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Growth characteristics downstream of a shallow bump: Computation 
and experiment 

Ronald D. Joslin 
NASA Langley Research Center; Hampton, Virginia 23681-0001 

Chester E. Grosch 
Old Dominion University, Nodolk, Virginia 23529 

(Received 1 March 1995; accepted 24 July 1995) 

Measurements of the velocity field created by a shallow bump on a wall revealed that an energy 
peak in the spanwise spectrum associated with the driver decays and an initially small-amplitude 
secondary mode rapidly grows with distance downstream of the bump. Linear theories could not 
provide an explanation for this growing mode. The present Navier-Stokes simulation replicates and 
confirms the experimental results. Insight into the structure of the flow was obtained from a study 
of the results of the calculations and is presented. 0 199.5 American Institute of Physics. 

I. INTRODUCTION 

In order to determine whether an eigenmode of the lin- 
earized boundary-layer equations or an Orr-Sommerfeld ap- 
proach was appropriate for studying the disturbance field cre- 
ated by a localized boundary perturbation of boundary-layer 
flow, Gaster, Grosch, and Jackson’ performed an experiment 
to find out what the solution should look like. Surprisingly, 
the experimental results did not seem to be consistent with 
either model. A significant result of the experiment was that 
a primary spanwise mode associated with the diaphragm di- 
mension decayed slightly with downstream distance and a 
small secondary mode rapidly grew with downstream dis- 
tance. To rule out any possible anomaly in the experiment, 
the present computational study was initiated to duplicate the 
experimental results. Equally important, the results of the 
computation permit a detailed study of the flow field struc- 
ture and yield insight into the physics of the flow. The com- 
putations involve solving the unsteady nonlinear Navier- 
Stokes equations for a spatially growing boundary-layer flow 
and should be equivalent to an ideal experimental study. 

II. OVERVIEW OF EXPERIMENTAL CONDITIONS 

Although a detailed description of the experimental con- 
ditions was given by Gaster et al.,’ a synopsis of the experi- 
mental parameters important for the computations is pro- 
vided here. In the experiment, the bump was located 400 mm 
from the leading edge of the flat plate. At this location, the 
boundary and displacement thicknesses of the undisturbed 
flow near the bump were S=2.88 mm and @=0.99 mm, 
respectively. The associated boundary-layer Reynolds num- 
bers near the bump were R,=3480 and Re = 1196. A silicon 
rubber diaphragm of 20 mm (=206k) was used to force the 
disturbance. Most of the diaphragm motion occurred over 
lo-15 mm of the center. The amplitude of the bump motion 
was about 0.1 mm (100 pm), which is a typical height of the 
roughness element used in receptivity experiments (see 
Saric,” Sec. 3.1.1). A measure of the disturbance amplitude 
near the bump was predicted to be about u=4.9% of the 
free-stream velocity. Although a stationary bump would be 
preferable, a forcing frequency of 2 Hz was used to discrimi- 

nate the signal created by the bump from the background 
noise present to some degree in all experiments. There are, of 
course, Tollmien-Schlichting modes with a 2 Hz frequency 
but these are highly damped at the Reynolds numbers of the 
experiment. The 2 Hz frequency is well below that of any 
growing Tollmien-Schlichting mode. The 4.9% disturbance 
amplitude is too large to enable a comparison of the experi- 
mental disturbance with receptivity theory, which, to date, is 
based on the infinitesimal small-amplitude assumption. It is 
possible that a sufficiently large disturbance at very low fre- 
quency or even a steady disturbance could cause a bypass 
transition, but no evidence of transition or turbulence was 
observed in the experiment or in the computations reported 
here. Measurement stations were set up about 70 and 105 
boundary-layer thicknesses downstream of the bump, (-200 
and 300 displacement thicknesses). These are station B, sec- 
tion b-b and station A, section c-c, respectively, as shown in 
Fig. 1 of Gaster et al. ’ The Reynolds numbers at these mea- 
suring stations were approximately R SC = 1466 and 
Rp= 1585. Detailed measurements of the streamwise com- 
ponent profiles in both the normal and spanwise directions 
were made at these stations. Less detailed measurements 
were made over a larger area. 

