheria toxin or herpes simplex thymid-
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DNA. Remarkably, short-term complete regressions using
one of these pulsing protocols occurred in up to 100% of
mice. These regressions continued long term in up to 83%
of animals. 70% of these mice were resistant to challenge
with B16 melanoma cells. Histological analysis revealed
large numbers of apoptotic cells 24 h after treatment. This
antitumor effect did not require therapeutic cDNA expression
or eukaryotic sequences.
Gene Therapy (2002) 9, 1321–1325. doi:10.1038/sj.gt.3301802

ine kinase in subcutaneously inoculated colon adenocar-
cinomas,29 and IL12 in subcutaneously implanted hepato-
celluar carcinomas,30 subcutaneously implanted colon
carcinomas,31 or IL12 and IL18 in mouse melanomas.32

The combination of electrochemotherapy and cytokine
plasmid delivery by electroporation into mouse mela-
nomas prevents tumor recurrence and induces long-term
antitumor immunity.33 Intramuscular delivery of plas-
mids encoding tumor antigens inhibits melanoma
growth,34 while delivery of IFN� plasmid inhibits growth
of squamous cell carcinomas.35

In the experiments described here, the intratumor
delivery of plasmid DNA into B16 mouse melanomas by
two different electroporation protocols was compared.
These two types of electroporation conditions had been
demonstrated previously for delivery of plasmid DNA
into mouse melanomas. These protocols differed signifi-
cantly in pulse length, field strength, and the electrode
used for delivery (Figure 1). Relative reporter gene
expression after intratumor plasmid delivery was first
compared. Both protocols resulted in significantly
increased plasmid expression, although EP1 increased
reporter expression 21-fold, while EP2 increased
expression 42-fold.

The effect on tumor growth of electroporation alone,
luciferase plasmid injection alone, or the combination
was observed in B16 mouse melanomas (Figure 2a).
Tumors were treated as indicated on day 0, when they
were approximately 4 mm in diameter, day 3, and day
7. Application of pulses after injection of saline only or
injection of 100 �g plasmid DNA without pulses only
minimally slowed tumor growth. Interestingly, when
plasmid injection was combined with intratumor elec-
troporation, a significant number of complete tumor
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Figure 1 1 Reporter expression after intratumor delivery of a plasmid
encoding luciferase. Female C57Bl/6b mice were injected subcutaneously
in the left flank with 106 trypsinized B16.F10 (ATCC CR6475) mouse
melanoma cells in 50 �l sterile injectable saline using an 0.5 inch 30-
gauge needle. Tumors were allowed to grow 8 days to a mean diameter
of approximately 4 mm before treatment (day 0). Mice were anesthetized
during all treatments using a mixture of 2.5% isoflurane and 97.5% O2.
Tumors were then injected with 50 �l 2 �g/�l plasmid DNA (VR1255,
Vical, San Diego, CA, USA) prepared using an endotoxin-free method
(Qiagen, Valencia, CA, USA). Endotoxin levels were confirmed to be less
than 0.1 EU/�g (QCL-1000, Biowhittaker, Walkersville, MD, USA). One
of two electoporation protocols, consisting of either six 100-�s pulses at
a field strength of 1500 V/cm and a frequency of 1 Hz with a six needle
array (EP136) or 10 5-ms 800 V/cm pulses at a frequency of 1 Hz delivered
with caliper electrodes moistened with electrode paste (EP225), was
immediately applied using a T820 Electrosquare porator and autoswitcher
(BTX, San Diego, CA, USA). After 24 h, tumors were assayed for lucifer-
ase activity. Mice were humanely killed, and tumors removed, weighed,
and homogenized in 25 mM Tris, pH 7.8, 2 mM DTT, 2 mM EDTA,
pH 8.0, 10% glycerol. Extracts were assayed for luciferase activity37 using
a MLX microtiter plate luminometer (Dynex Technologies, Chantilly, VA,
USA). Data are reported as relative light units per milligram tumor tissue.
Bars represent the mean and standard error of the mean from three inde-
pendent experiments, each containing three to four tumors per treatment
group. Statistical significance (P � 0.05), relative to injection alone is
noted by an asterisk.

regressions were observed when using one, but not the
other electroporation protocol, even though these two
delivery methods resulted in only a two-fold difference
in reporter expression. This regression occurred after
injection of plasmid DNA followed by electroporation
protocol EP2, but not after the application of electropor-
ation protocol EP1. The observed regression was long-
lived and occurred in a significant number of animals (P
� 0.05, Figure 2b). This effect might have been related
to the amount of DNA delivered intracellularly for two
reasons. First, it was associated with the electroporation
protocol that resulted in the higher level of plasmid
expression as demonstrated by reporter gene expression
(Figure 1). Second, this effect displayed a dependence on
DNA concentration, since sustained complete regression
occurred in 42% of tumors electroporated with 50 �g
plasmid DNA, and this percentage increased to 83% in
tumors electroporated with 100 �g plasmid DNA.

