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Numerical techniques for excitation and analysis 
of defect modes in photonic crystals 

Shangping Guo and Sacharia Albin 
Photonics Laboratory, Department of Electrical & Computer Engineering, 

Old Dominion University, Norfolk, Virginia 23529 
sguo@odu.edu 

Abstract: Two numerical techniques for analysis of defect modes in 
photonic crystals are presented. Based on the finite-difference time-domain 
method (FDTD), we use plane wave incidences and point sources for 
excitation and analysis. Using a total-field/scattered-field scheme, an ideal 
plane wave incident at different angles is implemented; defect modes are 
selectively excited and mode symmetries are probed. All modes can be 
excited by an incident plane wave along a non-symmetric direction of the 
crystal. Degenerate modes can also be differentiated using this method. A 
proper arrangement of point sources with positive and negative amplitudes 
in the cavity flexibly excites any chosen modes. Numerical simulations have 
verified these claims. Evolution of each defect mode is studied using 
spectral filtering. The quality factor of the defect mode is estimated based 
on the field decay. The far-field patterns are calculated and the Q values are 
shown to affect strongly the sharpness of these patterns. Animations of the 
near-fields of the defect modes are presented to give an intuitive image of 
their oscillating features. 

©2003 Optical Society of America 
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1. Introduction 

It is well known that a point defect in photonic crystals can generate localized states in the 
band gap. The localized states can resonate in the microcavity with high Q values since they 
cannot escape into the surrounding bulk material. It is crucial to understand the nature of the 
defect modes since they are used in the design and application of many devices, such as high 
Q filters [1] and add/drop filters for multiplexer [2]. 

Numerical techniques for the study of these localized modes mainly fall into two 
categories: the time domain and frequency domain. The plane wave method (PWM) [3], 
which is the most popular frequency domain method, is able to find the eigen-frequencies and 
mode fields by using a supercell scheme. It assumes an infinite lattice with periodic defects, 
and the coupling of these defects leads to a defect band. The coupling effect between 
neighboring defects decays exponentially with the distance between defects, and a supercell of 
moderate size can give accurate information of the defect modes. However, the plane wave 
method cannot yield the information of their dynamics, Q values and far-field patterns, which 
are important for mode couplings. 

Several techniques using FDTD were used to analyze the defect modes in micro-cavities. 
In Ref. [1], a plane wave was incident normal to the crystal and the transmission was 
monitored. Resonant modes were found as spectral peaks in the band gap. However, a plane 
wave incidence cannot excite those defect modes that are anti-symmetric to the k-vector of the 
plane wave [1]. Reference [4] used an initial field with low symmetry to excite all defect 
modes. By monitoring the field in various locations, defect modes can be found from the 
spectrum; however, the degenerate modes cannot be differentiated by this method. Dipole 
sources were proposed to excite the defect modes in Refs. [5-7], and it was implemented by 
adding an embedded dipole polarization field into the Maxwell's equations. By choosing 
bandwidths, orientations and locations of the dipole sources, defect modes could be 
selectively excited. 

In this paper, two approaches using the FDTD method are proposed to excite and analyze 
the defect modes in micro-cavities. One technique employs a plane wave incidence as the 
excitation. The total-field/scattered-field scheme [8] is used to implement an ideal plane wave 
incidence in any direction. This scheme has some advantages in photonic crystal simulations. 
It can reduce the computation region to contain just the area of interest; also, a plane wave 
incident at different angles can excite modes selectively due to the directional dependence of 
the defect modes. The second technique makes use of point sources at proper locations for 
excitation and there is no need to construct a dipole polarization field in Maxwell's equations 
for implementation. Moreover, defect modes can be excited one or all at a time. 

2. Methods of computation 

A two-dimensional FDTD method for TM modes (which have only E2 , Hx and Hy 
components) based on Yee's algorithm [9] is implemented for photonic crystal calculations, 
and the Perfectly Matched Layer (PML) boundary condition [10] is used to absorb outgoing 
waves efficiently. A total-field/scattered-field algorithm is deployed as in [8], which enables 
an ideal plane wave incidence at any angle from the interface of the total-field/scattered-field. 
In addition, 'hard' or 'soft' point sources are implemented as excitation sources. When the 
point sources are used, the total-field/scattered-field scheme is disabled. 

