

Old Dominion University ODU Digital Commons

Chemistry & Biochemistry Faculty Publications

Chemistry & Biochemistry

2001

Meso-1, 2-Bis (Methylazo)-1, 2-Diphenylethane

Craig A. Bayse Old Dominion University, cbayse@odu.edu

Barry K. Carpenter

Rudy L. Luck

Follow this and additional works at: https://digitalcommons.odu.edu/chemistry_fac_pubs Part of the <u>Organic Chemistry Commons</u>

Repository Citation

Bayse, Craig A.; Carpenter, Barry K.; and Luck, Rudy L., "Meso-1, 2-Bis (Methylazo)-1, 2-Diphenylethane" (2001). *Chemistry & Biochemistry Faculty Publications*. 17. https://digitalcommons.odu.edu/chemistry_fac_pubs/17

Original Publication Citation

Bayse, C.A., Carpenter, B.K., & Luck, R.L. (2001). Meso-1, 2-bis (methylazo)-1, 2-diphenylethane. Acta Crystallographica Section C: Crystal Structure Communications, 57(12), 1429-1430. doi: 10.1107/S0108270101015918

This Article is brought to you for free and open access by the Chemistry & Biochemistry at ODU Digital Commons. It has been accepted for inclusion in Chemistry & Biochemistry Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

*meso-1,2-Bis(methylazo)-1,2-di*phenylethane

Craig A. Bayse,^a Barry K. Carpenter^b and Rudy L. Luck^a*

^aDepartment of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA, and ^bDepartment of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA Correspondence e-mail: rluck@mtu.edu

Received 1 August 2001 Accepted 29 September 2001

The title compound, *meso*-1,2-bis(methyldiazenyl)-1,2-diphenylethane, $C_{16}H_{18}N_4$, is arranged in a disordered manner around an inversion point. The N–N atom distances in the azo group of 1.192 (8) and 1.195 (8) Å, and the C–C atom distances in the ethylene moiety at 1.512 (8) and 1.503 (8) Å in the two models [refined to 51.7 (6) and 48.3 (6)% occupancies] were not significantly different.

Comment

The syntheses of vicinal bis(azo)alkanes can be achieved through the oxidation of hydrazones by various reagents (Winter & Wiecko, 1969; Balachandran *et al.*, 1968; Bhatnagar & George, 1967). Depending upon the substituents on the azo groups, the compound can decompose by breaking the C–N bonds and eliminating nitrogen and alkyl radicals to form an alkene (Engel *et al.*, 1991). If the terminal *R* group is aryl, the central C–C bond is broken to form two α -hydrazonyl radicals (Engel *et al.*, 1993).

So far, there are only six structural reports on vicinal bis-(azo) compounds (Allen *et al.*, 1983). Our interest in these compounds stems from the possibility of low-temperature production of methyl radicals through simultaneous or nearsimultaneous loss of nitrogen. Here, we report the crystal structure of a vicinal bis(azo)alkane, namely *meso*-1,2-bis-(methylazo)-1,2-diphenylethane, (I).

There is disorder in the arrangement of the entire molecule. As a result, the N–N distances [1.192 (8) and 1.195 (8) Å] are slightly shorter than expected (*ca* 1.22 Å), compared with other methylazo compounds (van Remoortere & Boer, 1971; Ferguson *et al.*, 1991). The two central C–C bond distances are comparable, but shorter [1.512 (8) and 1.503 (8) Å *versus*

1.532–1.555 Å] than two known bis(azo)alkanes (Kavounis & Rentzeperis, 1983, 1984). The C–N distances involving the central ethylene bridge [1.487 (8) and 1.477 (8) Å] are also not

ORTEP-3 (Farrugia, 1997) views of (a) disorder model A and (b) disorder model B of (I), shown with 50% probability displacement ellipsoids.

significantly different and are comparable to those in the above bis(azo)alkanes (1.465–1.520 Å; Kavounis & Rentzeperis, 1983, 1984). The methylazo C–N bond distances [1.494 (6) and 1.489 (6) Å] are also comparable to previous crystal structures (van Remoortere & Boer, 1971; Ferguson *et al.*, 1991).

Experimental

The title compound was synthesized by the oxidation of benzaldehyde methylhydrazone with MnO_2 , as detailed in a separate publication (Bayse *et al.*, 2001). The product was obtained as crystals from the reaction mixture. Crystals suitable for X-ray diffraction were obtained by recrystallization from chloroform.