Because of this interesting observation, the remaining
experiments focused on DNA delivery using electropor-
ation protocol EP2. This antitumor effect was neither
plasmid-dependent nor dependent on the presence of
eukaryotic coding sequences. When melanomas were
treated three times with electroporation with the plasmid
pUC18, the effect on tumor growth was confirmed
(Figure 3a).

Figure 2 The effect of three intratumor electroporation deliveries of plas-
mid DNA on tumor volume. Tumors were induced as described in Figure
1. After tumors grew to a mean diameter of 4 mm (day 0), tumors were
treated with VR1255 and electroporation as in Figure 1 on days 0, 3, and
7. Tumors were then measured twice weekly using a digital caliper. Tumor
volume was calculated by the standard formula v = ab2/6, where a is the
longest diameter, and b is the next longest diameter perpendicular to a.
In the case of continued tumor growth or tumor recurrence, the animal
was considered incurable and humanely killed when the tumor volume
reached 1000 mm3. Each individual tumor volume was normalized to its
volume on day 0, the first day of treatment. (a) Tumor volumes and (b)
tumor-free animals after delivery of plasmid DNA (VR1255) with elec-
troporation. �, no treatment; +, injection of 100 �g pDNA only; �, saline
injection followed electroporation protocol EP1; �, saline injection fol-
lowed by electroporation protocol EP2; �, injection of 100 �g pDNA
followed by EP1; �, injection of 50 �g pDNA followed by EP2, �, injec-
tion of 100 �g pDNA followed by EP2 (n = 6–7 mice).

The regression induced by this treatment was also
long-lived (Figure 3b), with approximately 70% of mice
surviving tumor-free until challenge. For the challenge,
all mice in the experiments described which remained
tumor-free were injected along with naive controls on the
opposite flank with 5 × 105 B16 cells at day 56, 63, or 74
and monitored for another 50 days. While visible tumors
appeared within 10 days in all the naive control mice,
70% (12 of 17) of mice did not grow challenge tumors
and so may have developed immunity to B16 cells.

The sustained complete regression observed was also
dependent on the number of treatments applied. When
only a single treatment of 100 �g plasmid DNA followed
by electroporation was used, five of six tumors com-
pletely regressed, but four of these tumors recurred by
day 14 (data not shown). The remaining tumor did not
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Figure 3 Eukaryotic coding sequences are not necessary for the antitumor
effect. (a) Tumor volumes and (b) tumor-free animals after delivery of 100
�g plasmid DNA (pUC18) using electroporation protocol EP2 on days
0, 3, and 7. �, no treatment; +, injection of 100 �g pDNA only; �,
injection of 100 �g pDNA followed by electroporation (n = 6–7).

recur, but the mouse succumbed to subcutaneous
challenge with B16 melanoma cells.

Since this effect was not dependent on expression of a
therapeutic protein, it might have been due to a response
to the bacterially derived DNA itself. In vertebrates, the
dinucleotide CpG occurs at about one fifth the expected
frequency and 60–90% of those motifs are altered to
5’methylcytosine.38 Unmethylated bacterial CpGs act as
a signal for innate immunity in mammals. The immuno-
stimulatory effect of unmethylated CpGs can be observed
after uptake of bacterial genomic DNA, oligonucleo-
tides,39 or plasmid DNA.40 pUC18 contains 156 copies of
the dinucleotide CpG, including 20 copies of a six base
immunostimulatory consensus sequence.41 Immunosti-
mulatory DNA has been described as an anticancer
immune adjuvant, originally with Mycobacterium bovis
genomic DNA.42,43 When CpG motif oligonucleotides are
injected with a lymphoma surface antigen, a specific anti-
lymphoma immune response is generated.44 When the
animals were challenged with lymphoma cells, survival
improved when compared with control mice. The
addition of treatment with soluble GM-CSF increased this
survival.45 Intravenous injection of lipid-CpG motif plas-
mid DNA complexes reduced the lung tumor burden
in mice injected 3 days before treatment with MCA-205
fibrosarcoma, B16.F10 melanoma, and CT26 colon
carcinoma cells.46

