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Abstract. Application of the Brown Samelson theo-
rem, which shows that particle motion 1s integrable in
a class of vorticity—conserving, two—dimensicnal incom-
pressible flows, is extended here to a class of explicit
time dependent dynamically balanced flows in multi-
layered systems. Particle motion for nonsteady two—
dimensional flows with discontinuities in the vorticity
or potential vorticity fields (modon solutions) is shown
to be integrable. An example of a two—layer modon so-
lution constrained by observations of a Gulf Stream ring
system is discussed.

1 Introduction

Recently, Brown and Samelson (1994) showed that par-
ticle motion is integrable in any vorticity-conserving,
two—dimensional incompressible flow if the vorticity is a
differentiable function with 2 non-zero gradient. Their
proof did not make explicit use of any functional rela-
tion between vorticity and the streamfunction and so
this result applies to any flow that has a Lagrangian
constant of motion. Applicability to nonsteady dynami-
cally balanced flows is unknown since only kinematically
prescribed flows were cited.

The purpose of this communicalion is to show that
the Brown—Samelson result apphies to a class of explicit
time dependent dynamically balanced stratified flows of
some 1nterest to atmospheric scientists and oceanogra-
phers. These solutions satisfy the potential vorticity
equations for layered fluids in which the potential vor-
ticity may even be discontinuous. One solution form,
the rotating modon, can be developed analytically, but
application of patch conditions at solution boundaries
results in an eigenvalue problem that is most readily
solved numerically.

Here, we demonstrate that this class of solutions is
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integrable, a property of these solutions that was previ-
ously unknown. To our knowledge, the rotating modon

solution is the first nontrivial example of a two—dimensional,

nonsteady, incompressible vortical flow with integrable
particle motions. Dernonstration of the integrability of
these solutions represents an important extention of the
Brown—Samelson theorem to a class of multi-layered
flows that are in dynamical balance.

The theory is developed in the next section while sec-
tion 3 presents an application of the baroclinic rotating
modon model to observations of Gulf Stream ring 82B.
A synopsis and suggestions for further research are given
in the final section.

2 Theory

The starting point for the analysis is Ertel’s potential
vorticity theorem for an N-layered system:

Ag; [0t + J(d,45) = S5, §=1,..N. (1)

Here g; and 4; are the potential vorticity and stream-
function for layer j, J is the Jacobian operator and S
represent non—conservative effects. They are included
here only to allow for the possibility of discontinuous g¢;
fields. For geophysical fluid dynamices, the ¢; and ; are
related by

N
g = VW — > Fjein (2)
k=1

where Fj are layer Froude numbers. The Brown—Samelson

result was obtained for the case N = 1, Fjp = 5; = 0
but does not depend on a specific functional relation
between vorticity and streamfunction, such as Eqg. (2).

The key issue in applying the Brown-Samelson the-
orem is to find Lagrangian motion constants for each
layer. These constants then constitute the Hamiltoni-
ans for a canonical system. Here we consider swirling
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flows in a circular coordinate system and seek solutions
to (1) of the general form

vy (r,8,8) = M [r,n (0 —wi)]. (3)

Here, the M; are smooth, n is any positive integer, and
the subscript refers to layer j.

For the conditions just stated, the candidate Hamil-
tonians are functionals of ¥; — wr?/2 or

Hj = Hj(¢; —wr?/24Qy). (4)

The constants (J; in Eq. (4) identify the strength of the
vortex system centered at » = 0.

To show that Kq. (4) satisfies the conservative form
of Eq. (1), note that from Eq. (3)

d/0t = —w 3/89. (5)
Then

OHfiH + J(v; 1I;) = J(IL; 11 = 0. (6)

The flow produced by Eq. (1) arrests the steady rota-
tion in physical space produced by Eq. (3). Since these
Hamiltonians make no explicit use of any dependency
on vorticity they extend the Brown-Samelson result to
baroclinic Hows.