Crystal data	
C ₁₆ H ₁₈ N ₄	$D_x = 1.172 \text{ Mg m}^{-3}$
$M_r = 266.35$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 25
a = 5.525 (2) Å	reflections
b = 17.444 (3) Å	$\theta = 10 - 15^{\circ}$
c = 8.194 (2) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\beta = 107.10(2)^{\circ}$	T = 293 (2) K
V = 754.8 (4) Å ³	Prism, white
Z = 2	$0.40 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Enraf-Nonius Turbo-CAD-4 diffractometer Non-profiled $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.970, T_{\max} = 0.992$ 1465 measured reflections 1324 independent reflections 687 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 R(F) = 0.056 $wR(F^2) = 0.170$ S = 1.011324 reflections 107 parameters H-atom parameters constrained $\begin{aligned} R_{\text{int}} &= 0.016\\ \theta_{\text{max}} &= 25.0^{\circ}\\ h &= 0 \rightarrow 6\\ k &= 0 \rightarrow 20\\ l &= -9 \rightarrow 9\\ \text{3 standard reflections}\\ \text{frequency: 166 min}\\ \text{intensity decay: 1\%} \end{aligned}$

$$\begin{split} &w = 1/[\sigma^2(F_o^{-2}) + (0.0763P)^2 \\ &+ 0.1301P] \\ &where \ P = (F_o^{-2} + 2F_c^{-2})/3 \\ (\Delta/\sigma)_{\max} = 0.012 \\ \Delta\rho_{\max} = 0.18 \ \text{e} \ \text{\AA}^{-3} \\ \Delta\rho_{\min} = -0.13 \ \text{e} \ \text{\AA}^{-3} \end{split}$$

In the original structure solution, the disorder in the positions of the C atoms in the ethylene moiety was apparent. This model was refined with first isotropic and then anisotropic displacement parameters to convergence. The positions and isotropic displacement parameters of the H atoms were constrained and set to 1.5 times (1.2 for aryl H atoms) the isotropic equivalent of the attached atoms. At this stage, due to some unusual bond distances and angles, a new model was constructed which required restraints (24 in total, C-C =1.39 Å) to prevent correlation from hindering the refinement. This resulted in different orientations in the phenyl rings, for the N atoms of the azo groups and for the C atoms of the ethylene moiety. Only the C atom in the methyl group was unique, but this was refined with two sets of H atoms to fit the two independent models better.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia,

1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the Eastman Kodak Company and RLL thanks Michigan Technological University for support. The suggestion by a referee regarding a more appropriate model to account for the disorder is noted.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1209). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Kennard, O. & Taylor, R. (1983). Acc. Chem. Res. 16, 146–153.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Balachandran, K. S., Bhatnagar, I. & George, M. V. (1968). J. Org. Chem. 33, 3891–3895.
- Bayse, C. A., Carpenter, B. K. & Kowalczyk, I. J. (2001). In preparation.
- Bhatnagar, I. & George, M. V. (1967). J. Org. Chem. 32, 2252-2256.
- Engel, P. S., Chen, Y. & Wang, C. (1991). J. Am. Chem. Soc. 113, 4355–4356. Engel, P. S., Wang, C., Chen, Y., Rüchardt, C. & Beckhaus, H.-D. (1993). J. Am.
- Chem. Soc. 115, 65-74. Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Nether-
- lands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ferguson, G., Lough, A. J., Mackay, D. & Weeratunga, G. (1991). J. Chem. Soc. Perkin Trans. 1, 3361–3369.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Kavounis, C. A. & Rentzeperis, P. J. (1983). Z. Kristallogr. 164, 297-305.
- Kavounis, C. A. & Rentzeperis, P. J. (1984). Acta Cryst. C40, 1434-1436.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Remoortere, F. P. van & Boer, F. P. (1971). J. Chem. Soc. B, pp. 911-918.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Winter, C. & Wiecko, J. (1969). Tetrahedron Lett. pp. 1595–1598.

supporting information

Acta Cryst. (2001). C57, 1429-1430 [doi:10.1107/S0108270101015918]

meso-1,2-Bis(methylazo)-1,2-diphenylethane

Craig A. Bayse, Barry K. Carpenter and Rudy L. Luck

Computing details

Data collection: *CAD-4 EXPRESS* (Enraf-Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