Far-field patterns of defect modes are important to understand their mode coupling 
strengths and their directional dependences. A near-to-far field transformation [8] is 
implemented in the FDTD method to measure the far-field patterns for one or more 
frequencies in either total or scattered field region. One should be aware that the incident 
conditions or initial field distributions would affect the calculated far-field patterns, but the 
effects can be reduced by starting the transformation after the steady state is reached and 
excitation pulses are dissipated. 
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The results in this paper are obtained using a standard 2nd-order FDTD scheme. A 4th 

order FDTD scheme was also used to reduce accumulated numerical dispersions, but we 
found the 2nd-order algorithm was accurate enough in this case. 

As an example, a two-dimensional 5x5 supercell containing 25 GaAs rods in air is 
considered, and the setup is shown in Fig. 1. The dielectric constant of the GaAs rods is 11.56, 
and the radii of the regular rods and defect rod are 0.20a and 0.60a, respectively, where a is 
the lattice constant and a=l .O µm. Each unit cell is divided into a 40x40 mesh and the whole 
FDTD region is 200x200 with ~x=~y=0.025 µm. 10 PML layers are used outside the 
structure to absorb all energy flowing into the boundary. 

Gaussian pulses covering the spectrum of the whole band gap are used: 

s(t)= Ae{(1~:o J}sin{2,if0 (1-10 )} 

where A is the amplitude, to=lOOO~t, tw=250~t, ~t=5.89e-1 lµs, f0=0.35c/a and c is the speed 
of light in vacuum. The total number of time steps is 50,000. All pulsed sources will be 
removed after 5000 time steps. 

200 --- -------------- ---- -1 
I 0 0 0 0 01 180 I 

I 
160 I 

140 lo 0 0 0 01 
120 oQo 100 0 Q o~ 

80 I 

60 0 0 0 0 0 
40 I 

1 Plane Wave 

20 :.rx O O O 0 ,7---::_ ----------------------- J 

20 40 60 80 100 120 140 160 180 200 

Fig. 1. Setup of the FDTD simulation. Dotted line represents the near-to-far field virtual plane, 
and the dashed line represents the total-field/scattered-field interface. Dl, D2 and D3 are 
detectors . 

Defect Mode 

Mode 1 
Mode2 

Mode3 

Mode 4(1) 

Mode 4(2) 
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Table 1. Resonant defect modes supported in the micro-cavity 

Normalized 
Frequency 

oxi/21re 
0.2970 
0.3190 

0.3345 

0.3916 

Mode pattern Symmetries 

Quadrupole Odd-odd 
Quadrupole Even-even 

Odd-odd to the planes along ±45° 
2"0-order Even-even 
monopole 
Doubly degenerate Even-odd 
hexapoles 

Odd-even 
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The crystal has a band gap for TM modes from 0.29c/a to 0.42c/a and the micro-cavity 
supports four resonant modes as given in Refs. [ 1, 5] or they can be calculated using plane 
wave method as discussed in Refs. [3, 11]. Their frequencies and near-field symmetries are 
listed in Table 1. The symmetry property of the mode is described as 'symmetry to x -
symmetry toy', thus 'odd-even' indicates that the mode is odd to the x-plane and even toy­
plane. Special attention should be paid to the degenerate modes, which are the doubly 
degenerate hexapoles Mode 4(1) and Mode 4(2). Their mode patterns obtained using the 
frequency domain plane wave method (PWM) are odd-even and even-odd to ±45° [ 1 ], and 
they can also exist as their linear combination in the forms of constructive and destructive 
interferences. Therefore, the symmetries for these two modes can also be odd-even and even­
odd as listed in Table 1. 

Since the defect modes are well defined, detectors should be properly placed to obtain the 
information of all defect modes. In the calculation, detector 1 is placed at the center of the 
defect, detector 2 is placed in the direction of 45°, and detector 3 is placed on the x-axis 
outside the micro-cavity. According to the symmetries of these defect modes, detector 1 will 
only detect Mode 3 since other modes have no field at this point; detector 2 will not detect 
Mode 2 and detector 3 will not detect Mode 1 since they are located on the nodal plane of 
these modes. 