Are there any nontrivial solutions to realistic flows
that have Eq. (4) as Hamiltonians? One class of so-
lutions to Eq. (1) are rotating modons. A baroiropic
solution was reported by Mied ef al. (1992) and applied
to Gulf Stream rings by Hooker ef al. (1995). Lipphardt
(1995} applied a baroclinic theory to Gulf Strecam rings.
A detailed analysis of the baroclinic theory including
effects of local bottom topography is given in Kirwan
et al. (1997).

Rotating modons are weak or generalized solutions
in which the potential vorticity (¢;) and streamfunction
{¢;) are of the form

g; = I (Hy)e(r; —r) (7

¥ = Gj(r) + By (r)et @i, (8)

In Eq. (7) o(r; —r) is the Heaviside function and the T;
are smooth but otherwise arbitrary functionals.
Physically these solutions superpose axisymmetric vor-
tices G and n azimuthally paired vortices (2 n vortices
in all) with radial structure given by Hf, where p is
the radial mode number. For the barotropic and baro-
clinic rotating modons discussed below, the B;? are ei-
ther Bessel functions, or polynomials. The fluid in each
layer is rotating with the same angular velocity w. The
azimuthal mode number r is also the same for each layer;
however, the strength of the axisymmetric vortices Gy
may mask the modal structure in some layers. Translat-
ing rectilinear modons are Galilean invariant but steady
rotating flows such as those given by Eq. {3) are not.
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This fact contributes to interesting differences between
the two classes of flows as discussed by Kirwan el al.
(1997). Note that if [; i~ # 0, then there will be
a discontinuity in ¢; at the moden boundaries r;. Of
course, 1¢; and 74 must be continuous everywhere.

Substitution of Eq. (7) and Eq. (8) inte Eq. (1) yields,
after some caleulation that uscs Eq. (5) and the gener-
alized derivative of o,

J(H;, D(H;))e(r; —r)
(/)L (H; )(OH; /88)5(r; — v} = 5; (9)

where # is the delta function. Since J{I; T'(II;)) =0,
Eq. (8) identifies the structure of the non-conservative
terms .S;. They arc non-zero only at the modon bound-
aries. In the special case 5; = 0 there are no modon
boundaries and Eq. (1) simply becomes the baroclinic
extension of the Brown-Sameclson thcorem. Since the
5; play no role in the solution for 3; they are not con-
sidered further. _

It might be noted that integrability of particle mo-
tion in flows of the form Eq. (3) is not obvious. For
example, Brown (1998) investigated different solutions
to Eq. (1) for the case N = 2 but with the lower layer
in hydrostatic balance (the reduced gravity case) and
found chaos.

Solutions such as Eq. (7) that are discontinuous are
called weak solutions. As noted by Whitham (1974,
page 26), such solutions usually signal a breakdown of
physical approximations, and repair of these breakdowns
must proceed in step with the development of strong
solutions. Investigation of these strong solutions is not
altempted here, however.

As discussed by Kirwan et al. (1997) rotating modon
solutions differ from their conventional rectilinear trans-
lating modon cousins 1n that the former may have dis-
continuities in the vorticity field at the modon bound-
aries while the latter have the flexibility to prescribe
modoen boundaries as streamlines. One reason for this
difference is the requirement that the streamfunction for
rotating modon solutions vanish at infinity while recti-
linear modons usually have an imposed large scale shear
field or a beta effect at infinity. Such conditions pro-
vide sufficient flexibility to impose additional constraints
that modon boundaries also be streamlines.

The possibility of developing rotating modon solu-
tions that also have streamline boundaries is not ex-
plored here principally because we consider discontin-
uous vorticity fields as the more general condition and
thus the more stringent test of the Brown-Samelson re-
sult. Note, however, that “shock” solutions to the plan-
ctary scale geostrophic equations are not unknown. For
example Nof (1986} and Dewar (1987, 1991, and 1992)
have found solutions in which large changes in potential
vorticity developed across the shock even when momen-
tum and energy were conserved.
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Equations (2) and (7) are Lo be solved for 4;. To
see the structure of the differential equations, the layer
number will correspond to the rank of the layer’s modon
radius r; (not to its serial position in the water column)
so that (r1, ry) refer to the layer with the (least, largest)
modon radii in an N-layered ocean, not the top and
bottom layers.

