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RESEARCH ARTICLE Open Access

Learning Sparse Representations for Fruit-Fly
Gene Expression Pattern Image Annotation
and Retrieval
Lei Yuan1,2, Alexander Woodard1,2, Shuiwang Ji3, Yuan Jiang4, Zhi-Hua Zhou4, Sudhir Kumar1,5

and Jieping Ye1,2*

Abstract

Background: Fruit fly embryogenesis is one of the best understood animal development systems, and the
spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these
high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes
governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct
image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene
expression patterns is conducted manually. However, this manual practice does not scale with the continuously
expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be
made more accurate using keywords.

Results: In this article, we adapt advanced data mining and computer vision techniques to address the key
challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image
annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming
the limitations of prior schemes.

Conclusions: We perform systematic experimental studies to evaluate the proposed schemes in comparison with
current methods. Experimental results indicate that the integration of spatial information and sparse features lead to
consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields
better results.

Background
Embryos undergo a temporally ordered differentiation
process, starting as basic undifferentiated eggs. Through
the process of differentiation, gene expressions take on
increasingly complex patterns. Transcriptional regulation
of the fruit-fly Drosophila melanogaster is one of the
best understood examples of the regulatory networks that
govern gene expression patterning. An understanding of
the regulatory networks responsible for gene patterning
in Drosophila embryos has been aided by digital images
produced via in situ hybridization [1-3]. These images
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1Center for Evolutionary Medicine and Informatics, The Biodesign Institute,
Arizona State University, Tempe, AZ 85287, USA
2Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ
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Full list of author information is available at the end of the article

document the spatiotemporal dynamics of differentiation
found in Drosophila embryos. A comparative analysis
of these images is beneficial for the understanding of
functions and interactions in gene networks [4-14]. To
facilitate these discoveries, tools have been developed to
searching for images based on keywords that describe
embryonic structures [15], and searching for images based
on gene expression patterns [13,14]. Images for these
tools have been obtained from databases of Drosophila
embryonic images, e.g. the Berkeley Drosophila Genome
Project (BDGP), and they are annotated with a controlled
vocabulary (CV) [1,2] (Figure 1). The CV terms describe
the developmental and anatomical properties of gene
expression during embryogenesis [1]. Currently, groups
of BDGP images are manually annotated with CV terms.
This is done collectively so that not all images in a group
necessarily correspond with each CV annotation. The

© 2012 L. Yuan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Figure 1 Sample image groups (all images within a group are from the same stage range and the same gene) and the associated terms
from BDGP for the gene engrailed in stage ranges 7-8 and 9-10.

manual nature of these tasks puts an inordinate burden on
biologists as the collection of Drosophila gene expression
patterns are growing rapidly [1]. It is therefore imper-
ative to investigate efficient and effective computational
methods to automate this task [16-18].

Image annotation and image retrieval problems have
been studied extensively in computer vision and machine
learning. However, natural images are the most common
subjects of study for image annotation and image retrieval
problems; and commonly-used annotation and retrieval
techniques may not be effective for our task. For example,
unlike most natural images, BDGP images have all been
aligned and scaled semi-automatically. The binary feature
vector (BFV) representation have been developed cor-
relate pattern similarities between images [13], however
the BFV representation is not robust to distortions; there
were also some studies which tried to use robust descrip-
tors to represent the BDGP images [19-22], however they
have not exploited spatial information. It is desirable to
represent images in a way that takes advantage of the
spatial properties of image features, while at the same
time being robust to image distortions. In our annota-
tion problem, we are interested in collectively annotating
groups of images, with each group annotated with multi-
ple CV terms. Previous studies have revealed that ignoring
group memberships can be detrimental to annotation per-
formance [19], and formulating the task as learning the
function between local input patterns and CV terms lead
to significant performance improvement [21].

