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Coherent backscattering of light in atomic systems: Application to weak localization
in an ensemble of cold alkali-metal atoms
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Development of a theoretical treatment of multiple coherent light scattering in an ultracold atomic gas is
reported. Specific application is made to coherent backscattering of a weak-radiation field from realistically
modeled samples of ultracold atomic85Rb. Comprehensive Monte Carlo simulations of the spatial, spectral,
and polarization dependence of the backscattering line shape are made and compared with available experi-
mental results.

DOI: 10.1103/PhysRevA.67.013814 PACS number~s!: 42.50.Ct, 32.80.Pj, 32.80.Qk

I. INTRODUCTION

Elastic and quasielastic scattering of light by elementary
systems is a fundamental method of probing their internal or
microscopic structure. The earliest exposition of this subject
in modern form, focusing on light scattering from individual
atoms, was made by Placzek@1# in 1934. Yet remarkable
effects associated with the interaction of light and matter,
including recent studies of ultraslow light propagation in
atomic gases@2,3#, macroscopically entangled quantum pho-
tonic states@4#, and localization of light in complex media
@5#, continue to be dynamic areas of research in quantum
optics. The quantitative aspects of the scattering typically
depend on a characteristic length scale for the physical sys-
tem in comparison to the wavelength of the light. For single-
atom Rayleigh or Raman scattering, the scale of interest is of
the order of the wavelength. However, for optically dense
systems both coherent and incoherent multiple light scatter-
ing occurs; in this case the scattering mean free path and the
physical size of the samples can also be important.

For near-resonant radiation propagating in optically dense
media such as atomic or molecular gases, or for certain solid
materials, multiple scattering can dominate the transmission
and scattering properties of the medium. Although light
propagation in this case is often thought to be diffusive, a
wide range of remarkable phenomena associated with coher-
ent radiative transport has been observed in solids and liq-
uids @6,7#. First detailed observations of robust coherent ef-
fects in multiple light scattering were made of coherent
backscattering, an effect in which light incident on a sample
follows reciprocal paths through the material@8–10#. Identi-
cal phase accumulation for these paths results in constructive
interference for light scattered into a narrow cone in the
backward direction. The coherent backscattering effect and
other multiple-scattering phenomena have found a wide
range of applications to studies of light diffusion in biologi-
cal samples, in acoustics, in characterization and calibration
of nanoscale materials, and in planetary astronomy. A related
important effect is lasing in random media@11,12#, in which
gain along reciprocal multiple-scattering paths can lead to
mirrorless lasing in bulk material.

Coherent multiple light scattering is an observational in-
dicator of weak localization of light@13,14#, in which diffu-
sion is inhibited by interference of reciprocal scattering paths
in a material. When the scattering is strong enough diffusion
may cease, and the light can become strongly localized. Such
strong localization is a type of phase transition, in which
ideally there exist localized states of light within a medium.
Localization of this type is analogous to Anderson localiza-
tion of electrons@15,16,6#. There has been to date two re-
ports of such effects, one in the optical regime, and a second
in the microwave region of the electromagnetic spectrum@5#.
In that research, unique characteristics of both coherently
backscattered light and the behavior of the intensity of the
transmitted incoherent flux served as indicators of localiza-
tion. In addition to these characteristics, it has recently been
shown that there are strong statistical signatures of photon
localization in random media@17,18#.

Atomic gases form unique, especially well controlled and
characterized systems in which to study light localization.
Part of this is due to the very narrow width of atomic optical
resonances, and that the multipolar atomic state distributions
may be readily manipulated with external static or dynamic
fields. In addition, the well-developed techniques of atom
cooling and trapping@19# allow further control over the
sample properties. Excitation of the atoms in the vicinity of
resonances, and varying the polarization of the exciting light,
permits variation of the scattering length and the tensor char-
acter of the localization effects@6,7#. The scattering from
individual atoms, and the combined coherent effects of mul-
tiple Rayleigh and Raman scattering may also readily be
modeled, at least in a far-field limit for the scattering. In
gaseous atomic systems, however, coherent backscattering
has only recently been observed in ultracold atomic samples
confined in a magneto-optical trap@20–22#. These experi-
ments have revealed a range of, as yet not completely under-
stood, phenomena associated with sample density, detuning
from resonance, sample size, and polarization@23,24#. In ad-
dition, recent experiments have shown strong magnetic-field-
dependent spatial variations in the coherently backscattered
intensity, both in atomic gases@22# and in turbid media@25#.
Finally, even though it should be possible to observe coher-
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ent backscattering from a thermal atomic vapor, to our
knowledge no such experiments have yet been reported.

A main motivation of the research presented here is to
theoretically examine the effects of weak localization of light
in ultracold monoatomic gases. Of particular interest is the
character of the coherent backscattering cone under condi-
tions closely matched to those obtainable in experiments.
These conditions include the size and optical depth of a
sample of atoms confined in a magneto-optic trap. Also in-
cluded is the important influence of radiative transitions
among the hyperfine components of the atom, including elas-
tic Rayleigh and Raman, and inelastic Raman transitions. We
specifically report the spatial and spectral distribution and
relative intensity of light scattered in the nearly backward
direction for Rayleigh and Raman transitions in85Rb. A sec-
ond focus of this paper is to illustrate the development of the
theory of multiple coherent light scattering in atomic systems
and in the weak-localization regime, with particular attention
to the development of higher orders of light scattering. In
this, we will be interested ultimately in the regime of strong
localization of light, where the light may be trapped by mul-
tiple coherent scattering inside the atomic medium.

In the following sections, we first develop the theory used
to describe multiple light scattering, starting with a review of
the relevant aspects of single scattering of light from an atom
in a weak field. This is followed by consideration of double
scattering, and then generalizing to the case of multiple light
scattering. Specific consideration is made of the effects of
interference in multiple scattering and the transformation of
the polarization of the incident beam into the near-backward
direction. Consideration is then made of the details of the
numerical simulation as applied to the coherent backscatter-
ing geometry. Results are presented and described for the
spatial and polarization transformation of the incident light
beam, in the multiply scattered regime, into the near-
backscattering direction. Finally, the results are discussed in
the context of recent experiments.