For r > ry the iy satisfy the system of Helmholtz
equations

N
Vi — ZFMW =0 (10)
k=1

In the annulus ry_1 < r < ry, the y; satisfy
N
Vi =Y Fjeby =0,i=1,.N—-1
k=1

N
VAN = > Fnete = In(dy —wr®/2+4 Qn).  (11)
k=1

For the innermost annulus, » < 7y, the 1; satisfy

‘F\T
T = Y Ftpe = Ty(0 —wr? /24 Q;). (12)
k=1

For I'; that are linear in their arguments, the system of
Eq. {10) through Eq. (12) comprises a system of linear
inhomogeneous coupled Helmholtz equations.

The solutions at each of the boundaries r; also must
satisfy the patch conditions

lim (v, v¢5) = lim (¢5, Vi) (13)

r—rr.
J

as well as the existence and asymptotic conditions

lim | v < o0 (14)
lim ¢; — 0. (15)

Application of Eq. (13) through Eq. (15) to the solu-
tions obtained from Eq. (10) through Eq. (12) produces
an eigenvalue problem whose roots determine the num-
ber of radial modes. See Kirwan et al. (1997) for de-
tails. If there are no modon boundaries then the prob-
lem reduces to solving Eq. (12) subject to Eq. (14) and
Eq. (15).

As shown by Stern (1975) and Flierl ef af (1980) it
is possible to require continuity of ¥; and 7y; at the
modon boundaries as well as to require the boundaries
to be streamlines in the translating modon case. How-
ever, in the present case it is noted that Eq. (12) is
not sufficient to ensure the last condition. Thus parti-
cles may cross potential vorticity discontinuities; or, as
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Table 1. Parameter values used to simulate the WCR 82B system

Environmental parameters

Upper layer mean thickness 777 m
Lower layer mean thickness 1923 m
Reduced gravity 0.0106 m s—2

Coriolis acceleration 9175 x 10> rad s

Geometric parameters

Azimuthal mode number 1
Upper layer radial mode number 1
Lower layer radial mode number 1
Upper layer modon radius 75 km
Lower layer modon radius 130 km
Arbitrary amplitudes

Region I barotropic mode amplitude 1.2227 x 1072
Upper layer axisymmetric rider —8.000 x 10~¢
Lower layer axisymmetric rider —3.235 x 102

stated by Eq. (7), ¢; is a discontinuous function of Hj if
I [r=r,# 0. In the spirit of Whitham (1974) the discon-
tinuities should be viewed as the inviscid approximation
to small but finite boundary layers.

3 Application to Gulf Stream Ring 82B

Here we present an application of the rotating baroclinic
modon solution to perhaps the best documented ring in
oceanography, Gulf Stream ring 82B. It was the sccond
ring shed by the Gulf Stream in 1982 and was the sub-
ject of an extensive observational cffort. Joyce (1985)
provides an overview of this program and Joyce and
Kennelly (1985) give a detailed picture of the near sur-
face velocity field during a portion of the field program.
More recently Holdzkom et al. {1995) have shown that
for much of its existence 82B was accompanied by a
small intense cyclonic structure.

We follow the analysis of Lipphardt (1995) and treat
this dipolar structure as a two layered rotating modon.
In this casc there are 12 solution parameters. By appeal-
ing to remote sensing observations and plausible phys-
1cal arguments Lipphardt (1995) was able to fix 9 of
these parameters and then tuned the remaining 3 by
a sensitivity study so they provided a best fit to the
observations. The adjusted parameters were the lower
layer modon radius, the strength of the upper layer rider
and the amplitude of the upper layer azimuthal mode.
All parameter values used in the calculations below are
displayed in Table 1.