In this article we propose a novel approach for
the automated annotation and retrieval of Drosophila
melanogaster images. We present an image representation
model that takes advantage of the spatial information pro-
vided by the BDGP images while at the same time being
more robust against distortions. We also take advantage
of a state-of-the-art learning model in order to boost
the performance of our tasks. Our feature representation
framework is inspired by the spatial bag-of-words (BoW)
approach for image representation. The BoW approach

involves first extracting features from local patches on
images. These patches are then quantized to a visual word
that has been determined by a pre-computed codebook.
Our approach involves extracting these local patches from
each image in a group, while maintaining a record of
the locations where features are extracted. Thus, our
bag-of-words method is essentially a spatial-bag-of-words
method. As previous experiments have discovered [16],
using only one codebook word to describe a local patch
does not capture the slight differences between a word and
the actual feature. Therefore, we have adopted a sparse
learning framework in order to take advantage of multiple
codebook words that show varying levels of similarity to
a single feature, leading to a “visual sentence” representa-
tion of the image patch.

We have tested our methods on BDGP images from
the FlyExpress database (www.flyexpress.net). Annotation
results from our study show that the spatial-bag-of-words
approach consistently outperforms the non-spatial, bag-
of-words approach as well as the binary feature vector
approach. Results also show that incorporating the sparse
learning framework into our representation model further
improves performance. While for the image retrieval task,
experiments show that utilizing the sparse representation
alone is sufficient.

Methods
In this section, we describe the bag-of-words (BoW) and
the sparse learning representations for gene expression
pattern image annotation and retrieval.

The bag-of-words approach
The bag-of-words method was originally used for text
classification problems where each document is repre-
sented as a feature vector indicating the frequency of each
word in the document. Such feature vector representation
is used to classify documents into one or more categories.
This text categorization approach has been adapted to
image analysis [23]. Specifically, images are represented as

www.flyexpress.net
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a collection of “visual words”, based on features extracted
from the images [24].

In the BoW approach for image representation, invari-
ant visual features are usually extracted from a subset
of images [24] to produce a visual codebook using a
clustering algorithm, though a recent study shows that
the clustering process is not really essential [25]. Here
the cluster centers are considered to be visual words.
From this codebook, each feature from an image patch
is quantized to the closest visual word in the codebook.
A histogram is then created to represent the number of
occurrences of each word located in an image. This his-
togram is a global representation because it only tracks the
number of occurrences of each word in an image but not
the location of those words, thereby the spatial layout of
local image features is not captured. This is considered as
one of the major drawbacks of the BoW model [19]. Next,

we discuss each step involved in the BoW model when
applied to fruit fly images in details.

Feature detection
Feature detection involves locating regions in an image
to serve as representative boundaries for visual words.
We are using images that have been properly scaled and
aligned semi-automatically. We use a series of overlap-
ping circles to represent areas where feature information
is extracted to construct a single visual word. An example
of these overlapping circles is shown in Figure 2. In our
experiments, the radius of the patches are set to 16.

Feature description
Based on the regions described above, a local feature is
extracted from each of the overlapping circle. Because of
its robustness against variations in image scale and rota-
tion, we use the scale-invariant feature transform (SIFT)

x W0

x W1

x W2

Original
images

Feature
extraction

Image i Image j

Kij2D  image
space

Figure 2 Illustration of image patch extraction and the three levels of bag-of-words partitioning with weighting factors for the spatial
pyramid approach. After feature description using the overlapping circular patches, three levels of bag-of-words partitioning are shown. The top
level of partitioning is just a global bag-of-words representation.
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Figure 3 Different histogram representation obtained for a given image. The histogram on the left is obtained by assigning each local patch
to a single visual word, while the one on the right is obtained by applying the sparse learning formula to select a set of visual words for each patch.

descriptor [26] for representing each local patch. Thus,
each image consists of a collection of feature vectors.

Codebook generation
The codebook is constructed by obtaining a collection of
representative vectors from the extracted features. We use

the common generation approach of selecting a subset of
images and then using the k-means algorithm to cluster
their SIFT feature vectors [27]. The number of cluster cen-
ters which represent the visual words can be set manually.
For our image annotation and retrieval problem, we have
set this number to 2000. The SIFT feature vectors can then