II. GENERAL THEORY

Consider a system ofN identical atoms located in a finite
volume and scattering coherent light of frequencyv. The
wave of light incident on the atomic ensemble is assumed to
be weak enough that possible saturation effects in its inter-
action with the atoms are negligible. The atomic ensemble,
in general, represents an optically dense medium for reso-
nance scattering, but, on the average, the atoms are separated
by distances much larger than the wavelength|. Thus each
atom is located, on the average, in the radiation zone of its
neighbors. The interaction of the atoms with incident and
multiply scattered light is assumed to be of the dipole type
and, as we will show, for a proper description of multiple
scattering has to be restricted to the rotating wave approxi-
mation. In our analysis, we will ignore any possible effects
due to dependent scattering, where light is scattered from
pairs of interacting atoms; dependent scattering may be im-
portant for atom-atom separations less than a wavelength of
light. As discussed in a recent review@26#, and particularly
in the context of radiative transport as shown in Ref.@27#,

dependent scattering becomes important for a quite physi-
cally dense medium where the number of atoms per cubic
wavelength becomes order of unity. In the present study, we
are restricted to average densities an order of magnitude less
than this, and so we ignore effects associated with nonradi-
ative excitation transfer caused by long-range dipole-dipole
interactions.

To follow as clearly as possible some analogy between
classical and quantum descriptions of the coherent back-
scattering it seems convenient to solve the quantum problem
in the Heisenberg picture. In such an approach, the basic
process is the transformation of the electric-field operators in
a single-scattering event. This process will be discussed at
first, as an example of the transformation of the operator of
the free electric field of a moving atom. As we establish, the
field transformation in the single-scattering process is unitary
and conserves the commutation relations. This allows us to
make a subsequent generalization to the situation of an arbi-
trary number of scatterers. Then, we discuss the phenomenon
of weak localization in an atomic ensemble containing a
macroscopic number of atoms.

A. Transformation of the electric field in single scattering

The unperturbed electric-field operator in the origin of the
coordinate frame coupled with a scattering atom, which
moves with velocityv, is given by

Ê0~ t !5(
km

S 2p\vk

V D 1/2

~2 i !@ekm* akm
† ei (vk2k•v)t

2ekmakme2 i (vk2k•v)t#5Ê0
(2)~ t !1Ê0

(1)~ t !, ~1!

whereakm
† , akm are, respectively, the operators of creation

and annihilation of the photon with wave vectork and in the
polarization stateekm . V is the quantization volume. The
second line in Eq.~1! defines negative and positive fre-
quency components of the electric field.

The dipole-type interaction operator of the atom with the
electric field is given by

V̂~ t !52d̂~ t !Ê0~ t !, ~2!

where the operator for the atomic dipole momentd̂(t) and
for the electric field are defined in the interaction represen-
tation. Based on a perturbation theoretic approach, the exact
solution for the Heisenberg operator can be written as the
following expansion

Ê~ t !5Ê0~ t !1Ê1~ t !1Ê2~ t !1•••, ~3!

which can be also written for positiveÊ(1)(t) and negative
Ê(2)(t) frequency components. We assume that the wave
function of the joint atom-field system describes the com-
bined state, where an atom occupies the ground state and the
electric field is in the single-photon state or in a weak coher-
ent state. Then the correction of the first order in Eq.~3! will
disappear after averaging over the wave function. Thus, the
second-order correction gives us the main contribution, since
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it is responsible for the scattering process. The second-order
term in Eq.~3! can be written as follows:

Ê2~ t !52
1

\2E0

t

dt9E
t9

t

dt8

3†d̂~ t9!Ê0~ t9!,@ d̂~ t8!Ê0~ t8!,Ê0~ t !#‡. ~4!

As follows from this expression, in a complete dynamical
description of the process there is a memory of initial con-
ditions in the formal expansion of perturbation theory. How-
ever, for nonsaturating fields this solution can be spread out
over the timet@g21, whereg is the natural radiative relax-
ation rate of the upper state. But in this case, it is necessary
to take into account all the radiative corrections for retarda-
tion and the advanced Green’s functions of the decaying up-
per atomic state. This can be done by introducing a natural
decay law into the time behavior of the functions. Then the
integral ~4! loses its dependence on the lower limit, i.e., on
the initial time coordinate.

The integral~4! gives us the solution for the electric field
in the origin of the frame coupled with a moving atom. But
in the zero order of relativistic effects, when only retardation
effects in the radiation zone have to be taken into consider-
ation, this solution coincides with the electric field in the
laboratory frame at the point of atom location as well as in
the small vicinity of this point. Then, we can obtain the so-
lution for any point in the laboratory frame by using the
propagation law in free space. By this procedure one obtains
the following expansion for the positive frequency compo-
nent of the electric-field operator in the radiation zone (r
@|) of the scattering atom,

Ê(1)~r ,t !5Ê0
(1)~r ,t !1Ê2

(1)~r ,t !1•••, ~5!

where

Ê0
(1)~r ,t !5(

km
S 2p\vk

V D 1/2

e2 i (vkt2k•r )iekmakm

and

Ê2
(1)~r ,t !5 (

m,m8
(

n
(
km

S 2p\vk

V D 1/2 1

ir
e2 iv8t1 ik8r

3um8&^muakm

v82

\c2 F2
i ~d'!nm~d•ekm!m8n

i ~v81vnm2k8•v!

1
i ~d'!m8n~d•ekm!nm

i ~vk2vnm2k•v!2gn/2G , ~6!

and the negative frequency component is given by the Her-
mitian conjugate,E(2)(r ,t)5E(1)†(r ,t). Here, the origin of
the frame is chosen in the location of the atom, which is
assumed to be unchanged during the light propagation time
r /c. The scattered light frequencyv8 is defined here via the

input frequencyvk , and the Raman shiftvm8m for atomic
transition um&→um8&. There is an additional Doppler shift
caused by atomic motion, given by

v8[vk85vk2vm8m1~k82k!v. ~7!

The wave vectork85v8r /cr, but in the right-hand side of
Eq. ~7! the Doppler correction is neglected and it is assumed
thatk8'vr /cr. The transition dipole moments in Eq.~6! are
defined in the Schro¨dinger representation and its transverse
component is given by

d̂'5d̂2~ d̂•k8!
k8

k82
. ~8!

The sum overn is expanded over all possible excited transi-
tions characterized by natural linewidthsgn , but as a prac-
tical matter, the sum can be restricted to the most significant
resonance transitions and the frequencyvk[v can be asso-
ciated with the frequency of the incident mode.

Based on Eq.~6!, we can define the cross section of the
Rayleigh-Raman single scattering of the photonv,k,e into
the modev8,k8,e8 accompanied by the atomic transition
um&→um8& as

ds5
V

2p\v8
^@e8* Ê2

(1)~r ,t !#†e8* Ê2
(1)~r ,t !&r 2dV8

5
vv83

\2c4 U(n
F2

~d•e8* !nm~d•e!m8n

i ~v81vnm2k8•v!