3. Plane wave excitation 

A plane wave incident at any non-symmetric direction of the crystal can have non-zero 
coupling to all defect modes, therefore it is able to excite all of them. On the contrary, a plane 
wave incident at some special symmetric directions of the crystal can have zero coupling with 
specific modes, therefore it will not excite them. This property can be used to reveal all defect 
modes and differentiate the degenerate modes in a cavity. 

The space of interest is covered by the scattered-field region and is indicated as the 
dashed line in Fig. 1. A near-to-far-field transformation is performed along the dotted lines to 
measure the far-field pattern of the scattered field after the steady state is reached; in our case, 
it is specifically after 10,000 time steps. The plane wave pulse with a Gaussian shape is 
incident from the left at the total-field/scattered-field interface with an angle from 0° to 90° to 
the x-axis as shown in Fig. 1. 

Four numerical simulations were carried out for incident angles 0°, 45°, 60° and 90°. 
Since the crystal has three symmetry directions along 0°, 45° and 90°, which are designated as 
r-X, X-M, M-r directions in its 1st Brillouin zone, plane wave incidence along these 
directions will not excite specific modes. Plane wave along other directions, such as incidence 
at 60° in the example excites all defect modes. Since the structure is symmetric for 90° 
rotation, 0° and 90° plane wave incidence will yield identical spectral information. However, 
0° plane wave incidence will not excite Mode 4(2) and 90° plane wave incidence will not 
excite Mode 4( 1 ), hence, degenerate modes can be differentiated. 

Fourier analysis of the detected fields can disclose the resonant frequencies . As an 
example, the spectra obtained by the three detectors using a plane wave incident at 60° are 
shown in Fig. 2. The resonant frequencies are in excellent agreement with the frequencies 
given in Table 1. Just as predicted above, not all modes are detected by a single detector. 
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a~I : Jl : : : I 
0.3 0.32 0.34 0.36 0.38 0 .4 0.42 

a::[ : ~: : : JL I 
0.3 0.32 0.34 0.36 0.38 0.4 0.42 

SL 4 : ~: I 
0.3 0.32 0.34 0.36 0.38 0.4 0.42 

@a/21tc 

Fig. 2. The spectral information obtained from the three detectors using a plane wave incident 
at an angle of 60°. The y-axis is the spectral amplitude of the field. 

Mode symmetries can be discerned from the four simulations. The results are listed in 
Table 2. As predicted above, some modes cannot be excited by a plane wave along a special 
direction. From Table 2, mode symmetry can be deduced. Taking Mode 1 as an example, we 
can see that it has zero coupling to plane waves along the directions of 0° and 90°, so we can 
conclude easily that Mode 1 is an odd-odd mode. 

Table 2. Excited defect modes in the micro-cavity by plane waves with different incident angles 

Incidence Mode 1 Mode2 Mode3 Mode 4(1) Mode 4(2) 
oo No Yes Yes Yes No 

45° Yes No Yes Yes Yes 
60° Yes Yes Yes Yes Yes 

90° No Yes Yes No Yes 

4. Point sources 

Point sources are more flexible than the plane wave sources to selectively excite the defect 
modes since their k-vectors are two-dimensional. Proper arrangements of point sources with 
equal positive and negative amplitudes can form dipoles, quadrupoles and even more complex 
patterns. This method is able to excite all, some or any individual defect mode in the cavity. 
Table 3 shows the arrangement of the point sources to achieve excitation of all or any 
individual mode. 

As in Table 3, a single point source in any non-symmetric direction can excite all modes. 
To excite a single mode only, point sources are arranged according to its mode symmetry, 
which is assumed to be known first. Since the defect modes in a cavity are orthogonal to each 
other [12], such an arrangement of point sources will produce an excitation with the same 
symmetry as the defect mode and orthogonal to other modes; therefore it will excite only the 
selected mode. 
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Table 3. Excitation of all or individual modes by arrangement of point sources. The coordinates are the offset from 
the center grid (100,100) in Fig. 1. 

