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Core scattering of Stark wave packets

M. L. Naudeau, C. I. Sukenik, and P. H. Bucksbaum
Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 5 November 1996!

We investigate the wave-packet dynamics of electrons bound in the nonseparable potential of cesium in a
static electric field using time-domain Ramsey interferometry. Specially shaped wave packets with low radial
dispersion enable us to view the interaction between the wave packet and the atomic core. Experiments in
cesium, together with quantum defect calculations of cesium and hydrogen, demonstrate changes in the motion
and shape of these wave packets due to core scattering.@S1050-2947~97!07403-9#

PACS number~s!: 32.80.Rm, 32.60.1i, 32.80.Qk

The dynamics of quantum systems whose classical coun-
terparts are chaotic continues to be an active area of physics
research. An important example is an atom in a static electric
field. The classical hydrogen atom in an electric field is sepa-
rable in parabolic coordinates and therefore the electron tra-
jectories do not display chaotic behavior. For atoms other
than hydrogen however, the motion of the valence electrons
is nonseparable and may be chaotic. Alkali-metal atoms are
particularly well suited for simple analysis because of the
near-absence of multielectron effects: they consist of a single
valence electron moving in a near-static potential, which is
hydrogenic except near the ion core.

Alkali-metal atoms in strong electric fields~Stark atoms!
have energy spectra that differ markedly from hydrogen. Hy-
drogen spectra show considerable regularity, and the eigen-
values between states of different principal quantum number
can cross, forming degeneracies at specific values of the
electric field. Alkali-metal Stark spectra show very low de-
generacy, strong avoided crossings, and Wigner-like distri-
butions of eigenvalues separations that have been related to
the irregular motion of trajectories in the corresponding clas-
sical systems@1#. These avoided crossings in alkali-metal
atoms are due to a coupling between parabolic states in the
presence of the atomic core. The size or strength of an anti-
crossing is a function of the admixture of angular momenta
of the states. States of high angular momentum character do
not penetrate the atomic core and so are less likely to expe-
rience any coupling. If, however, the states have appreciable
low angular momentum character, the anticrossings become
quite large, resulting in a breakdown of the regular, hydro-
genic spectra@2#.

One approach to connecting the quantum eigenvalue
spectrum to the classical picture of an orbiting electron is
through closed-orbit theory@3#—an extension of the
Gutzwiller trace formula. Spectra are not viewed at constant
electric field, but rather using scaled coordinates and mo-
menta@4#. The classical dynamics then depend not on the
energy and field separately, but rather on the combination
E/AF, whereE is the energy of the state relative to the
field-free ionization limit andF is the external field.~Atomic
units are assumed throughout this paper.! The scaling is ex-
act for hydrogen and approximate for alkali-metal atoms.
The scaled spectra are then Fourier transformed to get a ‘‘re-
currence spectrum,’’ which has peaks at scaled actions cor-
responding to classical orbits, which begin and end at the
nucleus.

High-resolution scaled spectroscopy of bound states of
lithium in a strong electric field showed that the recurrence
spectrum has periodicities that are almost identical to hydro-
gen. The only striking differences in the recurrence spectra
between lithium and hydrogen were some additional period-
icities in lithium at actions corresponding to sums of differ-
ent classical hydrogenic orbits@5#. These additional features
were interpreted as quantum analogs of classical orbits that
scatter into one another when the electron passes through the
ion core.

Because we are interested in quantum dynamics, it seems
natural to seek a method of viewing recurrence phenomena
directly in the time domain. One approach is to trace the
motion of spatially localized quantum superposition states,
known as wave packets, as they orbit the atom and scatter
from the core. Unfortunately, the connection between wave-
packet dynamics and scaled energy spectroscopy is not
simple because there is no easy way to produce a wave
packet whose constituents all have the same scaled energy.
Furthermore, highly localized wave packets disperse quickly
@6#; despite periodic revivals, it is difficult to follow their
motion over many orbits.

These difficulties impose some restrictions on experi-
ments, yet for sufficiently short times the wave-packet–
classical electron trajectory correspondence should be valid
@7#. Furthermore, if the spread of constituent eigenstates is
not too great, an average scaled energy for the system may
be a useful concept. This paper presents high-resolution
time-domain recurrence spectra for cesium wave packets in
an electric field where the number of eigenstates excited has
been deliberately limited. By comparing our results to quan-
tum dynamics calculations, we can observe how the cesium
Stark wave packets differ from their hydrogenic counter-
parts.