Ill. NUMERICAL METHOD OF SOLUTION 

The numerical techniques required for the simulation 
and the disturbance forcing are briefly discussed in this sec- 
tion. For a detailed description of the spatial DNS (Navier- 
Stokes) approach used for this study, refer to Joslin, Streett, 
and Chang.3’4 The instantaneous velocities ii= (z.i, I?, W) and 
the pressure i; are decomposed into steady base and distur- 
bance components. The base flow is given by velocities 
U=( U, V, W) and the pressure P; the disturbance is given by 
velocities u=( u,u, W) and the pressure p. The velocities cor- 
respond to the coordinate system x=(x,y,z), where x is the 
streamwise direction, y is the wall-normal direction, and r, is 
the spanwise direction. The base flow for the flat plate can be 
reasonably approximated by the Blasius similarity solution 
U=(U,V,O), and the disturbance Row is found by solving 
the three-dimensional, incompressible Navier-Stokes equa- 
tions. These equations are the momentum equations, 
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u,+(u~v)u+(u~v)u+(u*v)u= -vp+; v*u, (1) 
and the continuity equation, 

v*u=o. 

The boundary conditions in the farfield are 

(2) 

u-0, as v---rm, 

and the conditions at the wall are 

(34 

u=u,. at .v=O, (3b) 

where u,.=O, except for the portion of the wall that models 
the bump. The Reynolds number R = U, Sz/v is based on the 
boundary-layer displacement thickness at the inflow of the 
computational domain, the free-stream velocity V,, and the 
kinematic viscosity v. 

To solve Eqs. (l)-(3), computationally, the spatial dis- 
cretization entails a Chebyshev collocation grid in the wall- 
normal direction, fourth-order finite differences for the pres- 
sure equation, sixth-order compact differences for the 
momentum equations in the streamwise direction, and a Fou- 
rier sine and cosine series in the spanwise direction on a 
staggered grid.” For time marching, a time-splitting proce- 
dure is used with implicit Crank-Nicolson differencing for 
normal diffusion terms and an explicit three-stage Runge- 
Kutta method.” The influence-matrix technique is employed 
to solve the resulting pressure equation (Helmholtz- 
Neumann problem).6.7 At the inflow boundary, the mean base 
flow is forced and, at the outflow, the buffer-domain tech- 
nique of Streett and Macaraeg* is used. 

The boundary conditions that have to be imposed to rep- 
resent an oscillating bump are a streamwise velocity pertur- 
bation related to the mean shear and the bump height, to- 
gether with the normal velocity of the bump, as described in 
Gaster et al.’ Although the experiments had to use a low- 
frequency oscillating bump, the computations can use a sta- 
tionary bump. Hence, the boundary conditions reduce to 

u(.r,O.;)= -h(x,z) g. 

The form h(x,z)=u,. sin(x)3 sin(z)3 is imposed for the 
bump shape, which yields a computationally smooth bump. 
The bump height is given by the amplitude u,.= 10%. Al- 
though no attempt was made to exactly match the ingested 
disturbance amplitude of 4.9% in the experiment, an ampli- 
tude of approximately 3.4% was observed in the computa- 
tions. The streamwise length of the bump was 15.96: and 
the spanwise half-length was 6.5 S,* . As will be seen in the 
results section of this paper, the somewhat arbitrary selection 
of the amplitude and shape of the computational bump did 
not have an adverse effect on the desired comparison with 
experiments. 

Figure 1 is a sketch of the computational domain. In the 
experiment the displacement thickness at the bump, S,* was 
approximately 1 mm and the boundary-layer Reynolds num- 
ber at that location, R = U,6$lv, was 1200. We choose 6: 
as the length scale for the computation and set the Reynolds 
number in Eq. (1) to be 1200. As shown in Fig. 1, the farfield 