1
~d•e8* !m8n~d•e!nm

i ~v2vnm2k•v!2gn/2GU2

dV8, ~9!

which coincides with the well-known Kramers-Heisenberg
formula, @28#. The scattered radiation frequencyv8 is ex-
pressed here in terms of the incident frequencyv via rela-
tionship~7! that takes into account possible frequency shifts
caused by atomic motion.

The advantage of the Heisenberg approach is in the clear
connection to a classical description. If in the brackets of Eq.
~6!, we leave only the major resonance term, and identify the
electric-field operators asc numbers, then expansion of Eq.
~5! will be quite similar to the corresponding classical expan-
sion, where the atom can be treated as a model harmonic
oscillator. One obtains in that case a complete coincidence
with a classical model for a1S→ 1P resonance atomic tran-
sition.

B. Unitarity of the transformation

In spite of the fact that in Eq.~5!, we keep only the lead-
ing nonvanishing terms of a full expansion, these terms still
maintain the commutation relation for the electric-field op-
erators, i.e., they reveal the unitary transformation of the
field by a scatterer. Let us show here that
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@Êi
(1)~r ,t !,Êj

(2)~r 8,t !#5@Ê0i
(1)~r ,t !,Ê0 j

(2)~r 8,t !#, ~10!

where the left-hand side is given by Eqs.~5! and ~6!. This
result can be established with the following assumptions.
First, we assume the spatial arguments to be located in the
radiation zone of the scattering atomr @|, which lets us
expand the spherical wave in Eq.~6! in a set of plane waves
in the small volume in the vicinity of some average pointr̄
with the local direction of az axis alongr̄ . Second, we leave
only the quasiresonance term in Eq.~6! and restrict by this
our proof to the rotating wave approximation. We addition-
ally discuss below the importance of this approximation for
fulfillment of Eq. ~10!.

As can be shown by straightforward calculation with
these assumptions, one has

@Ê2i
(1)~r ,t !,Ê0 j

(2)~r 8,t !#1@Ê0i
(1)~r ,t !,Ê2 j

(2)~r 8,t !#

52
1

3
d i j

1

r̄ 2E dv

2p
eik(r2r8)(

m,n
um&^muS v

c D 4

3
udnmu2gn

~v2vnm2k•v!21gn
2/4

, ~11!

if i , j 5x or y and to be equal to zero, otherwise. The wave
vector k under the spectral integral is given byk5v r̄ /cr̄.
On the other hand,

@Ê2i
(1)~r ,t !,Ê2 j

(2)~r 8,t !#

51
1

3
d i j

1

r̄ 2E dv

2p
eik(r2r8)(

m,n
um&^mu

v3

vnm
3 S v

c D 4

3
udnmu2gn

~v2vnm2k•v!21gn
2/4

, ~12!

if i , j 5x or y and is equal to zero otherwise. Here, we ne-
glected the difference betweenv andv8 in the slowly vary-
ing functions in the vicinity of resonancev;vnm .

The integrals on the right-hand sides of Eqs.~11! and~12!
are nonconverging. This indicates the insufficiency of a
dipole-type approximation for high frequencies. But both the
expressions are actually valid in the assumption that the
spectral band, contributed in the spectral integrals, is in the
region surrounding the resonance transitionv;vnm . That
is, the basic idea of the rotating wave approximation. In this
case, the right-hand sides of Eqs.~11! and ~12! are equal in
magnitude but have opposite signs. So, we see that these
terms compensate one another and, thus, the transformation
of Eqs.~5! and~6! does not violate the commutation relation,
i.e., they reveal the unitary transformation.

As a consequence of this there is no modification of any
Green’s propagation function of the field perturbed by the
atom in a vicinity of any spatial point in its radiation zone,
where another atom can be located. Thus, the fourth-order

term in correction of the electric-field perturbed by two at-
oms can be calculated via evaluation of the integral~4! near
the location of the second atom, by substituting there the
modified electric-field operators~5! and ~6!. While evaluat-
ing this integral, we can use the Green’s function of a free
field. In turn, this lets us make the next-step correction for
the double-scattering case by double action of the transfor-
mation~5! and~6!. It should be kept in mind always, that, in
this procedure, we are strongly restricted in the approach by
the rotating wave approximation.

C. Double scattering

Consider the double scattering of the photonv,k,e se-
quentially by atom 1, located at the pointr1 and then by
atom 2, located at the pointr2. In the output channel, we
detect the photonv8,k8,e8. In the backscattering limit the
propagation direction of the output photonk8 is assumed to
be close to the direction2k.

It is convenient to describe the fourth-order correction of
the field operator in terms of a scattering tensor, see Ref.
@28#. Let us define the scattering tensor in operator form as

â j i
(m8m)~v!52(

n
um8&^mu

~dj !m8n~di !nm

\~v2vnm!1 i\gn/2

[um8&^mua j i
(m8m)~v!, ~13!

which is responsible for the Rayleigh-Raman scattering as-
sociated with an atomic transitionum&→um8&. According to
the above discussion, we keep here only the leading qua-
siresonant contribution.

Then, the fourth-order correction to the positive frequency
component of the electric-field amplitude for successive scat-
tering on atom 1 and 2 is given by

Ê4;1→2
(1) ~r ,t !5

1

ur2r2ur 12

3 (
m1 ,m18

(
m2 ,m28

(
n

(
i j

(
k,m

S 2p\vk

V D 1/2

3
v2

2

c2

v12
2

c2
exp~2 iv2t1 ik2ur2r2u

1 ik12r 121 ik•r1!ek8nâ
n i

(m28m2)
~v122k12v2!

3d i j
'â

j m

(m18m1)
~v2k•v1!akm . ~14!

Here, the intermediate and output frequencies are the follow-
ing:

v125v2vm
18m1

1~k122k!v1 ,
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v25v122vm
28m2

1~k22k12!v2 , ~15!

wherev1 andv2 are the velocities of the first and the second
atoms, respectively. Then the intermediate and output wave
vectors are given by

k125
v12

c

r22r1

ur22r1u
'

v

c

r22r1

ur22r1u
,

k25
v2

c

r2r2

ur2r2u
'

v

c

r2r2

ur2r2u
, ~16!

where the approximated expressions should be substituted in
the Doppler terms. Byr 125ur22r1u, we denoted the relative
distance between the atoms. Thed' symbol is defined as
follows:

d i j
'5d i j 2

k12ik12j

k12
2

, ~17!

and we use the set of Cartesian coordinates for tensor nota-
tion.