Figure 1 shows three examples of particle trajectories
for three complete modon rotations for the baroclinic
madon simulation of WCR 82B, using the modon pa-
rameters shown in Table 1. In each panel, trajectories
in the fixed reference frame (shown in red) and trajec-
tories in a frame thatl rolates with the modon (shown in
blue) are overlaid on contours of the upper layer Hamil-
tonian from Eq. (4). The particle’s initial position is
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shown by a black diamond. Since the Hamiltonian field
contains two saddle points, a uniform contour interval
could not be used effectively in the panels of Fig. 1. In-
stead, the following details describe the contour scheme
for representing the Hamiltonian:

— The axes of the modon coordinate system are shown
as dot—dashed lines. The modon rotates clockwise
about the origin, where these two lines cross.

— The dotted circle, centered on the origin, defines
the upper layer modon radius (75 km).

— The three solid black circles show the three stagna-
tion points in the Hamiltonian field. The stagnation
point below the origin corresponds to the center of
the cyclone. The first stagnation point above the
origin corresponds to the anticyclone center. The
second stagnation point above the origin lies out-
side the upper layer modon boundary.

— The two solid black squares show the two saddle
points in the Hamiltonian field.

— The heavy solid black contour value is 7.042x107
cm? s~!, the approximate saddle point value.

— Inside the saddle point contour, and moving out-
ward from the cyclone center, the Hamiltonian is
increasing, and the contour levels are (-8.0x107, -
4.0x107, 4.0x107) cm? s~!. Negative contours are
shown as dotted lines.

— Inside the saddle point contour, and moving out-
ward from the anticyclone center, the Hamiltonian
is decreasing, and the contour levels are (1.5x10%,
1.0x10%) cm? s™1.

— Outside the saddle point contour, and moving out-
ward, the Hamiltonian is increasing and the contour
levels are (1.0x10%, 1.5x10%, 3.0x10%) cm? s™!.

The upper panel of Fig. 1 shows a particle that is ini-
tially positioned just inside the modon boundary and re-
mains inside the modon boundary throughout the three
modon rotations. The middle panel of Fig. 1 shows
a particle that is initially positioned just outside the
modon boundary, but crosses the boundary several times
over three modon rotations. The lower panel of Fig. 1
shows a particle that is initially positioned well outside
the modon boundary, and remains outside the bound-
ary throughout the three modon rotations. The reason
that the fixed reference frame trajectories (in red) can
be so complicated is that the particle orbit periods are
generally not commensurate with the modon rotation
period, so that the particle paths and the Hamiltonian
field are usually out of phase.

Figure 2 shows a time series of the evolution of a blob
of 2000 particles, randomly positioned inside a 10 km
circle initially positioned at the saddle point in the upper

Kirwan and Lipphardt: Integrable unsteady motion

Fig. 1. Particle trajectories overlaid on contours of the upper
layer Hamiltonian for three complete modon rotations for the
baroclinic modon simulation of WCR 82B. Red trajectories are
referenced to a fixed reference frame, while blue trajectories are
referenced to a frame that rotates with the modon. The upper
panel shows a particle initially inside the modon that remains
there. The middle panel shows a particle initially outside the
modon that crosses the modon boundary several times. The lower
panel shows a particle initially outside the modon boundary that
remains there. A description of the Hamiltonian contours is con-
tained in the text.
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right quadrant. In each panel in Fig. 2, groups of parti-
cle positions are overlaid on a contour plot of the upper
layer Hamiltonian. The contour plots are constructed in
the same way as those in Fig. 1. Particles shown in blue
were initially positioned at a radius greater than the sad-
dle point radius. Red particles were initially positioned
at a radius less than or equal to that of the saddle point.
In each panel, the time (in modon rotation periods) is
shown at the lower right. Figure 2 shows that, near
the saddle points, a great deal of mixing occurs over
one modon rotation, with the saddle point defining a
mixing boundary. Particles initially outside the saddle
point stay there and end up scattered around the outer
perimeter of the dipole. Particles initially inside the sad-
dle point remain inside, and are readily advected by the
high velocities around the periphery of the anticyclone.
In addition, note that many of the red particles cross
the modon boundary, where a discontinuity in vorticity
exists.