All modes Mode 1 Mode2 Mode3 Mode4 

Location Amp Location Amp. Location Amp. Location Amp Location Amp 

(+2,+4) + (+2, +2) + (+2, 0) + (0,0) + (+2, +2) + 

(-2, -2) + (-2, 0) + (-2, -2) -
(+2, -2) - (0, -2) -
(-2,+2) - (+2,0) -

I~ 7 I~ fo ~ * I~ ft 
I/ ~ l;ef ~ I? ~ 

Five numerical simulations as in Table 3 are conducted and the resulting spectra are 
shown in Fig. 3. The results show that a simple arrangement of point sources with positive 
and negative amplitudes can selectively excite any combination of the defect modes. Note that 
due to the weak coupling, the peak for Mode 2 in the figure for excitation of all modes is 
small. 

The spectrum of a defect mode has a Lorentzian shape. The non-Lorentzian oscillations 
in the spectra are produced by the transient effect, which depends on the excitation condition. 
Those frequency components which do not meet resonance condition will decay in a short 
time. Under some excitation conditions, the decay time could be longer, and it is reflected in 
the spectrum as oscillations. To reduce or eliminate these effects in the spectra, we can take 
Fourier transform after a certain time. For example, in the graph at the bottom right of Fig. 3, 
the Fourier transform is taken after 10,000 time steps; all the oscillations disappear, 
confirming that they are indeed due to the transient effect. 

25,----,-----------, 

20 

_ 15 

<i: 10 

6 
N 
Q) 

"8 4 
::E 

2 

0.3 0.32 0.34 0.36 0.38 0.4 

0.3 0.32 0.34 0.36 0.38 0.4 

40,----,-----------, 

30 
"<I" 

~ 20 
0 

::E 
10 

0.3 0.32 0.34 0.36 0.38 0.4 

- 40 
Q) 

"8 
::E 20 

0 l/ '-
0.3 0.32 0.34 0.36 0.38 0.4 

25,----,----~------, 

20 ..., 
a, 15 

~ 10 

0.3 0.32 0.34 0.36 0.38 0.4 

25,----,----,--.---------, 

20 ..., 
a, 15 

~ 10 

0.3 0.32 0.34 0.36 0.38 0.4 

Fig. 3. Spectra of defect modes using different point source arrangements. The solid line and 
dotted line are the spectra obtained from detector 2 and 3, respectively. The y-axis is the 
spectral amplitude of the field. The last graph in the right is for Mode 3 by taking Fourier 
transform after 10,000 time steps, verifying the non-Lorentzian oscillations in the spectra are 
due to the transient effect. 
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5. Far-field patterns 

The far-field patterns can disclose their diffraction strength at each direction, which is related 
to the directional dependence of the coupling strength. The far-field amplitudes of the defect 
modes are calculated and shown in Fig. 4 using the plane wave incidence scheme. The point 
source scheme also gives similar results, but is not shown here. Note that the far-field pattern 
for Mode 4 using a plane wave incident at 45° will be the mix of the two degenerate modes 
and is actually the eigen-mode calculated using PWM method. Note also that their amplitudes 
along symmetric angles are not exactly equal because the calculated far-field patterns are still 
affected a little by the incidence condition. 

Mode 1 Mode 2 Mode 3 

90 90 90 

18 0 18 

270 270 270 

Mode 4(1) Mode 4(2) Mode 4 mixed 

90 90 90 

18 0 18 

270 270 270 

Fig. 4. Far field pattern of the four defect modes. The far field pattern is normalized to its 
maximum. Mode 4(1) and Mode 4(2) are obtained using 0° and 90° plane wave incidence, 
respectively. The mixed Mode 4 is obtained using 45° plane wave incidence. 

The far-field is dependent upon the Q values, a higher Q values will have a more 
directional mode. As an example, a 1st order monopole mode as in [l] produced by a 
microcavity with the center rod removed is excited by a point source at the center and shown 
in Fig. 5, with 3x3, 5x5 and 7x7 lattices, respectively. The Q values increase almost 
exponentially with the supercell size. When the Q value increases, the far-field pattern 
becomes more directional and the coupling to other modes gets weaker. The far-field pattern 
for 1st order and 2nd order monopole are similar since the far-field pattern only measures its 
outgoing diffraction strength. 
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90 

180 

270 

Fig. 5. The dependence of far-field pattern on the Q values of the defect mode. The red, green 
and blue colored lines are for 3x3, 5x5 and 7x7 supercells, respectively. 