The full contribution of the fourth-order term is given by
the sum

Ê4
(1)~r ,t !5Ê4;1→2

(1) ~r ,t !1Ê4;2→1
(1) ~r ,t !, ~18!

where the second term describes the scattering in the reverse
sequence, i.e., on atom 2 first and on atom 1 second. It can
be expressed by Eqs.~14!–~17! with replacement 1↔2. In
the case of backscattering, whenk1 ,k2;2k the output fre-
quencies for both the sequencesv1 and v2 have the same
Doppler shift. But in a general situation, quantum mechanics
allows that the initial states of the atomsum1& or um2& could
be different for the direct and reciprocal paths contributing to
Eq. ~18!, basically if atoms are in the superposed coherent
states. Here, we restrict our discussion by assumption that
the atoms occupy initially the certain statesum1& and um2&.
Thus, the output frequency is equal for both the paths, i.e.,
v85v25v1.

The double scattering cross section can be introduced
similarly to Eq.~9!

ds125
V

2p\v8
^@e8* Ê4

(1)~r ,t !#†e8* Ê4
(1)~r ,t !&r 2dV8

5ds12
(L)1ds12

(I ) , ~19!

where the first term is the so-called ladder term describing
the contribution of successive double scattering of the pho-
ton of the modev,k,e into the photon of the modev8,k8,e8
along either the direct or reciprocal paths. This term can be
expressed as follows:

ds12
(L)5

vv83

c4

v12
4

c4

1

r 12
2 U(

nm
(
i j

e8n*

3a
n i

(m28m2)
~v122k12•v2!

3d i j
'a

j m

(m18m1)
~v2k•v1!emU2

dV81$1⇔2%.

~20!

Here, we have written out the term which describes the scat-
tering on atom 1 first and and on atom 2 second, i.e., along a
direct path, and the unwritten term describes the scattering
sequence in opposite order, i.e., along a reciprocal path. The
reciprocal term can be reproduced by replacement of all the
indices 1↔2 in the direct term.

The cross sectionds12
(I ) is responsible for the interference

between direct and reciprocal paths and it is given by

ds12
(I )5

vv83

c4

v12
2

c2

v21
2

c2

1

r 12
2

exp@ i ~k81k!~r12r2!

1 i ~k122k21!r 12#(
nm

(
n̄m̄

(
i j

(
ı̄ j̄

e8n*

3a
n i

(m28m2)
~v122k12•v2!d i j

'a
j m

(m18m1)
~v2k•v1!

3eme8 n̄a
n̄ ı̄

(m18m1)*
~v212k21•v1!d ı̄ j̄

' a
j̄ m̄

(m28m2)*

3~v2k•v2!em̄
* dV81$1⇔2%, ~21!

where the second unexpanded term is the complex conjugate
of the expanded term. We assume here that the output photon
has the propagation directionk8 close to the direction2k.
That is, the most important situation when the effect of in-
terference does not disappear after the averaging over the
locations of atoms. But even so, the intermediate frequencies
v12 andv21 as well as wave numbersk12 andk21 are distin-
guished because of the difference in the Doppler shifts, see
Eq. ~15!.

Let us show, how the single- and double-scattering con-
tributions manifest themselves in the scattering of one pho-
ton on a system of two atoms having random locations in
space. The probability of backscattering can be written as
follows:

dw}S 12
s2

S
u21D 2

ds11S 12
s1

S
u12D 2

ds21ds12.

~22!

Here s i with i 51,2 is the total cross section of the photon
scattering on thei th atom,S is the spatial cross section of the
light beam,ds12 is the cross section of double scattering in
backward direction given by Eqs.~19!–~21!. The symbolu i j
is equal to11 if atom i is located in front of atomj and is
equal to zero otherwise. This expression has clear probabi-
listic nature and indicates the appearance of the well-known
Bouguer-Lambert law. The power of two in the conditional
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probabilities of Eq.~22! comes from the condition not to lose
the photon on either incoming or on outgoing paths of back-
ward scattering.

We conclude this part of our discussion by the following
remark. The derived expressions for double scattering~19!–
~21! are actually valid with less accuracy than the original
Kramers-Heisenberg formula~9!. There is an important
physical restriction coming from the rotating wave approxi-
mation, which ignores any alternatives in the ordering of
events of creation of the output or intermediate photons and
annihilation of the input or intermediate photons. As is well-
known, the first term in Eq.~9! is responsible for the order,
when the output photon is created before the input photon
was annihilated. That is not the case of expressions~19!–
~21!, which are based on a conception of step-by-step scat-
tering along direct or reciprocal paths. Unfortunately, the first

term in Eq.~9! is very small, and would be difficult to be
observed or manifested in a multiple-scattering regime.

D. Multiple scattering

The results of the preceding section can be generalized to
the situation of multiple scattering. In the multiple-scattering
transformation of arbitrary order, considered on any chosen
chain of atoms, the expressions~14! and~19!–~21! should be
rewritten for the respective number of scatterers. But the
important peculiarity of such a kind of generalization is that
in triple and higher orders of scattering it is possible to in-
clude one atom in a scattering sequence several times. Such
recurrent scattering has recently been observed by Wiersma,
et al. @29#.

To see this let us follow how formula~22! can be modi-
fied for the case of triple scattering in the system of three
scatterers,

dw}S 12
s2

S
u212

s3

S
u311

s2s3

S2
u21u31D 2

ds11•••1F S 12
s3

S D 2

u31u321S 12
s3

S D S 12
s3r 12

V12
D ~u13u321u31u23!

1u13u23Gds121•••1F S 12
s3

S D 2

u31u321S 12
s3r 12

V12
D 2

u13u321S 12
s3

S D 2S 12
s3r 12

V12
D 2

u31u231u13u23G
3ds1211•••1ds123, ~23!

where ellipses denote similar terms generated by all possible
permutations andV12 is the macroscopic cylindrical volume
located between atoms 1 and 2. In addition to the Bouguer-
Lambert law, this expression has another example of condi-
tional probabilities caused by macroscopic correction in
lower orders in light scattering. Namely, if for any chosen
chain of atoms there is a particular atom randomly located
inside the chain, it can scatter the multiply scattered photon
with some finite probability. This is the first macroscopic
correction of the retarded or advanced Green’s function of
the photon propagating in a continuous medium.