A plot of particle positions, strobed at the modon
rotation period over many periods, provides further in-
sight into the integrability of this flow. As evident from
Eq. (4) and Eq. (6), particles will follow paths of con-
stant Hamiltonian value in the frame that rotates with
the modon. The Poincaré section, then, will show par-
ticle positions coinciding with contours of the Hamilto-
nian. Figure 3 shows the evolution of the Poincaré sec-
tions for the three particle trajectories shown in Fig. 1.
The Poincaré sections are overlaid on contours of the up-
per layer Hamiltonian, constructed asin Fig. 1. Poincaré
sections for the particle trajectory shown in the (upper,
middle, lower) panel of Fig. 1 are shown in (red, green,
blue). The evolution time, in modon rotation periods,
is shown at the lower right of each panel in Fig. 3. Par-
ticle positions in each Poincaré section lie on a single
Hamiltonian contour, confirming the flow’s integrable
character, although the evolution of the spatial distri-
bution of points on the contour is not uniform. The
theoretical prediction of the Brown—Samelson theorem,
(that this flow, although complicated in physical space,
is not chaotic) is confirmed.

4 Discussion

In this report we have extended the Brown-Samelson
theorem to include baroclinicity through layered mod-
els. Specifically, particle motion arising from any flows
given by Eq. (3) have a Hamiltonian and thus, accord-
ing to that theorem, are integrable. We have illustrated
the utility of the theorem by examining solutions to the
two layer modon problem with discontinuities in the
vorticity field. In physical space the solutions exhibit
complicated trajectories that may even cross disconti-
nuities in ¢;. Such behavior is suggestive of chaotic
behavior. However, the Brown—-Samelson theorem en-
sures integrable particle motion provided that the H;
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Fig. 2. Evolution of a circular blob of particles (initially posi-
tioned at the saddle point in the upper right quadrant) over one
modon rotation. Particle positions are referenced to a frame that
rotates with the modon and are overlaid on contours of the up-
per layer Hamiltonian, constructed in the same way as those in
Fig. 1. Particles shown in red were initially positioned at a radius
less than or equal to the saddle point radius. Particles shown in
blue were initially positioned at a radius greater than the saddle
point radius. Time (in modon periods) is shown at the lower right
in each panel.
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Fig. 3. Evolution of the Poincaré sections for the three particle
trajectories shown in Fig. 1. The Poincaré sections are overlaid
on contours of the upper layer Hamiltonian, constructed as in
Fig. 1. Poincaré sections for the particle trajectory shown in the
(upper, middle, lower) panel of Fig. 1 are shown in (red, green,
blue). Time (in modon periods) is shown at the lower right in
each panel.
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generated from the system of Eq. (10) through Eq. (12)
have a non-zero gradient everywhere or are within in-
variant submanifolds in which zero gradient points have
been removed. Such points, when they occur, are the
critical points of the canonical flow. Numerically gener-
ated Poincaré sections verify that particle motion follows
level contours of H; and hence are regular. It is disap-
pointing to note, however, that some standard software
packages for estimating Lyapunov exponents and fractal
dimensions indicate the presence of chaos for this case.
See Tsonis et al. (1994) for another caution regarding
such estimates.

This study shows that the Brown—-Samelson theorem
may be useful for classifying nonsteady dynamically bal-
anced baroclinic flows. It also suggests that chaotic be-
havior might be produced in the rotating modon model
if perturbative forcing were applied. In the case consid-
ered here, the Brown-Samelson theorem provides both
the justification and machinery for reducing this class of
problems to an investigation of the geometric properties
of the Hamiltonians.

Unanswered by this analysis is the possible introduc-
tion of non-integrability by allowing any of the twelve
solution parameters (Table 1, for example) to vary with
time. Since many of these parameters may be expected
to vary with time, chaotic solutions for this class of mo-
tions are likely to exist in nature.
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