(I)

Crystal data

C₁₆H₁₈N₄ $M_r = 266.35$ Monoclinic, $P2_1/n$ a = 5.525 (2) Å b = 17.444 (3) Å c = 8.194 (2) Å $\beta = 107.10$ (2)° V = 754.8 (4) Å³ Z = 2

Data collection

Enraf-Nonius Turbo-CAD4 diffractometer non-profiled $\omega/2\theta$ scans Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.970, T_{\max} = 0.992$ 1465 measured reflections 1324 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.170$ S = 1.011324 reflections 107 parameters F(000) = 256 $D_x = 1.172 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-15^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KPrism, white $0.40 \times 0.20 \times 0.10 \text{ mm}$

687 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = 0 \rightarrow 6$ $k = 0 \rightarrow 20$ $I = -9 \rightarrow 9$ 3 standard reflections every 166 min intensity decay: 1%

24 restraints H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0763P)^2 + 0.1301P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.012$ $\Delta\rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.13 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1A	0.7237 (17)	0.0451 (13)	0.3475 (13)	0.072 (2)	0.517 (6)
N2A	0.6975 (10)	0.0722 (3)	0.2098 (6)	0.079 (2)	0.517 (6)
C1A	1.030 (3)	0.1049 (8)	0.5936 (18)	0.0546 (18)	0.517 (6)
C2A	1.217 (3)	0.1600 (8)	0.6111 (16)	0.0590 (17)	0.517 (6)
H2A	1.3274	0.1573	0.5444	0.071*	0.517 (6)
C3A	1.240 (3)	0.2193 (7)	0.7281 (14)	0.058 (2)	0.517 (6)
H3A	1.3659	0.2562	0.7398	0.069*	0.517 (6)
C4A	1.076 (3)	0.2233 (8)	0.8277 (17)	0.060 (2)	0.517 (6)
H4A	1.0915	0.263	0.906	0.073*	0.517 (6)
C5A	0.889 (3)	0.1682 (9)	0.8102 (18)	0.064 (2)	0.517 (6)
H5A	0.7786	0.1709	0.8769	0.076*	0.517 (6)
C6A	0.866 (3)	0.1089 (9)	0.6932 (17)	0.0603 (18)	0.517 (6)
H6A	0.7401	0.072	0.6815	0.072*	0.517 (6)
C7A	0.9889 (13)	0.0394 (3)	0.4601 (9)	0.058 (2)	0.517 (6)
H7A	1.1079	0.0446	0.3926	0.069*	0.517 (6)
C8A	0.4260 (6)	0.08370 (19)	0.1109 (4)	0.1016 (12)	0.517 (6)
H8A1	0.4158	0.1045	0.0006	0.152*	0.517 (6)
H8A2	0.3487	0.1186	0.1712	0.152*	0.517 (6)
H8A3	0.339	0.0354	0.0972	0.152*	0.517 (6)
N1B	0.7669 (16)	0.0530 (14)	0.3206 (14)	0.072 (2)	0.483 (6)
N2B	0.5411 (10)	0.0517 (3)	0.2850 (6)	0.0692 (19)	0.483 (6)
C1B	0.984 (3)	0.0975 (9)	0.612 (2)	0.0546 (18)	0.483 (6)
C2B	1.165 (3)	0.1460 (9)	0.5813 (17)	0.0590 (17)	0.483 (6)
H2B	1.2396	0.134	0.4963	0.071*	0.483 (6)