In spite of the fact that the expansion~23! performs a
straightforward generalization of Eq.~22!, there are several
important effects which appear, and which should be men-
tioned here. First, we see the indication of the Bouguer-
Lambert law not only as a correction of the input probability
for the photon scattered on one atom but also on a sequence
of two atoms. Second, there is a contribution here of the
triple scattering realized on the system of two atoms. This
process suggests an initial indicator of strong localization,
where light undergoes multiple scattering inside the chain. In
the system of a large number of atoms this contribution is
negligible because the photon can be scattered on any ‘‘new’’
atom with higher probability than on ‘‘previous’’ one. To
increase the role of this process one needs to increase the
mutual scattering amplitude among a selected number of at-
oms to enhance the internal multiscattering process. Third,
we see that there is no macroscopic correction of the
multiple-scattering cross section if the number of scattering

events coincides with~or higher than! the number of scatter-
ers. This number is equal to two in the example of Eq.~22!
and three in the example of Eq.~23!.

Let us follow now the modification arising when we apply
our result up to the limit of a macroscopic number of atoms
N→`. In this situation, normally the order of the multiple
scattering coincides with the optical thickness of the me-
dium. As shown by calculations described in the following
section, if the optical thickness has an order of 5 the order of
multiple scattering contributing significantly to the back-
scattering is up to ten. This allows us to base our practical
calculations on expressions~19!–~21! generalized and ap-
plied to an arbitrary number of atoms but taking into consid-
eration only the chains containing different atoms. To make
the macroscopic correction in the numerical procedure, we
introduce additional Bouguer-Lambert-type attenuation for
incoming and outgoing intensity and exponential attenuation
in the retarded and advanced Green’s function.

E. Effects of interference and polarization transformation
in coherent backscattering

As we see from the basic expressions~19! and~20!, if an
atomic gas is sufficiently cold that Doppler shifts become
negligible andk12'k21, the interference component in the
backscattering cross section is not reduced after averaging
over locations of atoms. In the optically dense medium this
effect is preserved for any chain of any number of scatterers.
It is known as weak localization of light and manifests itself
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as an interferometric rise in intensity of scattered light in a
narrow cone in the backscattering direction. In this paper, we
are concerned with modeling coherent wave scattering in a
sample of ultracold atoms confined to a magneto-optic trap.
In the present case, the average atom temperature was mea-
sured to be less than 50mK. As the Doppler shift is equal to
the natural half-width for a temperatureT;110 mK, the ap-
proximationk12'k21 is valid in the present case. In addition,
because of the experimental protocol, as described elsewhere
@21#, any optical lattice structure generated by the cooling
lasers during the sample preparation becomes randomized
before the coherent backscattering~CBS! measurements.
Such effects, which are of considerable interest in their own
right, are then ignored in the present treatment.

It is also well known that this coherent backscattering
effect shows a pronounced and distinct dependence on the
polarization state of both the incident and the detected light.
It is then customary to define two orthogonal outgoing scat-
tering channels for each of two-incident polarization states,
the incident states being either linear or circular. In both
cases, the electric-field vector of the scattered light is taken
to be tangent to the detection plane, whose normal is then
collinear with the exact backscattering direction. It is impor-
tant to point out that the polarization analysis defined this
way does not constitute a complete description of the scat-
tered polarized light. In general, there are four Stokes param-
eters required to accomplish this, and with the two states
defined above, along with the total intensity, only three are
obtained in the customary method of analysis of coherent
backscattering. In the exact backscattering direction, there is
an axis of symmetry that makes the additional degree of
freedom not necessary. However, for light scattered off the
exact backwards direction, it is possible, for example, to ob-
serve a linear polarization degree of the scattered light when
one of the incoming channels is in a pure helicity state. In the
present paper, in order to make clear comparison with previ-
ous work, we examine only the standard coherent back-
scattering polarization channels.

The origin of the polarization dependence depends partly
on the contribution of single-scattering events in relation to
the multiple-scattering ones, and also on the nature of the
scatterers themselves. For classical scatterers, in the absence
of a Hanle effect, which corresponds to atomic scattering on
a 1S0→ 1P1 transition, the so-called linear in–linear parallel
out ~lin-par-lin! channel has a maximal enhancement factor
of 2. This is a consequence of the reciprocity of the two-time
reversed paths that correspond to the cone formation in the
backscattering direction. However, for an atomic sample
with degenerate ground and excited levels, it was recently
shown that this full interference is partially lost due to the
statistical nature of the Zeeman transitions made by each
atom along a scattering chain. This was a surprising result,
for at first sight it may seem natural to assume that only
elastic Rayleigh scattering contributes to the coherent back-
scattering; one expects that this effect has a classical inter-
ference nature and the quantum nature only appears in a
more complicated structure of the transition-matrix elements.
However, the elastic Raman process also manifests itself in
the interference part of the backscattering cross section. As

pointed out originally by Labeyrieet al. @20#, this leads to a
strong suppression of the CBS enhancement factor.

It is instructive to demonstrate this by means of a specific
example of au jm&→u j 8m8& optical transition (j and m are
the atomic angular momentum and its projection, respec-
tively! with j 5 j 851. In Fig. 1, the direct and reciprocal
ways of interference in the Raman-type backscattering are
shown for the special situation of only two atoms linearly
located along the propagation direction of the incident light.
The possibility of Raman-type interference can be under-
stood from the transition diagrams shown in Fig. 2 in the
basis

ux&5
1

A2
~ u1,21&2u1,11&),

uy&5
i

A2
~ u1,21&1u1,11&),

uz&5u1,0&, ~24!

which is more suitable for discussing the scattering of lin-
early polarized light, see Ref.@30#. The solid and dashed-
dotted arrows in these diagrams indicate the transitions open
for direct and reciprocal ways, respectively, which leads to
the polarization transformation illustrated in Fig. 1.