Table 1 Comparison of different annotation methods in terms of AUC

Stage range Number of terms SVMSpatial+Sparse SVMSparse SVMSpatial SVMGlobal

4-6 10 .8284 ± .0321 .8250 ± .0319 .8064 ± .0321 .7984 ± .0320

20 .8310 ± .0286 .8240 ± .0293 .8046 ± .0292 .7965 ± .0302

30 .7982 ± .0408 .7892 ± .0399 .7777 ± .0400 .7635 ± .0405

7-8 10 .7808 ± .0285 .7685 ± .0297 .7567 ± .0301 .7472 ± .0293

20 .7734 ± .0431 .7619 ± .0427 .7444 ± .0496 .7309 ± .0484

9-10 10 .7917 ± .0260 .7816 ± .0270 .7652 ± .0264 .7538 ± .0265

20 .7971 ± .0335 .7829 ± .0344 .7706 ± .0344 .7476 ± .0349

11-12 10 .8526 ± .0248 .8478 ± .0249 .8316 ± .0243 .8257 ± .0240

20 .8574 ± .0206 .8437 ± .0214 .8275 ± .0215 .8091 ± .0228

30 .8275 ± .0252 .8085 ± .0254 .7940 ± .0274 .7673 ± .0268

40 .8193 ± .0290 .7991 ± .0306 .7810 ± .0304 .7560 ± .0321

50 .8084 ± .0351 .7894 ± .0363 .7648 ± .0370 .7426 ± .0382

13-16 10 .8807 ± .0221 .8659 ± .0223 .8632 ± .0218 .8398 ± .0225

20 .8504 ± .0172 .8301 ± .0182 .8304 ± .0180 .8001 ± .0177

30 .8344 ± .0197 .8089 ± .0198 .8066 ± .0190 .7713 ± .0198

40 .8175 ± .0196 .7892 ± .0208 .7847 ± .0211 .7496 ± .0223

50 .8038 ± .0249 .7748 ± .0208 .7672 ± .0261 .7340 ± .0271

60 .7947 ± .0282 .7657 ± .0299 .7613 ± .0300 .7281 ± .0310
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Table 2 Comparison of different annotation methods in terms of macro F1

Stage range Number of terms SVMSpatial+Sparse SVMSparse SVMSpatial SVMGlobal

4-6 10 .5224 ± .0407 .5094 ± .0393 .4926 ± .0414 .4767 ± .0386

20 .4454 ± .0461 .4200 ± .0462 .4141 ± .0459 .3794 ± .0412

30 .3459 ± .0593 .3230 ± .0516 .3153 ± .0565 .2942 ± .0479

7-8 10 .5372 ± .0343 .5282 ± .0312 .5131 ± .0329 .5055 ± .0329

20 .3653 ± .0517 .3603 ± .0538 .3331 ± .0740 .3364 ± .0676

9-10 10 .5561 ± .0282 .5499 ± .0276 .5353 ± .0289 .5267 ± .0260

20 .3836 ± .0464 .3764 ± .0442 .3527 ± .0370 .3429 ± .0342

11-12 10 .6339 ± .0280 .6261 ± .0269 .6109 ± .0271 .6060 ± .0257

20 .5226 ± .0379 .4961 ± .0310 .4781 ± .0337 .4508 ± .0290

30 .4066 ± .0409 .3761 ± .0310 .3488 ± .0400 .3373 ± .0300

40 .3351 ± .0480 .3110 ± .0383 .2686 ± .0456 .2762 ± .0358

50 .2758 ± .0480 .2626 ± .0404 .2343 ± .0434 .2293 ± .0370

13-16 10 .6506 ± .0297 .6310 ± .0272 .6273 ± .0261 .5993 ± .0253

20 .5240 ± .0280 .4959 ± .0262 .4963 ± .0266 .4580 ± .0245

30 .4474 ± .0303 .4115 ± .0262 .4089 ± .0275 .3692 ± .0243

40 .3876 ± .0340 .3487 ± .0268 .3408 ± .0319 .3071 ± .0252

50 .3330 ± .0381 .2981 ± .0281 .2764 ± .0347 .2607 ± .0263

60 .2886 ± .0434 .2598 ± .0317 .2313 ± .0373 .2255 ± .0287

be quantized to the closest codebook centers in order to
form a visual word representation for each image.