To explore this antitumor effect, tumors were excised
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and examined histologically 24 h after treatment, when
most tumors began regressing (Figure 4). Untreated
tumors exhibited a few inflammatory cells. Injection of
DNA alone induced 5–20% necrosis and tumors were
surrounded by a mixed inflammatory infiltrate. This is
similar to the effect observed after muscle injection of
plasmid DNA.47 Injection of saline followed by electro-
poration resulted in skin burning associated with 10–50%
apoptotic cells with areas of necrosis, and moderate infil-
tration of PMNs, macrophages, and lymphocytes. With
injection of plasmid DNA followed by pulsing (Figure 5),
the skin was again burned, but apoptosis increased to 80–
100% of cells. Apoptosis was detected by TUNEL assay
and semiquantitatively quantified as the percentage of
apoptotic tumor cells related to the total number of tumor
cells. The apoptotic tumor cells were clearly identified by
their dark brown nuclei. Some nuclear chromatin con-
densation and/or fragmentation was also visible on the
H&E stain (Figure 5a–d). The tumor became very con-
gested and a strong infiltrate containing PMNs, macro-
phages, and some lymphocytes was observed. This indi-
cated that this tumor regression might be due not only to
induction of apoptosis, but also to a concomitant immune
response. The presence of marked macrophagic and lym-
phocytic infiltration around and within the tumors exhib-
iting complete response supports this view. Furthermore,
while some apoptosis was induced by pulses alone, pul-
ses alone were not an effective antitumor therapy (Figure
2a and b). Combination with plasmid DNA was required.

Future experiments will confirm whether this anti-

Figure 4 Histological analysis of paraffin-embedded sections by hematox-
ylin and eosin (H&E) staining 24 h after treatment. Specimens from
mouse melanoma tumors were fixed in 10% neutral buffered formalin for
6 h. After fixation, the tissue samples were processed into paraffin blocks.
Four micrometer-thick tissue sections were obtained from the paraffin
blocks and stained with hematoxylin and eosin (H&E, Richard-Allan
Scientific, Kalamazoo, MI, USA) using standard histologic techniques. (a)
Untreated tumor, ×40; (b) untreated tumor, ×250; (c) injection of 100 �g
VR1255 only, ×40; (d) injection of 100 �g VR1255 only, ×250; (e) saline
injection followed by electroporation protocol EP2, ×40; (f) saline injection
followed by electroporation protocol EP2, ×250.
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Figure 5 Histological analysis of paraffin-embedded sections by hematox-
ylin and eosin (H&E) and TUNEL staining 24 h after delivery of 100 �g
plasmid DNA (VR1255) using electroporation protocol EP2. Specimens
from mouse melanoma tumors were bisected and half frozen at �70°C,
and half was fixed in 10% neutral buffered formalin for 6 h. After fixation,
the tissue samples were processed into paraffin blocks. Four micrometer-
thick tissue sections were obtained from the paraffin blocks and stained
with hematoxylin and eosin (H&E, Richard-Allan Scientific) using stan-
dard histologic techniques. Apoptosis was determined by TdT-mediated
dUTP nick end labeling (TUNEL) using in situ cell death detection kit
(Boehringer Mannheim). Frozen sections were prepared from the frozen
tissues. The slides were fixed in paraformaldehyde (4% in PBS, pH 7.4).
After rinsing with PBS and incubation in permeabilization solution, the
tissues were cross reacted with TUNEL reaction mixture (for 60 min at
37°C in a humidified chamber), with converter–alkaline phosphatase sol-
ution (for 30 min at 37°C in a humidified chamber), and with alkaline
phosphate substrate solution (Vector Laboratories, Burlington, MA, USA)
(for 5 to 10 min). The reactions were analyzed by light microscopy. (a)
H&E, ×100; (b) H&E, ×600; (c) TUNEL, ×100; (d) TUNEL, ×400. A,
apoptotic tumor cells; V, viable tumor cells, arrows indicate apoptotic cells
(brown-stained cells on the TUNEL assay).

tumor effect is due to the immune response to CpG motif
DNA or to some other factor. In addition, the observed
induction of apoptosis will be explored.
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