C3B	1.236 (3)	0.2123 (8)	0.6774 (16)	0.058 (2)	0.483 (6)
H3B	1.357	0.2448	0.6568	0.069*	0.483 (6)
C4B	1.124 (3)	0.2303 (8)	0.8043 (19)	0.060 (2)	0.483 (6)
H4B	1.1715	0.2747	0.8686	0.073*	0.483 (6)
C5B	0.943 (3)	0.1818 (9)	0.8351 (18)	0.064 (2)	0.483 (6)
H5B	0.8686	0.1938	0.92	0.076*	0.483 (6)
C6B	0.873 (3)	0.1154 (9)	0.7390 (19)	0.0603 (18)	0.483 (6)
H6B	0.7512	0.083	0.7596	0.072*	0.483 (6)
C7B	0.8922 (13)	0.0268 (5)	0.4967 (9)	0.063 (2)	0.483 (6)
H7B	0.7673	-0.0006	0.5383	0.076*	0.483 (6)
C8B	0.4260 (6)	0.08370 (19)	0.1109 (4)	0.1016 (12)	0.483 (6)
H8B1	0.2448	0.0812	0.0829	0.152*	0.483 (6)
H8B2	0.4813	0.0544	0.0293	0.152*	0.483 (6)
H8B3	0.4776	0.1361	0.1081	0.152*	0.483 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	1 1	. ,				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1A	0.082 (3)	0.062 (4)	0.057 (3)	0.009 (3)	-0.003 (3)	0.010 (3)
N2A	0.094 (4)	0.071 (3)	0.060 (4)	0.014 (3)	0.006 (3)	0.009 (3)
C1A	0.060 (5)	0.043 (3)	0.056 (3)	-0.001 (2)	0.010 (2)	0.004 (3)
C2A	0.052 (6)	0.062 (5)	0.055 (4)	-0.011 (3)	0.002 (4)	-0.015 (3)
C3A	0.071 (2)	0.062 (3)	0.035 (7)	-0.009(2)	0.008 (4)	-0.009 (3)
C4A	0.066 (6)	0.051 (3)	0.061 (4)	-0.002(2)	0.014 (3)	-0.002 (3)
C5A	0.055 (6)	0.066 (5)	0.064 (4)	-0.009 (3)	0.009 (5)	-0.018 (3)
C6A	0.0676 (19)	0.067 (3)	0.043 (7)	-0.0130 (19)	0.012 (4)	-0.008 (3)
C7A	0.055 (4)	0.053 (4)	0.066 (4)	0.003 (3)	0.022 (3)	-0.002 (3)
C8A	0.107 (3)	0.082 (2)	0.079 (2)	0.0164 (19)	-0.0293 (19)	0.0047 (18)
N1B	0.082 (3)	0.062 (4)	0.057 (3)	0.009 (3)	-0.003 (3)	0.010 (3)
N2B	0.060 (4)	0.070 (3)	0.068 (4)	0.004 (3)	0.004 (3)	0.005 (3)
C1B	0.060 (5)	0.043 (3)	0.056 (3)	-0.001 (2)	0.010 (2)	0.004 (3)
C2B	0.052 (6)	0.062 (5)	0.055 (4)	-0.011 (3)	0.002 (4)	-0.015 (3)
C3B	0.071 (2)	0.062 (3)	0.035 (7)	-0.009(2)	0.008 (4)	-0.009 (3)
C4B	0.066 (6)	0.051 (3)	0.061 (4)	-0.002 (2)	0.014 (3)	-0.002 (3)
C5B	0.055 (6)	0.066 (5)	0.064 (4)	-0.009 (3)	0.009 (5)	-0.018 (3)
C6B	0.0676 (19)	0.067 (3)	0.043 (7)	-0.0130 (19)	0.012 (4)	-0.008 (3)
C7B	0.049 (4)	0.076 (5)	0.061 (5)	0.016 (4)	0.010 (4)	0.006 (3)
C8B	0.107 (3)	0.082 (2)	0.079 (2)	0.0164 (19)	-0.0293 (19)	0.0047 (18)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