Once the codebook has been created, we can assign
codebook words to features extracted from image patches.
Formally, assume the number of patches (feature vectors)
for a given image is I and the size of the codebook is J.
Define eij = 1 if the ith feature vector is assigned to the jth
codeword, and 0 otherwise. Then the given image can be
represented as H = [

h1, h2, . . . , hJ
]

where

hj =
I∑

i=1
eij. (1)

The spatial bag-of-words approach
A major limitation of the BoW approach is that the spa-
tial information of local image features is not encoded, as
the bag-of-words representation is an un-ordered collec-
tion of visual words. A previous study on a bag-of-words
approach [19] for automated annotation of Drosophila
embryo image groups showed encouraging results, and a
recent study [21] showed that using spatial information
together with visual information is better than using only
visual information. We expect the performance can be
further improved by taking advantage of the spatial infor-
mation, i.e., the location where visual words are found

Table 3 Number and proportion of postive samples for 10 most frequent terms in each stage range

Stage Range 4-6 7-8 9-10 11-12 13-16

#1 302(27.94%) 390(44.47%) 472(44.03%) 936(44.30%) 1068(37.93%)

#2 259(23.96%) 371(42.30%) 430(40.11%) 882(41.74%) 811(28.80%)

#3 231(21.37%) 358(40.82%) 429(40.02%) 604(28.58%) 791(28.09%)

#4 216(19.98%) 342(39.00%) 413(38.53%) 568(26.88%) 642(22.80%)

#5 199(18.41%) 273(31.13%) 306(28.54%) 554(26.22%) 564(20.03%)

#6 195(18.04%) 241(27.48%) 249(23.23%) 475(22.48%) 517(18.36%)

#7 107(9.90%) 162(18.47%) 224(20.90%) 284(13.44%) 492(17.47%)

#8 91(8.42%) 145(16.53%) 215(20.06%) 263(12.45%) 389(13.81%)

#9 90(8.33%) 103(11.74%) 128(11.94%) 261(12.35%) 353(12.54%)

#10 87(8.05%) 84(9.58%) 103(9.61%) 232(10.98%) 324(11.51%)
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within images. Intuitively, the additional spatial infor-
mation of visual words within images may facilitate the
classification of images when the discriminant features
are restricted to a certain region, which is the case for
our CV terms. This can be implemented by adopting a
method similar to the spatial pyramid matching scheme
[28].

Our approach for image representation is based on an
implementation of the spatial bag-of-words method. Like

the BoW method, the spatial BoW method creates a his-
togram for each image, counting the number of times
each word appears in an image. Additionally, the spa-
tial BoW tracks the position where each visual word is
located. Therefore, the spatial BoW method benefits from
the robustness of the BoW method while also taking
advantage of the spatial properties of images.

A spatial bag-of-words is much like a normal bag-of-
words except that it is represented by a larger feature

Figure 4 The AUC of individual terms on three data sets from stage range 11-12. The three figures, from top to down, show the performance
with 30, 40, and 50 terms, respectively.
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vector. While a histogram of an image is represented by a
non-spatial bag-of-words, H, a spatial bag-of-words con-
sists of multiple non-spatial bags, concatenated. Specif-
ically, for each image with n spatial sections, a spatial
bag Mn can be represented as Mn = [H1, H2, . . . , Hn],
where each Hi corresponds to a non-spatial bag-of-words
for a particular spatial section. Thus we have n bags-
of-words from n spatial sections on each image that are
concatenated to form Mn. This way, different sections of a
spatial vector represent different sections of an image. Our

automated annotation representation is created by parti-
tioning feature patches into 3 by 6 sections on each image.
This representation creates a multiple of 18 in added
dimensionality to a non-spatial representation of the same
visual words. For each image group in the study we also
create a global bag-of-words representation to test the dif-
ferences in annotation performance that are seen between
the global and the spatial approaches. Figure 2 shows a
global bag-of-words representation, a 2 by 2 spatial BoW
representation, and a 4 by 4 spatial BoW representation

Figure 5 The AUC of individual terms on three data sets from stage range 13-16. The three figures, from top to down, show the performance
with 40, 50, and 60 terms, respectively.
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below the circular feature representations of two separate
images.