However, we should point out that, even in this quite spe-
cial example, it is not so obvious to predict how the situation
would change if we introduced a small shift of the Zeeman
sublevels or generated Zeeman coherence among these sub-
levels. The latter could be created in experiment by an opti-
cal pumping mechanism and additionally stimulated by low-

FIG. 1. Diagrams showing the direct and reciprocal paths for~a!
Rayleigh-type and for~b! Raman-type coherent backscattering for
two atoms linearly located along the propagation direction of the
incident light.
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frequency modulation of an external magnetic field. These
points serve to illustrate that in the treatment of a realistic
situation of multilevel atoms, the manifestation of atomic
Zeeman coherence in the coherent Rayleigh-Raman back-
scattering process can be the basis for many phenomena
which may be important to achieve light localization in
atomic vapors. One of the main objectives of this theoretical
study is to make realistic predictions associated with specific
situations as explored in the experimental parts of our re-
search, see Ref.@21#. Further, once reliableab initio results
have been obtained, the techniques developed may be used
to obtain predictions associated with more complex physical
situations. Among those to be considered is the onset of
strong-field effects; these will clearly become important as
conditions for strong localization are approached. In addi-
tion, it would be interesting to consider those effects that
may be initiated by coherences in the atomic subsystems,
including Zeeman and hyperfine coherences.

III. NUMERICAL SIMULATION

In this section, we present an example of the numerical
simulation of the backscattering process made for the nearly
closed transition between groundFg53 and excitedFe54
hyperfine sublevels of theD2 line of 85Rb, and for an ultra-
cold atomic ensemble confined to a magneto-optic trap. In
our modeling of the process, the external parameters were
chosen to be typical of experimental conditions associated
with atoms confined to a magneto-optic trap@19,21#. In ad-
dition, we have included the influence of nonresonant transi-

tions associated with the other electric dipole permittedFg
→Fe transitions on the coherent backscattering spatial and
spectral profiles. The optically dense atomic cloud of ru-
bidium atoms was approximated by a Gaussian-type distri-
bution of scatterers with a resonant optical thickness, on the
Fg53→Fe54 transition, varied from 2.5 to 5. If the spheri-
cally symmetric Gaussian-type density distribution is param-
eterized by

n~r !5n0exp~2r 2/2r 0
2!, ~25!

the optical thickness along any ray, crossing the cloud in its
center, can be estimated asA2ps0n0r 0, where s0 is the
total cross section of resonance scattering, and the number of
atoms in the cloud isN5(2p)3/2n0r 0

3. For a closed transi-
tion, the resonance cross sections0 is given by

s0'
2~2Fe11!

2Fg11

p

k2
. ~26!

Here, we use ‘‘approximately equal’’ sign to point out that
this expression refers to a single-isolated resonance. As we
will see, there will be an additional important contributions
coming from light scattering from nonresonant hyperfine
transitions. We point out that, in a more precise modeling of
the real experimental conditions, the distribution~25! can be
further generalized for an anisotropic cloud@22#, where the
dispersionr 0

2 should be chosen to be different for different
directions.

The numerical procedure was based on a Monte Carlo
method. For any macroscopic atomic ensemble containingN
atoms, we randomly choose any chain ofn scatterers with
n51,2,3, . . . . Forsuch a chain, we calculate the ladder and
interference contribution to the cross section following the
method described in the preceding sections. In the basic ex-
pressions~20! and~21!, we additionally introduced Bouguer-
Lambert-type attenuation for incoming and outgoing waves
as well as for the light propagation function between the
atoms. For an ultracold atomic ensemble with typical tem-
peratures less than 100mK, we can neglect the Doppler
shifts in the denominators of those expressions. After the
averaging over many random choices ofn scatterers the
mean number has to be multiplied byN!/n!(N2n)!
'Nn/n!, that is, by the number of all possible chains con-
tainingn atoms. The interferometric increase of the intensity
of the backward-scattered light can be properly described in
terms of a so-called enhancement factor~EF!, which is de-
fined as the ratio

XEF5
dw

dw(L)
, ~27!

where in the numerator we keep all the contributions of mul-
tiple scattering from both the ladder and interference terms,
but in the denominator keep only the contributions of the
ladder type. The enhancement factor indicates the interfer-
ence rise of the intensity of the light scattered in the back-
ward direction with respect to the incoherent background.
Each of the probabilities can be constructed based on the

FIG. 2. Diagrams showing the transitions open for~a! Rayleigh-
type and for~b! Raman-type coherent backscattering in the geom-
etry of Fig. 1. In these diagrams the solid circles show the state
designation of atoms and the solid and dashed arrows indicate the
transitions open for direct and for reciprocal scattering paths, re-
spectively.
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series introduced in Sec. D and extrapolated to a macro-
scopic number of atoms. But actually for a large numberN,
of the order of 109, it is sufficient to keep only the lower
orders of multiple scattering and to consider the Bouguer-
Lambert law in its macroscopic form. We also point out here
that in our numerical analysis, we consider the realistic situ-
ation where there are typically only a few scattering events,
conditions that pertain to the connected experimental study.
It is important to realize that the present results, which may
be compared quantitatively with an ultracold atomic sample
of finite size, should only qualitatively be compared to the
more common treatment of diffusive light transport in a
semi-infinite medium.

IV. RESULTS AND DISCUSSION

In this section, we present details of our results for the
spatial, spectral, and polarization dependence of near-
backscattered light from a sample of ultracold Rb confined to
a magneto-optical trap. We examine the influence of sample
size and shape, and the dependence on atomic density. These
show a wide range of phenomena that may be seen through
the coherent backscattering effect in a resonant atomic me-
dium.

First, we consider the convergence of the cone enhance-
ment factor of the order of multiple scattering. These results
are illustrated in Fig. 3, where we have plotted the depen-
dence of the enhancement factor as a function of the order of
multiple scattering taken into consideration. The enhance-
ment factor was calculated for nominally resonant scattering
on theFg53→Fe54 hyperfine transition of theD2 line of
85Rb for different types of mutual polarization between inci-

dent and scattered waves. The calculations are presented here
for two examples of atomic clouds having a Gaussian-type
density distribution characterized by same radiusr 051 mm
but different peak densities in the center of the clouds of~a!
n0583109 cm23 and ~b! n05163109 cm23. For these
densities the optical thickness of the clouds is approximately
varied from 2.5 to 5. As the basic scaling parameter of the
present treatment isn0(l/2p)3, which is ;1024 and quite
far from the regime of dependent scattering, the present nu-
merical results should apply to the typical situation of ultra-
cold atoms in a not-too-dense magneto-optic trap. Then, as
follows from these graphs when the scattering order becomes
higher than ten all the curves appear to nearly approach a
saturation limit. However, there is a small but not negligible
difference between the curves corresponding to any type of
mutual polarization but different optical thicknesses. Such a
difference indicates that the polarization dependence of the
process is quite sensitive to the ratio of the length of the
photon free path in the medium to the size of the cloud.