500 g 
I------I 

0 _____________________________________ 

u :F 

~~~+yf$~ 

FIG. I. Sketch of the computational domain showing its size and the loca- 
tion of the bump. The lines U-II. b-b, and c-c show the location of the 
similarly labeled lines of Gaster rr al., ’ along which measurements were 
made. We present results of the !,imulation on planes including lines a-a and 
c-c. 

boundary was located 508; from the wall, the streamwise 
extent of the domain was 5OOS$ from the inflow, and the 
spanwise extent of the domain was 25 6: . This spanwise 
extent is shown by the dotted line in Fig. 1. Along this sur- 
face a symmetry condition on the flow field was applied. 
Thus the effective spanwise extent of the computational do- 
main was 5 0 S$ , as shown in Fig. 1. The center of the bump 
was positioned on the symmetry boundary at 40.9 8; from 
the inflow, again as shown in Fig. 1. With the computational 
scale chosen to be 6,* = 1 mm, all of the dimensions shown 
in Fig. 1 of Gaster et al.’ can be directly translated into S,* 
units. The lines labeled a-a, b-b, and c-c in Fig. 1 are 
the similarly labeled lines shown in Fig. 1 of Gaster et al.’ 

The choice of grid, computational domain size, and 
time-step size were based on previous experience described 
in Joslin, Street& and Chang3.4 for unsteady disturbances and 
in Joslin and Streett’ for a stationary disturbance. The simu- 
lation used a coarse grid of 661 streamwise, 61 wall-normal, 
and 20 spanwise grid points (spanwise symmetric). For the 
time marching, a time-step size of 0.2 is chosen for the three- 
stage Runge-Kutta method. The coarse grid computation re- 
quired 44 Cray 2 h with a single processor to converge to a 
time-independent solution. In addition to the coarse grid cal- 
culation, a grid refinement simulation was performed to 
verify the quantitative accuracy of the results of the course 
grid computations reported below. This second simulation 
was conducted with a grid of 1321 streamwise, 8 1 wall- 
normal, and 39 spanwise grid points. This translates into 
doubling the grid in the streamwise and spanwise directions: 
in the wall-normal direction, Chebyshev series are used, 
which have coefficients that converge exponentially. 

Because the disturbance excitation is steady and the re- 
sulting disturbance modes are stationary, the fine-grid simu- 
lation had initial conditions that correspond to the course 
grid final results. If the course and fine-grid results were time 
independent and quantitatively similar, then significant com- 
putational savings (approximately 300 Cray Y/MP hours) 
can be realized with this choice of initial conditions for the 
fine-grid simulation. The fine-grid simulation was marched 
in time and the results were compared after 180 and 420 time 
steps. The results were identical, indicating that the fine-grid 
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FIG. 2. Streamwise velocity profiles in the streamwisekpanwise plane 
downstream of the bump. The profiles are at a height of 4’ = 6,* . 

simulation had converged after only 180 time steps. The cost 
of this simulation was 19 Cray Y/MP hrs. As will be shown 
below in Sec. IV, the results of the coarse and fine grid com- 
putations were essentially identical. 

IV. RESULTS 

The results shown in Fig. 2 are spanwise profiles of the 
streamwise velocity component in the spanwise direction at 
y = 6,*, which is approximately the distance from the wall 
used in the experiments. This top vieiv would have the bump 
placed at the bottom of the figure, and the flow direction is 
from bottom to top. As expected, there is a velocity deficit 
directly downstream of the bump and lobes of enhanced ve- 
locity on both sides of the bump. Note that the intensity of 
this deficit and lobes is decreasing with distance downstream 
of the bump. This qualitative picture matches the experimen- 
tal observation, except there was some asymmetry in the 
experiments. 

Figure 3(a) shows the variation with downstream dis- 
tance of the total energy of the disturbance generated by the 
bump, as obtained from the fine- and coarse-grid simula- 
tions. Clearly, quantitative agreement is observed (note that 
the ordinate has a logarithmic scale). Figure 3(b) shows the 
variation of the total energy and the square of the velocity 
components with downstream distance. The total energy is 
decreasing with distance downstream and the streamwise ve- 
locity component is clearly dominant compared with the in- 
significant wall-normal and spanwise components. In the 
experiments, only the streamwise velocity component was 
recorded and the discussion and conclusions of the flow were 
described based on the streamwise velocity. The computa- 
tions clearly show that it is unnecessary to consider the 