The sparse spatial representation
The original BoW representation, as applied to image
analysis, assigns each feature vector to the closest visual
word in the dictionary. Denote the feature vector obtained
for a given patch as y ∈ Rd and the dictionary matrix
as D ∈ Rd×c, in which each column is a centroid (visual
word). Then, the assignment of an image patch to a visual
word can be written formally as the following optimiza-
tion problem:

min
e

1
2
‖De − y‖2

2

s.t. ei ∈ {0, 1},
c∑

i=1
ei = 1

(2)

Clearly, the constraints enforce that only one element
in the solution e will be set to one, which corresponds
to the visual word most similar to the image patch y. In
this case, relationships between a feature vector and other
visual words are discarded. This would not be a prob-
lem if a feature vector is an exact match with the visual
word that it is assigned to, as in the case of text classifica-
tion. However for images, a feature vector may be close to
multiple visual words. In such cases, the relationship with
the closest word would be overestimated and the relation-
ships with the other similar words would be lost, leading
to degenerated representation accuracy.

The sparse approach for BoW representation addresses
this problem by assigning feature vectors to multiple
visual words simultaneously. We seek to represent the
local patch using “visual sentence” with a set of “words”
instead of a single one. Besides the selection of visual
words to form this sentence, we also need to evaluate the
“contributions”. A commonly used approach is to formu-
late this problem as a sparse learning problem, which can
be solved by state-of-the-art algorithms.

Mathematically, the generalization from visual word to
visual sentence can be done by relaxing the constraint in
(2). We construct the representation vector x ∈ Rc, such

that for the ith entry, i = 1, . . . , c, xi = wi when the ith

keyword is selected with contribution wi, and 0 when the
keyword is not selected.

In order to make x sparse (contains multiple 0 entries),
an �1 regularization is imposed, resulting in the following
optimization problem:

min
x

‖Dx − y‖2 + λ|x|1
s.t. xi ≥ 0, i = 1, . . . , c

In which | · |1 is the �1 norm and λ is a parameter that
controls the sparsity. In our experiments, λ is fixed to be
0.01. This problem is closely related to LASSO [29], and
can be solved by many existing software packages, such as
SLEP [30].

The comparison between “visual word” and “visual sen-
tence” for image representation is illustrated in Figure 3.
As shown in the figure, the sparse learning provides more
smooth representation.

Integrating the spatial and sparse approaches into the
BoW representation model is therefore expected to pro-
duce a more accurate description of Drosophila images.
We have created both sparse and non-sparse versions
of both our global and spatial bag-of-words representa-
tions, and compare different combinations of approaches
for image annotation and retrieval. Detailed performance
evaluation can be found in the results section.

Results and discussion
Data description
The Drosophila gene expression pattern images used in
our study are obtained from the FlyExpress database,
which contains standardized images obtained from the
Berkeley Drosophila Genome Project (BDGP). In BDGP,
the Drosophila embryogenesis is divided into six stage
ranges (1-3, 4-6, 7-8, 9-10, 11-12, 13-16). The first stage
range is not included in this study because of the small
number of CV terms used to describe its images. Images
from the remaining stage ranges are annotated separately
in their respective groups because the majority of terms
are stage range specific. The second through sixth stage
ranges consist of 1081, 877, 1072, 2113, and 2816 image

Table 4 Performance evaluation in terms of sensitivity and specificity

Sensitivity Specificity

# of terms SVM Logistic Ridge SVM Logistic Ridge

10 0.6211 ± 0.020 0.6267 ± 0.023 0.6307 ± 0.020 0.8520 ± 0.012 0.8460 ± 0.012 0.8323 ± 0.012

20 0.4633 ± 0.020 0.4483 ± 0.020 0.4441 ± 0.017 0.9252 ± 0.006 0.9354 ± 0.006 0.9309 ± 0.006

30 0.3306 ± 0.025 0.3154 ± 0.023 0.3038 ± 0.019 0.9523 ± 0.004 0.9566 ± 0.004 0.9573 ± 0.004

40 0.2549 ± 0.015 0.2424 ± 0.014 0.2320 ± 0.012 0.9628 ± 0.003 0.9677 ± 0.003 0.9668 ± 0.003

50 0.2032 ± 0.012 0.1974 ± 0.011 0.1910 ± 0.012 0.9724 ± 0.003 0.9732 ± 0.003 0.9723 ± 0.003