Alkali-metal Rydberg wave packets have been produced
in Stark atoms before, and their short-term behavior for
fields comparable toEc was found to be similar to hydrogen
@8#. These experiments were mostly conducted above the
classical field ionization limit where the long-time behavior
is dominated by a sequential decay of components of the
wave packet due to field ionization@9#. To avoid this limita-
tion, our work focuses on the region belowEc where the
wave-packet amplitude does not decay due to field ioniza-
tion.
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We use 100-fsec, 785-nm pulses from a Ti:sapphire laser
employing Kerr-lens mode locking~KLM ! and chirped-pulse
amplification~CPA! @10#. This wavelength is centered on the
transition between the 7s and 29p states in atomic cesium. In
an electric field of several hundred volts per centimeter, the
7s state is nearly purel50, but the Rydbergl states are
completely mixed. There is sufficient bandwidth in the short
pulse to excite no fewer than 15n states, which, including
fine structure, contain more than 1000 discrete Stark energy
eigenvalues producing a well-localized, and therefore highly
dispersive wave packet.

The difficulty in charting the orbit of such a wave packet
is that a coherent excitation with such a broad spread of
energy-level spacings will quickly dephase, spreading the
wave packet around the atom. This has been called wave-
packet ‘‘collapse’’ @11#. To combat wave-packet collapse,
we limit the number of states in the wave packet. This is
done by shaping the frequency distribution of the exciting
radiation pulse using spectral filters in the grating pulse ex-
pander and compressor, both of which are integral compo-
nents of the CPA system@12#. The shaped pulse no longer
has a Gaussian spectral distribution; rather the intensity is
roughly constant over the bandwidth, although the frequency
cutoff is not sharp. A good shape for our purpose is one that
limits the radial dispersion by exciting only a fewn mani-
folds of states, thus greatly simplifying the analysis of the
wave-packet behavior.

Figure 1 shows the Stark states that are coherently excited
by this shaped pulse. The initial states are produced in an
atomic beam by two-photon excitation of the cesium 6s
ground state to the 7s launch state using a 5-nsec, 1.08-
mm laser pulse approximately 5 nsec prior to the wave-
packet formation. The 1.08-mm light is generated in a hydro-
gen Raman cell, which shifts light from a Nd:YAG pumped
pulsed dye laser. In our experiment, the polarization of the

100-fsec pulse is perpendicular to the applied electric field
resulting in an initial excitation of bothumj u51/2 and
umj u53/2 states, which have somel51 character. Fine
structure must be included in our analysis as the spin-orbit
interaction mixesl50 states in theumj u51/2 Stark manifold.

We have employed the technique of time-domain Ramsey
interferometry@13#. Two wave packets are successively ex-
cited in the same atom by identical laser pulses separated by
a variable time delay. The total excitation probability is the
square of the sum of the amplitudes of the two packets. This
is measured by field ionizing the Rydberg population of the
atom and detecting the electrons with a microchannel elec-
tron multiplier. In the weak excitation limit, this signal is an
autocorrelation function for the wave packet~analogous to a
field autocorrelation function at the output of an optical in-
terferometer!.

The recurrence spectrum in the time domain is obtained
by measuring the Rydberg population over several hundred
picoseconds of delay. We then demodulate the high-
frequency component, which arises from the optical quantum
beat. Formally, this is a measurement of the autocorrelation
function u^c(t)uc(0)&u @14#. A plot of the root-mean-square
signal versus delay time between the two pulses shows peaks
corresponding to times when the evolved wave packet most
resembles its initial shape. The peaks recur on time scales
that are characteristic of the energy spacings of the atom:
dt;2p/dE.

The Stark map in Fig. 1 shows the relevant time scales for
the problem. The hydrogen-like splittings give rise to the two
shortest times of interest: the so-called radial and angular
motions of the wave packet. Forn̄*524 ~corresponding to
an equal mixture of 27p and 28p in Cs!, we have a radial
period ~or Kepler time! of tk52pn̄* 352.1 psec. The elec-
tric field causes the orbital angular momentum to precess to
a maximum value ofl'n̄*21523. For hydrogen, the pre-
cession time~parabolic orbit time, or angular return time! is
tang52p/3nF, to first order in the electric fieldF. Judging
from the irregularity of the Stark map, one would not expect
to see distinguishable angular or radial returns in cesium.
The only obvious time scale is that of the avoided crossings.
The distribution of level splittings implies recurrences in the
range;50–200 psec.

Our experiments covered a range oftang from 10 to 50
psec. The data are shown in the center column of Fig. 2. The
interferograms show that the recurrences in cesium can be
quite distinct, despite the irregular spectrum. The pure radial
orbits can be seen in row~a!. The laser spectrum is win-
dowed so that only the 27p and 28p states are excited at zero
field. The Kepler orbit time is 2.1 psec and the slow oscilla-
tion of approximately 60 psec is a quantum beat due to the
spin-orbit interaction. The signal gradually decreases due to
technical dephasing effects such as misalignment of the in-
terferometer, inhomogeneities in the electric field, or Ryd-
berg atom collisions. This decay places a limit of;150 psec
on our ability to monitor the wave-packet evolution.