wall-normal and spanwise velocities. 

Figure 4 shows the low-wave number modal decompo- 
sition of the streamwise velocity component in the spanwise 
direction. Confirming the experiments, the low-wave-number 
modes are growing with downstream distance; all other high- 
wave-number modes (24) are decaying everywhere. The 
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1O-5 

--)- Fine Grid 
- Course Grid 
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E  IO-~ 

1 , I 1  t I I , 

1.2 1.3 1.4 1.5 1.6 

(4 
c lo- 
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10-E / _ 

E 10-7 
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FIG. 3. (a) Variation of the total disturbance energy with downstream dis- 
tance as obtained from the coarse- and fine-grid computations. (b) Variation 
with downstream distance of the total disturbance energy and that of the 
energy in each velocity component. 

low-wave-number modes are marked by a region of rapid 
growth followed by either an asymptote or decay region be- 
yond the present computational domain. A growth in the 
p=2 mode by a factor of 8 in magnitude was noted by 
Gaster et al. ’ Here, the dominant p= 2 mode has grown by 
over a factor of 6 in magnitude and has not reached its maxi- 
mum value within the computational domain. 

The /3=2 velocity profiles, obtained from both the 
coarse- and fine-grid simulations, are shown with distance 
from the wall in Fig. 5 at various downstream distances. The 
results of both simulations are in excellent quantitative 
agreement and both simulations show modal growth consis- 
tent with the experiments. The profiles at R = 1576 and 1617 
qualitatively match the experiments in shape and have their 
peak near y=2@, as do the experimental results (see Fig. 3 
in Gaster et al.‘). The magnitudes are, however, different. 
The results of the calculations shown in Fig. 5 have a peak 
value of about 5 X 10y5, while the measurements show a peak 
value of 2X 10e3. 
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FIG. 4. Variation with downstream distance of the streamwise velocity com- 
ponent decomposed into spanwise modes. 

The three-dimensional structure of the flow field can be 
inferred from the results presented in Figs. 6, 7, and 8. All of 
these results are on the y-z plane at x=503, which is slightly 
downstream of the section a-a as shown in Fig. 1 of Gaster 
et al. ’ and of this paper. At this location Re= 1388. The 
results of the calculation are obtained on a Chebyshev collo- 
cation grid in the wall-normal (y) direction. In the spanwise 
direction the computational results from z=O to z=25@ 
(with a symmetry boundary condition at z =0) were “folded” 
about :=O in order to obtain the flow field in 
-2596: <25@. Although the farfield boundary is located 
at r =5Os*, results are shown in O=~yc5@ because the dis- 
turbance field is essentially confined to the boundary layer. 
Because it is more convenient in presenting the data, the 
computational results were interpolated onto a uniform grid 

FIG. 6. Contours of U, the streamwise component of the disturbance veloc- 
ity, on the y-z plane at x=503. Contours with positive values of u are solid 
and those with negative values are dashed. The contours values are 
-1.6X 10m3 to -0.2X 10e3 in steps of 0.2X 10e3 and from -0.1 X 10m3 to 
0.5X10m3 in steps of 0.1X 10-3, excluding 0.0. The minimum value of U, 
-1.69X 10e3, occurs on the centerline at y=O.73, with the maxima, 
0.48X 10m3, being located at y=O.73 and z= 23.95. 

in the y direction. It should be noted that Figs. 6, 7 and 8 are 
distorted by an, approximately, 10 to 1 stretching in the y 
direction as compared to the z direction. 

Figure 6 contains contours of U, the streamwise compo- 
nent of the velocity. In this plane, - 1.69X 10e3 
S~<0.48XlO-~ and the minimum occurs on the centerline 
at y=O.73, with the maxima being located at y=O.73 and 
z = 53.95. This is the same structure seen in the profiles of II 
at y = s”” shown in Fig. 2. As seen from Fig. 6, the stream- 
wise component of the disturbance field is an up- 
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FIG. 5. The streamwise velocity component at three different downstream 
locations. The solid curves are the result of the coarse-grid simulation and 
the dashed curves are the result of the fine-grid simulation. These curves 
coincide almost everywhere in this figure. 

FIG. 7. Vectors of (v,w) on the y-z plane at x=503. The maxima of 
\I- are located at y=O.35 and I= 25.26 and have the value 
2.62X lo+. 
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FIG. 8. Contours of o, , the streamwise component of the disturbance vor- FIG. 9. Contours of U, the streamwise component of the disturbance veloc- 