Sparse feature is used and the classification performance on stage range 11-12 is reported. Three different classifiers are applied for comparison, namely, SVM with
linear kernel (SVM), logistic regression (Logistic) and ridge regression (Ridge).
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Table 5 Performance evaluation of the over-sampling method in terms of sensitivity and specificity

Sensitivity Specificity

# of terms SVM Logistic Ridge SVM Logistic Ridge

10 0.6544 ± 0.026 0.6494 ± 0.027 0.6288 ± 0.020 0.8577 ± 0.012 0.8580 ± 0.012 0.8586 ± 0.015

20 0.4796 ± 0.020 0.5051 ± 0.020 0.4736 ± 0.019 0.9260 ± 0.006 0.9235 ± 0.006 0.9284 ± 0.007

30 0.3487 ± 0.023 0.3741 ± 0.024 0.3643 ± 0.035 0.9484 ± 0.004 0.9447 ± 0.005 0.9265 ± 0.032

40 0.2831 ± 0.017 0.3291 ± 0.018 0.2791 ± 0.026 0.9563 ± 0.004 0.9385 ± 0.004 0.9406 ± 0.023

50 0.2958 ± 0.024 0.3582 ± 0.025 0.2214 ± 0.025 0.9466 ± 0.006 0.9089 ± 0.010 0.9569 ± 0.023

Sparse feature is used and the classification performance on stage range 11-12 is reported. Three different classifiers are applied for comparison, namely, SVM with
linear kernel (SVM), logistic regression (Logistic) and ridge regression (Ridge).

groups, respectively. The last two stage ranges contain the
largest number of lateral images as well as the highest
counts of CV terms.

Evaluation of annotation performance
We employ the one-against-rest support vector machines
(SVM) to annotate the gene expression pattern images,
where the SVM builds a decision boundary between
image groups that contain a particular term and the
remaining image groups. We employ the LIBSVM pack-
age [31] and the linear kernel is used. The regularization
parameter is set to 1 in all cases. Our proposed method
combines both the spatial and sparse approaches and is

denoted by SVMSpatial+Sparse. We compare our method
with those that utilize only sparse, only spatial, or global
bag-of-words approaches. These approaches are denoted
by SVMSparse, SVMSpatial, and SVMGlobal, respectively.
The performance comparison of the four representations
in terms of AUC and macro F1 scores is summarized in
Tables 1 and 2, respectively.

Since most CV terms are stage-range specific, we anno-
tate the image groups according to their stage ranges
separately. The numbers and proportions of positive sam-
ples for the 10 most frequent term in each stage range are
summarized in Table 3. For each stage range, we begin
with the 10 terms that appear most frequently, and then

Figure 6 Retrieval results for query image ID insitu21869 with the dorsal view in stage range 4-6.
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we add additional terms in the order of their frequencies
with a step size of 10. This results in different numbers of
data sets in each stage range, depending on the total num-
ber of CV terms in that stage range. The extracted data
sets are randomly partitioned into disjoint training and
testing sets using the ratio 1:1 for each term. For each data
set, we generate 30 random partitions and the average per-
formance is reported. Because our method models each
individual term separately, we can compare the results of
our method against the results of the other method on a
term-by-term basis. For example, we can compare anno-
tation results of our method with the non-spatial method
in stage range 13-16, term by term, where 40 CV terms
are used. In this comparison, of the 40 terms being stud-
ied, 39 saw an average increased AUC performance and
31 saw average increased F1 Score (F1) performance. Due
to space limitation, we will not show each individual term
by term comparison. Instead, we show the results for each
stage range where various numbers of CV terms are used.

Table 1 shows a comparison of AUC results for all four
methods discussed. The best results for each case are
highlighted in bold. The results show that both the spatial
and the sparse methods consistently outperform the non-
spatial method in terms of average AUC. The results also
show that combining both sparse and spatial approaches
outperforms any of the other three methods. The results

indicate that the sparse approach offers improved per-
formance over the spatial approach for the earlier stage
ranges, and that the two approaches are comparable for
the last stage range. The poorer performance of the spa-
tial approach for the earlier stages may have been due
to the less developed embryonic structures found ear-
lier in embryogenesis. Combining the spatial and sparse
approaches resulted in the best results, particularly in the
later stage ranges.