The selective analysis of the different orders of multiple
scattering can be made in experiment via the observation of
the spectral dependence of the enhancement factor in the
vicinity of the resonance line. Indeed, higher orders of mul-
tiple scattering give a contribution near the central point of
this line, but the lower orders become more important in its
wing. In Figs. 4 and 5, we show the spectral profile of the
enhancement factor for different types of mutual polarization
between incident and scattered light as function of the fre-
quency detuningD in units of natural linewidthg. As in Fig.
3, the calculations were made for two examples of atomic
clouds with Gaussian-type density distribution characterized
by the same radius of the cloudsr 051 mm but different
central densities ofn0583109 cm23 ~Fig. 4! and n0
5163109 cm23 ~Fig. 5!. Comparing the spectral curves

FIG. 3. The dependence of the enhancement factor, calculated
for a Fg53→Fe54 hyperfine transition in85Rb, of the order of
multiple scattering for a Gaussian-type atomic cloud with radius
r 051 mm for two densities~a! n0583109 cm23, and ~b! n0

5163109 cm23. Different curves relate to different polarizations
of the scattered light with respect to either linear~lin! or circular
~hel! input polarization.

FIG. 4. The spectral behavior of the enhancement factor in the
vicinity of the Fg53→Fe54 hyperfine transition in85Rb for ~a!
linear and~b! circular polarizations, calculated for a Gaussian-type
atomic cloud with radius r 051 mm for density n058
3109 cm23. The frequency detuningD is scaled in units of the
natural linewidthg
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plotted in Figs. 4 and 5 with the corresponding dependencies
plotted in Fig. 3 one sees that there is a certain correlation
between the spectral behavior of the enhancement factor and
its dependence on the order of multiple scattering.

The most important feature of the dependences shown in
Figs. 4 and 5 is in the asymmetric shape of the spectral
profiles, when the detection scheme is the Raman type, with
orthogonal linear polarizations or with preserving the helici-
ties of incoming and outgoing waves. Helicities are defined
with respect to the frame associated with the running waves.
Thus, for the helicity preserving channel in the backward
scattering direction as defined in the laboratory frame, there
is an opposite rotation for the polarization vectors of the
incoming and outgoing waves. With that definition, the
asymmetric shape of the spectral profile is more clearly seen
in the case of circular polarization. This indicates the non-
trivial spectral behavior of the Raman-type interference
terms and the Raman-type ladder terms near the resonance.
Let us point out that the asymmetric shape of the spectral
profiles shown in Figs. 4 and 5 does not arise directly from
the variation of the scattering order with optical depth, but
instead comes from interference of the scattering amplitudes
of near resonant and other nonresonant hyperfine transitions
within the entire hyperfine multiplet, which were taken into
consideration in our calculation. This was unambiguously
established by formally keeping only theFg53→Fe54
transition, in which case a symmetric spectral profile results.
In other words, the asymmetric spectral behavior of the en-
hancement factor near the resonance is an indication that for
light scattering in an optically dense medium, all the near-
resonant scattering channels become important. We also
mention here that for an atomic ensemble, where on an av-
erage the atoms are separated by a distance of the order of a
few optical wavelengths, the calculated spectral profiles
should show directly the multiple-scattering behavior in a

spectral domain narrow compared to the natural width. In
particular, we might expect that in the wings of the spectral
line, of the order of a few natural widths, the long-range
dipole-dipole interaction will both modify the atomic pair
distributions and lead to optical modification of the light
transport in the medium. In fact, when atom pairs become
located on the average inside an optical wavelength, the ba-
sic approximation of the present work, where light transport
is a sequence of independent scattering events will break
down. Experimental study of the detuning dependence of the
cone enhancement, including effects of density and off-
resonant transitions is currently underway in our laboratory.

Next, consider the cone spatial profile for four polariza-
tion channels and for a symmetric MOT of size parameter
r 0. In Figs. 6 and 7, we show the cone profile when ten
orders of multiple scattering were taken into account in the
calculations. Both the graphs show the dependence of the
enhancement factor on the backscattering angleu, which is
the offset from the backward direction, for the cloud with
r 051 mm andn05163109 cm23. In Fig. 6, the enhance-

FIG. 5. The spectral behavior of the enhancement factor, for the
Fg53→Fe54 hyperfine transition in85Rb for ~a! linear and~b!
circular polarizations, calculated for a Gaussian-type atomic cloud
with radius r 051 mm for densityn05163109 cm23. The fre-
quency detuningD is scaled in units of the natural linewidthg.

FIG. 6. The dependence of the enhancement factor on the back-
scattering angleu for the Fg53→Fe54 hyperfine transition
in85Rb and for a Gaussian-type atomic cloud with radiusr 0

51 mm and for densityn05163109 cm23. The two curves relate
to linear parallel and linear orthogonal mutual polarizations be-
tween the incident and scattered light.

FIG. 7. The dependence of the enhancement factor on the back-
scattering angleu for the Fg53→Fe54 hyperfine transition in
85Rb and for a Gaussian-type atomic cloud with radiusr 051 mm
and for densityn05163109 cm23. The two curves relate to the
identical and orthogonal helicities of the incident and scattered
light.
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ment factor is plotted for linear polarized incident light and
for linear parallel (lini lin) and linear perpendicular
(lin' lin) polarization of scattered light. For this particular
graph, the angleu describes scanning in a horizontal~per-
pendicular to the polarization of incident light! plane. In Fig.
7, the enhancement factor is plotted for circularly polarized
incident light and for the identical (heli hel) and orthogonal
(hel' hel) helicities of the scattered light. The important
feature of the graphs plotted in Fig. 6 is that for an optically
dense medium, where multiple scattering dominates, there is
only a slight difference in the backscattering response for
Rayleigh (lini lin) and Raman-(lin' lin) type scattering.
But that is not the case for the circular polarized light with
the cone profile plotted in Fig. 7, where Rayleigh-type back-
scattering with hel' hel manifests itself as more effective
process.