ticity, on the y-z plane at x=503. Contours with positive values of wx are ity, on the y-z. plane at x=709. Contours with positive values of u are solid 
solid and those with negative values are dashed. Positive W , indicates clock- and those with negative values are dashed. The contours values are 
wise rotation and negative counterclockwise. The contours values are -1.6X10m3 to -0.2X10W3 in steps of 0.2X 10e3 and from -O.1X1O-3 to 
-1.6X10W4 to 1.6~ 10m4 in steps of O.2X1O-4, excluding 0.0. The mini- O.5X1O-3 in steps of 0.1X 10e3, excluding 0.0. The minimum value of U, 
m u m  value of 0, , - 1.64X10m4, is at y=O.70, and r=3.95, and the maxi- -0.63X 10e3, occurs on the centerline at y= 1.06, with the maxima, 
mum, 1.64X 10e4, is at y  =0.70 and z = -3.95. 0.51X10W3 being located at y=1.06 and z=t-2.63. 

stream flowing “jet” on the centerline with downstream 
counterflowing jets, on both sides. The entire field is essen- 
tially confined to the inner part of the boundary layer (yc2). 

The (u , w) vectors in the same x plane are shown in Fig. 
7. The maximum of dm is 2.62X10-’ and occurs at 
y =0.35 and z = 55.26. There is an inflow toward the region 
of the upstream “jet” along the centerline and an outflow 
between the downstream “jets” and the wall. Both the inflow 
and outflow are rather small compared to U; less than 1% of 
the maximum of u but extend over a very large region in the 
y-z plane. There is even a small, but appreciable, inflow at 
the top of the boundary layer. It should be noted that the 
cross-stream flow is rather weak and the cross-flow Reynolds 
number (see Saric2) is very small. As can be seen from this 
figure, the boundary layer thickness of the cross-flow (8,) is 
of the same size as the boundary layer thickness (4 of the 
streamwise flow. In contrast, the magnitude of the cross-flow 
velocity component (U,) is very small compared to that of 
the mean flow (U,). It is clear that the cross-flow Reynolds 
number can be calculated by R, = ( SC/ s>( lJ,/Uo)R. This 
gives a value O(O.1). 

Contours of the streamwise (x) component of the vortic- 
ity, o, , are plotted in Fig. 8. These were obtained by numeri- 
cally differentiating u and w using a second-order scheme. 
No smoothing of the results was done. It might have been 
expected that the numerical differentiation would induce 
substantial “noise,” but none is apparent in the results shown 
in Fig. 8. The maximum and minimum of w, are 
+ 1.64X 10T4 and lie at y =0.70 and z = T3.95. Positive W , 
indicates clockwise rotation and negative counterclockwise. 
It is seen from the structures shown in this figure that the 
bump generates a pair of counter-rotating vortices just above 
and on either side of it. These pump fluid down toward the 

4 - 

3 - 

* 

2 - 

1 - 

wall and into the upstream flowing “jet” of the disturbance 
field. Just above the main pair of vortices and slightly toward 
the centerline there are a weaker pair of oppositely rotating 
vortices. Between the main pair of vortices and the wall there 
is region of high vorticity due to the relatively strong outflow 
in the ?z directions. 

This basic structure of the flow field persists farther 
downstream but is considerably weaker. This can be seen 
from the results shown in Figs. 9, 10, and 11. These results 
are on the y-z plane at x=709, which is slightly downstream 
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PIG. 10. Vectors of (0,~) on the y-z plane at x=709. The maxima of 
@T7 are located at y=O.62 and z=?c5.26 and have the value 
0.38X lo+. 
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FIG. 11. Contours of o, , the streamwise component of the disturbance 
vorticity, on the y-z plane at x=709. Contours with positive values of w, are 
solid and those with negative values are dashed. Positive ox indicates clock- 
wise rotation and negative counterclockwise. The contours values are 
- 1.6X IO-$ to 1.6X Joe5 in steps of 0.2X lo-‘, excluding 0.0. Note that 
these contour levels are one-tenth those of the contour plot of o, at x=503. 
The minimum value of w, , -1.87X IO-‘, is at y=1.20, and z=3.95, and the 
maximum. 1.87X10-‘, is at y=1.20 and z=-3.95. 

of the section c-c, as shown in Fig. I of Gaster et al.’ and of 
this paper. At this location Re=1585. The contours of u are 
shown in Fig. 9 with the same contour levels as in Fig. 6. 
The disturbance u has the same general structure as at 
x = 503. However, it is considerably weakened with the mini- 
mum of the upstream flowing jet only -0.63X 10M3. The 
maxima of the downstream jets are, however, slightly larger 
than at x =503. The y position of the center of these “jets” is 
1.06 at this location as compared to 0.73 at x=503, and the 
“jets” have diffused in the wall normal direction. The (u, w) 
vectors plotted in Fig. 10 also show uplift and spreading in y, 
as well as a general weakening. The maximum of $?? 