Table 2 shows a similar type of comparison as in Table 1.
The only difference is that F1 score is used as a com-
parison measure instead of AUC. We observe a similar
trend: both the spatial and sparse methods outperform
the global approach; the sparse approach performs slightly
better than the spatial approach in the earlier stages, and
they achieve similar performance during the last stage.
Again, we can observe that combining the sparse and spa-
tial approaches generates better results than using sparse
or spatial information alone.

We have observed that there were significant differences
in performance increases between earlier stage ranges
where Drosophila embryos were less developed and later
stage ranges where embryos were more developed. We
also observe that there are certain terms that benefit
far greater from a spatial bag-of-words approach than
other terms. For example, mesectoderm anlage in statu

Figure 7 Retrieval results for query image ID insitu22067 with the lateral view in stage range 7-8.
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nascendi, central brain anlage, crystal cell specific anlage,
hypopharynx primordium P2, procrystal cell, and crystal
cell are all stage dependent terms that showed the most
dramatic increases in annotation performance. These
increases in performance were consistent across multiple
stage range tests, where the number of terms being anno-
tated varied. There are also a number of terms such as
pole cell, mesectoderm primordium, foregut primordium,
germ cell, embryonic central brain neuron, embryonic cen-
tral brain glia, and lateral cord glia that showed good
performance across multiple stage ranges, where vari-
ous numbers of CV terms were annotated. We included
detailed performance evaluation of individual terms in 6
different data sets in Figures 4 and 5.

There are pioneering works on constructing feature
representations for Drosophlia gene expression image
annotation. Zhou et al. [32] applied multi-resolution 2D
wavelet discrete transform followed by min-Redundancy
max-Relevance feature selection. Puniyani et al. [12] pro-
posed an automatic system named “SPEX2” that per-
forms pattern extraction using Markov random field and
further extracts features using the SIFT descriptor and
singular value decomposition. Using the top 10 most
frequent terms [12] in the BDGP data set, Zhou’s sys-
tem achieved an average F1 score of about 0.35, while
Puniyani’s method achieved about 0.45. For comparison

purposes, we extract the individual F1-scores for the same
terms. Our Sparse + Spatial representation yields an aver-
age F1-score of 0.64, which outperforms both methods.

Comparison of different classifiers
Since the main focus of this section is to demonstrate the
performance of various image representations, we fix our
classifier to be SVM with linear kernel for its effectiveness
in high-dimensional data. However, it will also be interest-
ing to investigate how different classifiers perform in this
task. As an illustrative example, we use stage range 11-12
with sparse representation and test the classification per-
formance of three different classifiers including SVM,
logistic regression and ridge regression. The performance
in terms of sensitivity and specificity is reported in Table 4.
For all three methods, we apply 4-fold cross validation for
parameter selection. As we can see in Table 4, the three
classifiers achieve comparable overall performance, and
SVM achieves slightly higher sensitivity.

Performance of over-sampling
As we can see in Tables 2 and 4, when the number of labels
is large, the average sensitivity as well as F1 score is quite
low. This is due to the dramatic lack of positive samples
for some labels. For example, in stage range 11-12, when
we use 50 labels, the proportion of positive samples in
these 50 labels can be as low as 0.8%. In this subsection, we

Figure 8 Retrieval results for query image ID insitu16633 with the lateral view in stage range 9-10.
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present some preliminary results on tackling this problem
with over-sampling.

The over-sampling method works as follows. Before
training a classifier for a particular label, we first do ran-
dom sampling on the positive samples with replacement,
so that the number of positive samples is equal to the
negative ones. Then, we train the classifier using the
balanced samples. We test this method using the same
setting as in the previous subsection, and the classifica-
tion performance is presented in Table 5. As we can see
in Tables 4 and 5, the over-sampling method provides
promising improvements in this example, especially when
the number of labels is large. For example, when using
the logistic regression on annotating 50 labels, the over-
sampling improves sensitivity from 0.2 to 0.36. Exploring
methods such as over-sampling to further improve the
classification performance will be an interesting future
direction.