N1AC7A $1.487 (8)$ N1BC7B $1.477 (8)$ N2AC8A $1.494 (6)$ N2BC8B $1.489 (6)$ C1AC2A 1.39 C1BC2B 1.39 C1AC6A 1.39 C1BC6B 1.39 C1AC7A $1.551 (5)$ C1BC7B $1.545 (6)$ C2AC3A 1.39 C2BC3B 1.39 C3AC4A 1.39 C3BC4B 1.39 C4AC5A 1.39 C4BC5B 1.39 C5AC6A 1.39 C5BC6B 1.39 C7AC7A ⁱ $1.512 (8)$ C7BC7B ⁱ $1.503 (8)$ N2AN1AC7A $115.9 (9)$ N2BN1BC7B $112.9 (9)$ N1AN2AC8A $113.0 (7)$ N1BN2BC8B $110.4 (7)$ C2AC1AC6A 120 C2BC1BC6B 120 C2AC1AC7A $112.2 (5)$ C2BC1BC7B $119.9 (6)$ C4AC7A $122.2 (5)$ C2BC1BC7B $120.0 (6)$ C1AC7A 120 C2BC3BC3B 120 C2AC3AC4A 120 C2BC3BC3B 120 C4AC3A 120 C2BC3BC4B 120 C4AC3AC4A 120 C5BC4BC3B 120 C4AC5AC6A 120 C5BC4BC3B 120 C5AC6AC1A 120 C5BC4BC1B 120	N1A—N2A	1.192 (8)	N1B—N2B	1.195 (8)	
N2AC8A1.494 (6)N2BC8B1.489 (6)C1AC2A1.39C1BC2B1.39C1AC6A1.39C1BC6B1.39C1AC7A1.551 (5)C1BC7B1.545 (6)C2AC3A1.39C2BC3B1.39C3AC4A1.39C3BC4B1.39C4AC5A1.39C4BC5B1.39C5AC6A1.39C5BC6B1.39C7AC7A ⁱ 1.512 (8)C7BC7B ⁱ 1.503 (8)N2AN1AC7A115.9 (9)N2BN1BC7B112.9 (9)N1AN2AC8A113.0 (7)N1BN2BC8B110.4 (7)C2AC1AC6A120C2BC1BC7B119.9 (6)C6AC1AC7A122.2 (5)C2BC1BC7B119.9 (6)C6AC1AC7A117.8 (5)C6BC1BC7B120.0 (6)C1AC2AC3A120C2BC3BC4B120C2AC3AC4A120C2BC3BC4B120C4AC5AC6A120C2BC3BC4B120C5AC6AC1A120C5BC4BC3B120C5AC6AC1A120C5BC4BC3B120	N1A—C7A	1.487 (8)	N1B—C7B	1.477 (8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2A—C8A	1.494 (6)	N2B—C8B	1.489 (6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1A—C2A	1.39	C1B—C2B	1.39	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1A—C6A	1.39	C1B—C6B	1.39	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1A—C7A	1.551 (5)	C1B—C7B	1.545 (6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2А—С3А	1.39	C2B—C3B	1.39	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3A—C4A	1.39	C3B—C4B	1.39	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4A—C5A	1.39	C4B—C5B	1.39	
C7A—C7A ⁱ 1.512 (8) C7B—C7B ⁱ 1.503 (8) N2A—N1A—C7A 115.9 (9) N2B—N1B—C7B 112.9 (9) N1A—N2A—C8A 113.0 (7) N1B—N2B—C8B 110.4 (7) C2A—C1A—C6A 120 C2B—C1B—C6B 120 C2A—C1A—C7A 122.2 (5) C2B—C1B—C7B 119.9 (6) C6A—C1A—C7A 117.8 (5) C6B—C1B—C7B 120.0 (6) C1A—C2A—C3A 120 C1B—C2B—C3B 120 C2A—C3A—C4A 120 C5B—C4B—C3B 120 C5A—C4A—C3A 120 C5B—C4B—C3B 120 C4A—C5A—C6A 120 C6B—C5B—C4B 120 C5A—C6A—C1A 120 C6B—C5B—C4B 120 C5A—C6A—C1A 120 C6B—C5B—C4B 120	C5A—C6A	1.39	C5B—C6B	1.39	
N2AN1AC7A115.9 (9)N2BN1BC7B112.9 (9)N1AN2AC8A113.0 (7)N1BN2BC8B110.4 (7)C2AC1AC6A120C2BC1BC6B120C2AC1AC7A122.2 (5)C2BC1BC7B119.9 (6)C6AC1AC7A117.8 (5)C6BC1BC7B120.0 (6)C1AC2AC3A120C1BC2BC3B120C2AC3AC4A120C2BC3BC4B120C5AC4AC3A120C5BC4BC3B120C4AC5AC6A120C6BC5BC4B120C5AC6AC1A120C5BC6BC1B120	C7A—C7A ⁱ	1.512 (8)	$C7B$ — $C7B^{i}$	1.503 (8)	