at this x location is 0.38X 10e5, nearly seven times smaller 
than at x =503. The z location of these maxima is exactly the 
same as at x=503, but the y location is 0.62 as compared to 
v=O.35 at .x=503. Finally, Fig. 11 shows contours of wx at 
;=709. The contour levels in this figure are one-tenth of 
those in Fig. 8. The general decrease and diffusive spreading 
in the vorticity is readily apparent. The main vortices have 
lifted farther from the wall. Their centers are at the same z 
position as at x=503 but the y position is now 1.20 instead 
of 0.70 and are at the same height as the secondary pair. The 
vorticity at the wall is also considerably weakened. 

V. CONCLUDING REMARKS 

The spatial evolution of the disturbance velocity field 
initiated from a shallow bump on a wall in a laminar bound- 
ary layer was computed by direct numerical simulation of the 

incompressible Navier-Stokes equations. Comparison of re- 
sults from coarse- and fine-grid simulations showed that the 
coarse-grid simulation had converged. The evolution pattern 
and modal growth and decay trends were shown to be con- 
sistent with the experimental results of Gaster et al.’ 

The three-dimensional structure of the flow field was 
inferred by examining the velocity component and the 
streamwise component of the vorticity on two y-z planes 
downstream of the bump. It was seen that the bump gener- 
ates, at least in the farfield, a pair of counter-rotating vortices 
just above the wall and on either side of the bump location. 
These pump fluid down toward the wall and into an upstream 
flowing jet of the disturbance field. Outside of this main jet 
there are a pair of weaker downstream flowing jets. Just 
above the main pair of vortices and slightly toward the cen- 
terline there are a weaker pair of oppositely rotating vortices. 
Between the main pair of vortices and the wall there is re- 
gion of vorticity due to the outflow in the ?z directions. As 
this flow evolves downstream, the vortices lift from the wall, 
diffuse, and weaken while maintaining their basic structure. 
The jets also weaken, diffuse, and lift, as must occur because 
they are, in a sense, both cause and effect of the vortices. 

A theoretical study should be conducted to complete the 
understanding of this proposed linear transfer of energy be- 
tween various spanwise modes. In addition, wind-tunnel and 
computational experiments should be conducted in order to 
understand the interaction of Tollmien-Schlichting waves 
with the bump-induced vorticity field. 

ACKNOWLEDGMENTS 

C.E.G. was supported, in part, by the National Aeronau- 
tics and Space Administration under NASA Contract No. 
NASI-19480 while in residence at the Institute for Computer 
Applications in Science and Engineering, NASA Langley 
Research Center, Hampton, VA 2368 l-0001. 

‘M. Gaster, C. E. Grosch, and T. L. Jackson, “The velocity field created by 
a shallow bump in a boundary layer,” Phys. Fluids 6, 3079 (1994). 

‘W . S. Saric, “Low-speed boundary-layer transition experiments,” in Trun- 
sition: Experiments, Theory & Computations, edited by T. C. Corke, G. 
Erlbacher, and M. Y. Hussaini (Oxford University Press, Oxford, 1994). 

‘R. D. Joslin, C. L. Streett, and C.-L. Chang, “Validation of three- 
dimensional incompressible spatial direct numerical simulation code-A 
comparison with linear stability and parabolic stability equations theories 
for boundary-layer transition on a flat plate,” NASA TP-3205, 1992. 

4R. D. Joslin. C. L. Streett, and C.-L. Chang, “Spatial direct numerical 
simulation of boundary-layer transition mechanisms: Validation of PSE 
theory,” Theor. Comput. Fluid Dyn. 4, 271 (1993). 

‘J. H. Will iamson, “Low-storage Runge-Kutta schemes,” J. Comput. Phys. 
35, 48 (1980). 

‘C. L. Streett and M. Y. Hussaini, “A numerical simulation of the appear- 
ance of chaos in finite-length Taylor-Couette flow,” Appl. Num. Math. 7, 
41 (1991). 

‘G. Danabasoglu, S. Biringen, and C. L. Streett, ‘Spatial simulation of 
instability control by periodic suction and blowing,” Phys. Fluids 3, 2138 
(1991). 

*C. L. Streett and M. G. Macaraeg, “Spectral multi-domain for large-scale 
fluid dynamic simulations,” Int. J. Appl. Num. Math. 6, 123 (1989). 

9R. D. Joslin and C. L. Streett, “The role of stationary crossflow vortices in 
boundary-layer transition on swept wings,” Phys. Fluids 6, 3442 (1994). 

Phys. Fluids, Vol. 7, No. 12, December 1995 R. D. Joslin and C. E. Grosch 3047 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.82.253.83 On: Fri, 16 Oct 2015 18:31:58


	Old Dominion University
	ODU Digital Commons
	1995

	Growth Characteristics Downstream of a Shallow Bump: Computation and Experiment
	Ronald D. Joslin
	Chester E. Grosch
	Repository Citation
	Original Publication Citation