Evaluation of retrieval performance
Based on the proposed image representations, we obtain
the pair-wise similarity for every two images in the
database, which can be used for image retrieval. In our
study, the representative images for different views and
stage ranges from the well-known Interactive Fly websitea

are used as queries. Then, for a given method and a query

image, we select 8 images with the highest similarity val-
ues to obtain a set of query results. Note that the query
images are removed from the results since they are always
the one with highest similarity. Sample query results from
different views and stage ranges are presented in Figures 6,
7, 8, 9 and 10.

First, we will compare different methods by visually
inspecting the images retrieved for each query. The first
conclusion we can draw from the figures is that the meth-
ods based on the bag-of-words (the first three columns)
generally outperform the one that utilizes the binary rep-
resentation only. For example, for the stripe patterns such
as those in Figures 6 and 8, the BFV method retrieves
less than 4 similar images in its top 8 matches, and in
Figure 6, even the best match looks quite different from
the query image. Also, we can observe that among the
three proposed methods, the sparse representations gen-
erally yield more satisfactory results, particularly when
the layout of the pattern is subtle, such as the ones in
Figure 7.

We also give brief interpretations of the retrieved images
by analyzing the functions of the corresponding genes in
the biological process annotated in the gene ontologyb.
Figure 6 shows a stripe pattern expressed by gene odd,
obtained from the dorsal view, in stage range 4-6. odd is
in charge of the periodic partitioning. The retrieved genes

Figure 9 Retrieval results for query image ID insitu21912 with the lateral view in stage range 11-12.
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prd and slp1 are about periodic partitioning and blasto-
derm segmentation, respectively. Both of them are closely
related to the query gene. We also observe that several
other retrieved genes, such as comm, comm2, run, trn and
Alhambra, are not directly related to the segmentation
process. However, they are all involved in the development
of the nerve system. It will be interesting to examine how
these two functions are related.

Figure 8 shows a pattern expressed by gene slp1, during
stage range 9-10. As we can see, all of the three “visual
sentence” based approaches retrieved 6 images with slp1
expressed. The rest of the genes retrieved, such as slp2
which is involved in periodic partitioning, and en which
is associated with the head segmentation process, are all
closely connected to the blastoderm segmentation con-
trolled by slp1.

Figure 9 is taken from the lateral view, during stage
range 11-12. The corresponding gene pdm2 is linked to
the nervous system development. We can observe that
our proposed method with the “visual sentence” concept
returns 2 images with the same gene as the top query
results. The gene nub takes part in the fate determina-
tion of ganglion mother cell, neuroblast. beat-IIIc and wg
are related to the formation of synapse and endoderm,
respectively.

Figure 10 illustrates a pattern expressed by gene Gasp,
during stage range 13-16, taken from the lateral view. The
spatial and sparse representation retrieves 4 images with
the same gene, compared to 2 images by spatial BoW and
1 image obtained by BFV. Gasp as well as CG13676 is
involved in the chitin metabolic process. Another gene,
Idgf2, which is related to the chitin catabolic process, is
also closely related. The trh gene, which affects the epithe-
lial cell fate determination and open tracheal system, is
also related because chitin regulates epithelial tube mor-
phogenesis; in addition to its classical role, protecting
mature epithelia.

Conclusions
This article presents computational methods for anno-
tating Drosophila gene expression pattern images, and
identifying similar images based on gene patterning. In
both tasks, images are represented as bags-of-words. The
size of the bags is determined by the spatial properties of
a representation. For both applications, a sparse learning
framework was used. Results on the FlyExpress database
indicate that the proposed annotation method outper-
forms the non-sparse, non-spatial bag-of-words method,
as well as approaches that would use either a sparse or
spatial framework.

Figure 10 Retrieval results for query image ID insitu23837 with the lateral view in stage range 13-16.
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In our study, the bag-of-words representations were
created by partitioning image features with local feature
patches. Terms that saw the greatest increases in anno-
tation accuracy may only reside in specific regions of
Drosophila embryos during a given stage of development.
one promising direction is to create local bag-of-words
from these regions in order to eliminate some of the noise
created by other unrelated regions, when searching for
specific embryonic structures. This technique is com-
monly referred to as region of interest (ROI). We plan to
explore this in the future.

Endnotes
a http://www.sdbonline.org/fly/aimain/1aahome.htm
b http://www.geneontology.org/
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