6. Mode dynamics and their Q values 

The defect mode evolution can be obtained from the field variation on the detectors by using a 
narrow bandwidth Butterworth digital filter. The results are shown in Fig. 6 for the plane 
wave incident at an angle of 60°. The evolution for mode 4(1), 4(2) and the mixed Mode 4 are 
similar and only one is calculated. The field in the defect is enhanced at the eigen-frequencies 
due to the coherent interference in the microcavity. After the steady state is reached and no 
external source is providing energy, the resonant mode decays exponentially with time. We 
can evaluate the decay rate and the Q values of the micro-cavity based on the field evolution. 

~ 0 
::; 

-1 
0 0.5 1.5 2 .5 3.5 4 .5 

~ ! : 
: 

. 

I 

N 

~ 0 
::; 

-1 
0 0.5 1.5 2 .5 3 3.5 4 4 .5 

"' ~ I 
~ 0 
::; 

-1 
0 0.5 1.5 2 .5 3.5 4 .5 5 

... 
~ 0 
::; 

0.5 1.5 2 .5 3.5 4 .5 
Time step 

X 10
4 

Fig. 6. Field (Ez) evolutions of Mode 1, Mode 2, Mode 3 and Mode 4. A 3rd order Butterworth 
digital filter is used to get the signal. The y-axis is the normalized field amplitude. Small 
ripples in Mode 4 are due to the filtering. 
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The quality factor Q can be roughly estimated using the data from Fig. 6. According to 

Ref. [1], the energy in the micro-cavity decays in the form of e -[~},so the E field amplitude 

{%} 
will decay in a form of e 2

Q . Therefore, Q can be evaluated using Q=-[mo(N1 -No)L1t] 
2InE1/ E0 

if we know the amplitudes £ 1 and £ 0 at time step N1 and N0• Taking Mode 1 as an example, it 
reaches an amplitude £ 0=1.0 at N0=14000 time steps, and its amplitude decays to £ 1=0.40 at 
time step N 1=50,000. This gives a Q value of 648. The Q values for Mode 2, 3 and 4 are 
estimated to be 276, 466 and 2936, respectively. The two degenerate modes and the mixed 
Mode 4 have similar Q values. 

The near-field pattern obtained by PWM method is the field snapshot at a time spot and 
generally the phase is fixed at 0°. Time domain method can show the oscillations of the mode 
in real time. Animations for each defect mode are shown in Fig. 7. Each animation consists of 
50 sequential field images with a time interval of 50 time steps; at one time spot each image 
records the E2 field components at all points in the whole space of study (200x200). In this 
case, the point source scheme is used. 

(a). Mode 1, Quadrupole (b). Mode 2, Quadrupole 

• • 0 0 

• 
(c). Mode 3, 2nd-order monopole (d). Mode 4, hexapole 

Fig. 7. (266kb, 271 kb, 227kb, 286kb) The animation of the near-field of Ez for the four defect 
modes in the micro-cavity. (a-d) are Mode 1-4 respectively. Only one mode of the doubly­
degenerate hexapole is shown. The spatial coordinate in these pictures is the same as in Fig. 1. 

#2273 - $15.00 us 
(C) 2003 OSA 

Received March 26, 2003 ; Revised April 27, 2003 

5 May 2003 / Vol. 11, No. 9 / OPTICS EXPRESS 1088 



7. Conclusions 

In conclusion, we have presented two numerical techniques for excitation and analysis of the 
defect modes in two-dimensional cavities using plane wave incidence and point sources. The 
two schemes do not require incorporation of dipole sources in Maxwell's equations. By using 
a plane wave incidence along different directions or arranging point sources with positive or 
negative amplitudes in a proper way, we have selectively excited the defect modes. The plane 
wave scheme cannot excite an arbitrarily chosen mode, however, it can be used to probe the 
symmetry of defect modes in the cavity. A point source scheme requires the knowledge of 
mode symmetry first, but it can excite any chosen modes. The dynamics of the defect modes 
inside the cavity have been observed using spectral filtering. Q values have been obtained 
from the decaying field. Far-field patterns have also been calculated simultaneously and 
higher Q values make the far-field patterns more direction dependent. 
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