We have also investigated the dependence of the spatial
profile of the CBS cone on the size of the atomic sample. For
the Gaussian density distribution defined previously, we have
varied the effective radiusr 0 in the range (124) mm, while
keeping the optical depth of the sample constant at a value of
about 5. Recall that the optical depth is defined for a Gauss-
ian MOT asA2ps0n0r 0. Note that this corresponds to de-
creasing the atomic density as the radius increases. CBS
cones for helicity nonpreserving polarization channel is
shown in Fig. 8. In the figure, it is seen that the enhancement
factor does not measurably change with sample size. With
reference to Figs. 3, 6, and 7, this is not surprising, as the
enhancement is nearly asymptotic for the higher-order scat-
tering, which dominates the very small angle enhancement.
However, it is important to note that the wings of the cones
are significantly elevated, illustrating that the lower orders of
scattering become more important in angular directions off
exact backscattering. On the other hand, the full width at half
maximum of the enhancement relative to the incoherent
background is seen toincreasesignificantly withdecreasing
sample size. The origin of this effect illustrates one of the
fundamental differences between the more traditional scatter-
ing off a nearly semi-infinite medium, where there may be
scattering paths of any length, and scattering off a finite me-
dium, where the higher-order scattering contains paths that
fill the volume of the medium. In this case, which applies to
our results, the average path is comparable to the size of the

sample, and so the width of the coneDu;1/kL, whereL in
this case is a characteristic length scale defining the size of
the medium. In our case, that is, the parameterr 0, and so we
expect that the cone width will generally decrease asL in-
creases. This behavior is seen in Fig. 8, and is illustrated in
Fig. 9 for the four polarization channels considered. Note
that in the size and optical depth range considered here, the
full width at half maximum of the enhancement depends
linearly on the reciprocal of the characteristic size parameter.
However, there is only a weak dependence on the cone pro-
file for samples of a fixed size, but not too different density.

Next, we consider comparison of the theoretical results
developed here with recent experiments@21#. In order to
make this comparison, it is necessary to take into account as
nearly as possible the spatial asymmetry of real ultracold
samples confined in a magneto-optic trap. Because of the
different force constants associated with the magnetic-field
gradient in a typical MOT, the atomic samples are not typi-
cally Gaussian, although under some circumstances they
may be quite close to that shape. For the atomic Rb MOT
used in the experiments associated with this study, the MOT
is ‘‘cigar shaped’’ and has size parametersr 0 of about 0.55
mm for the width and 0.69 mm for the height. As described
elsewhere@21#, these values are obtained by fluorescence
imaging of the MOT excited by light detuned severalg from
resonance, whereg is the natural line width of the resonance
transition. Although a detailed theoretical and experimental
examination of the influence of the MOT shape and inhomo-
geneous atom distributions~25! will be developed in a later
report, we present a comparison in Fig. 10 of experimental
and theoretical results for an asymmetric MOT having size
parameters corresponding to the conditions of the experi-
ment. For this comparison we have selected the lin-par-lin
polarization channel, which has the experimental advantage
of a greatly suppressed environmental background. It is seen
in the figure that the agreement is extraordinarily good in
terms of the overall profile shape and enhancement. The
slight differences in widths for the two cases is likely due to
a slight overestimate of the size of the MOT by the fluores-
cence imaging technique. In any case, scaling from the sym-

FIG. 8. Sample size dependence of the spatial profile of the
coherent backscattering cone in the helicity nonpreserving channel. FIG. 9. Dependence on the inverse sample size of the full width

at half maxiumum of the coherent backscattering cone for four po-
larization channels. The optical depth is fixed at five for these cal-
culations.
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metric MOT case, we estimate that the difference is well
within the experimental uncertainty in the size parameters.
We point out here that there also is a weaker dependence on
the width due to the optical thickness of the MOT. In this
case, we allow the MOT size to remain fixed and at the
values set by the experiment, and vary the optical depth. The
result for two different number densities~optical depths at
fixed size parameters! is shown in Fig. 11. It is seen there
that the small differences between experiment and theory
could also result from an underestimate in the measurement
of the optical depth.

Finally, we consider the angular dependence of the shape
of the cone about the direction of the incident wave vector.
These results are illustrated for the lin-par-lin polarization
channel in Fig. 12, which shows the cone profile for angular
scanning either perpendicular to or parallel to the direction of
the electric field of the incident light. There it is seen that for
scanning along the direction of the incident electric field the
cone is nearly two times wider than it is when scanning
perpendicular to the direction of the incident field. This ef-

fect has previously been observed in experiments by Labey-
rie et al. @20#, and by Kulatungaet al. @21#. It is due to the
strong influence of lower-order scattering in these experi-
ments, and the angular dependence of the single-scattering
differential cross-section. As the angular dependence even
for anFg53→Fe54 transition resembles strongly that of a
classical dipole, the variations in the angular distribution for
scattering in the parallel direction show nearly stationary
variations of the phase in this direction. This result also
shows that interpretation of the width and shape of the co-
herent backscattering spatial profile requires consideration of
the tensorial nature of the scattering as well as the geometri-
cal features of the sample.

V. SUMMARY AND CONCLUSIONS

In this paper, we have described in detail theoretical treat-
ment of coherent backscattering of light from an ultracold
atomic gas of85Rb. We have developed the basic theoretical
expressions and numerically simulated the spectral and spa-
tial shape of the coherently backscattered radiation for four
standard polarization channels. Application was to ultracold
Gaussian atomic distributions in a range of sizes and optical
depths characteristic of atomic samples confined in magneto-
optic traps. In a comprehensive study of the dependence of
the spatial and spectral profile on the sample parameters and
polarization, we have found that the enhancement and width
of the coherent backscattering line shape is in excellent
quantitative agreement with experimental results. In addi-
tion, although the enhancement does not strongly depend on
the atomic sample size, for fixed optical depth the width of
the backscattering cone decreases as the sample size in-
creases. Finally, we predict a remarkable effect in which far-
off-resonant hyperfine transitions have an exceptionally
strong influence on the spectral dependence of the enhance-
ment. This effect, although present in all polarization chan-
nels, dominates the Raman-type helicity preserving channel.

FIG. 10. Comparison between experimental and theoretical re-
sults for the spatial profile of the coherent backscattering cone in
the lin-per-lin polarization channel. The calculations correspond
closely to the experimental conditions where the optical depth is
;5, and the sample is cigar shaped having 1/e2 diameters of 2.20
mm and 2.76 mm.

FIG. 11. Sensitivity to density of the spatial profile of the co-
herent backscattering cone in the lin-per-lin polarization channel.
The calculations correspond closely to the experimental conditions
of a cigar shaped sample having 1/e2 diameters of 2.20 mm and
2.76 mm, but for two different optical thicknesses;2.5 and;5.

FIG. 12. Asymmetry of the spatial profile of the coherent back-
scattering cone in the lin-par-lin polarization channel. Scanning is
either perpendicular to or parallel to the electric-field direction of
the incident and scattered light. The calculations correspond closely
to the experimental conditions, where the optical depth is;5, and
the sample is cigar shaped having 1/e2 diameters of 2.20 mm and
2.76 mm.
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