N2AN1AC7A115.9 (9)N2BN1BC7B112.9 (9)N1AN2AC8A113.0 (7)N1BN2BC8B110.4 (7)C2AC1AC6A120C2BC1BC6B120C2AC1AC7A122.2 (5)C2BC1BC7B119.9 (6)C6AC1AC7A117.8 (5)C6BC1BC7B120.0 (6)C1AC2AC3A120C1BC2BC3B120C2AC3AC4A120C2BC3BC4B120C5AC4AC3A120C5BC4BC3B120C4AC5AC6A120C6BC5BC4B120C5AC6AC1A120C5BC6BC1B120					
N1AN2AC8A113.0 (7)N1BN2BC8B110.4 (7)C2AC1AC6A120C2BC1BC6B120C2AC1AC7A122.2 (5)C2BC1BC7B119.9 (6)C6AC1AC7A117.8 (5)C6BC1BC7B120.0 (6)C1AC2AC3A120C1BC2BC3B120C2AC3AC4A120C2BC3BC4B120C5AC4AC3A120C5BC4BC3B120C4AC5AC6A120C6BC5BC4B120C5AC6AC1A120C5BC6BC1B120	N2A—N1A—C7A	115.9 (9)	N2B—N1B—C7B	112.9 (9)	
C2A—C1A—C6A120C2B—C1B—C6B120C2A—C1A—C7A122.2 (5)C2B—C1B—C7B119.9 (6)C6A—C1A—C7A117.8 (5)C6B—C1B—C7B120.0 (6)C1A—C2A—C3A120C1B—C2B—C3B120C2A—C3A—C4A120C2B—C3B—C4B120C5A—C4A—C3A120C5B—C4B—C3B120C4A—C5A—C6A120C6B—C5B—C4B120C5A—C6A—C1A120C5B—C6B—C1B120	N1A—N2A—C8A	113.0 (7)	N1B—N2B—C8B	110.4 (7)	
C2A—C1A—C7A122.2 (5)C2B—C1B—C7B119.9 (6)C6A—C1A—C7A117.8 (5)C6B—C1B—C7B120.0 (6)C1A—C2A—C3A120C1B—C2B—C3B120C2A—C3A—C4A120C2B—C3B—C4B120C5A—C4A—C3A120C5B—C4B—C3B120C4A—C5A—C6A120C6B—C5B—C4B120C5A—C6A—C1A120C5B—C6B—C1B120	C2A—C1A—C6A	120	C2B—C1B—C6B	120	
C6A—C1A—C7A117.8 (5)C6B—C1B—C7B120.0 (6)C1A—C2A—C3A120C1B—C2B—C3B120C2A—C3A—C4A120C2B—C3B—C4B120C5A—C4A—C3A120C5B—C4B—C3B120C4A—C5A—C6A120C6B—C5B—C4B120C5A—C6A—C1A120C5B—C6B—C1B120	C2A—C1A—C7A	122.2 (5)	C2B—C1B—C7B	119.9 (6)	
C1A—C2A—C3A120C1B—C2B—C3B120C2A—C3A—C4A120C2B—C3B—C4B120C5A—C4A—C3A120C5B—C4B—C3B120C4A—C5A—C6A120C6B—C5B—C4B120C5A—C6A—C1A120C5B—C6B—C1B120	C6A—C1A—C7A	117.8 (5)	C6B—C1B—C7B	120.0 (6)	
C2A—C3A—C4A120C2B—C3B—C4B120C5A—C4A—C3A120C5B—C4B—C3B120C4A—C5A—C6A120C6B—C5B—C4B120C5A—C6A—C1A120C5B—C6B—C1B120	C1A—C2A—C3A	120	C1B—C2B—C3B	120	
C5A—C4A—C3A120C5B—C4B—C3B120C4A—C5A—C6A120C6B—C5B—C4B120C5A—C6A—C1A120C5B—C6B—C1B120	C2A—C3A—C4A	120	C2B—C3B—C4B	120	
C4A—C5A—C6A120C6B—C5B—C4B120C5A—C6A—C1A120C5B—C6B—C1B120	С5А—С4А—С3А	120	C5B—C4B—C3B	120	
C5A—C6A—C1A 120 C5B—C6B—C1B 120	C4A—C5A—C6A	120	C6B—C5B—C4B	120	
	C5A—C6A—C1A	120	C5B—C6B—C1B	120	

N1A-C7A-C7A ⁱ	105.6 (9)	N1B-C7B-C7B ⁱ	111.5 (10)
N1A—C7A—C1A	107.5 (7)	N1B—C7B—C1B	109.0 (8)
C7A ⁱ —C7A—C1A	112.8 (11)	C7B ⁱ —C7B—C1B	111.2 (12)

Symmetry code: (i) -x+2, -y, -z+1.