In row ~a!, the electric field is nearly zero. A small drift
field of 10 V/cm removes the electrons produced in multi-
photon ionization from the 1.08-mm pump laser prior to
wave-packet formation. This field strength has little effect on
the cesium wave packet because of the quantum defect; how-
ever, in hydrogen, thep state is mixed into the manifold,

FIG. 1. Calculated Stark spectrum for cesiumumj u51/2. The
classical field-ionization limit,Fc51/16n4 is indicated by the bold
curve. The shaped laser pulse excites eigenstates bounded by the
two horizontal lines. Also shown are several hydrogenic levels
~dashed lines!. These give rise to the radial and angular return times
2pn3, and 2p/3nF as discussed in the text.
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resulting in a very different wave-packet evolution than is
observed at zero field. Only when thep state is well mixed
with the rest of the manifold will the recurrence spectra for
hydrogen and cesium begin to resemble each other~at
around 300 V/cm!.

Rows ~b!–~f! of Fig. 2 show cesium interferograms at
different Stark fields. The electric field produces a torque
that causes the angular momentum of the wave packet to
precess from its initial value ofl51 to higher angular mo-
mentum. When the evolved wave packet has predominantly
high l character, the overlap with its initial state is small,
resulting in a small signal. As the orbital angular momentum
vector precesses back into its low values, the wave packet
completes one parabolic orbit. The eigenstates have rephased
to resemble the initial state and the overlap with the second
pulse is large, resulting in a large signal. These cesium re-
turns display certain characteristics that would be identified
in hydrogen as a single angular return and radial returns re-
sulting from the excitation of twop states. The times of these
returns can be predicted by the hydrogenic formula discussed
earlier. These features can also be reproduced in a quantum
defect theory calculation~Fig. 2, left column! in which we
approximate the frequency profile of our laser pulse to be a
top hat.

It is instructive to compare our results with the predictions
for a hydrogen atom excited under analogous conditions
~same electric field and laser pulse!. The results of the hy-
drogen calculation shown in Fig. 2, right column, are in
strong disagreement with the data for cesium, even at high
fields. This indicates that although the cesium data exhibit
hydrogenlike properties, it is not appropriate to ignore the
effects of the core.

The Stark state mixing in cesium makes it impossible to
distinguish individual manifolds or even angular energy
spacings within a manifold. In fact, the cesium interfero-
grams suggest that what the system sees is an average effect.
This results in a single, average radial return time and a
single, average angular return time. The averaging effect also
allows for interference between the angular and radial wave
packets to an extent not seen in hydrogen.

The hydrogen wave function is a superposition of separate
wave packets associated with differentn manifolds~not the
single manifold used to calculate the return times!. Each
n-manifold wave packet is parabolic, and therefore does not
disperse; however, each manifold has a slightly different an-
gular energy spacing, resulting in gradual dispersion of the
wave packets from different manifolds. The peaks generally
retain their shape as they separate, supporting the notion of a
small number of essentially nondispersive wave packets be-
ing simultaneously excited. The core interaction in cesium
prevents identifications of contributions from individualn
manifolds. The wave packet excited in cesium contains many
more frequencies ‘‘bunched’’ around a central value, and so
the recurrences appear less dispersive.

Since the cesium wave packet does not disperse rapidly,
we can follow the wave-packet trajectory over several clas-
sical orbits. When the field is small@row ~b!, F5200 V/cm
for example#, the parabolic precession is slow compared to
the Kepler orbit time, so that the wave packet retains itsp
character over several Kepler cycles, resulting in very broad
angular returns. At higher fields where the stronger torque
causes the width of the angular recurrences to be on the order
of the radial returns, peaks can be suppressed if the radial
wave packet is at its outer turning point at the moment of an
angular return. AtF5700 V/cm, for example@row ~c!#, the
second angular return occurred while the radial wave packet
was at its outer turning point, resulting in a splitting of the
peak. At a slightly higher field,F5774 V/cm, an individual
angular return has been completely suppressed@row ~d!#.
This behavior is not possible in hydrogen because of the
contributions from many different, noninteracting manifolds.

This effect can be exploited; by selecting a particular
value ofF, we can control the wave-packet behavior to en-
hance the interaction with the cesium core. For example, at
F5830 V/cm, the radial and angular returns are nearly com-
mensurate@row ~e!#. This maximizes the core interaction
with the wave packet, since each angular return coincides
with a radial return spatially localized near the core.

Measurements of the time evolution of cesium Stark wave
packets created below the classical field ionization threshold
show remarkable regularity despite a very irregular eigen-
value spectrum. The irregular eigenvalue spectrum is a result
of coupling between Stark states due to the presence of the
large cesium core. The core blurs the contribution of indi-
vidual manifolds and results in an averaging effect that gives
the cesium wave-packet recurrence spectrum a more regular
appearance than is the case for a hydrogen wave packet ex-
cited with the same bandwidth. In the language of classical
phase space, this appearance of more regularity in the inter-
ferogram may be related to the destruction of some of the
hydrogenic tori. The relationship between core scattering and

FIG. 2. Recurrence spectra for wave packets composed of Stark
states indicated in Fig. 1. Left column: quantum defect theory cal-
culation for cesium. Center column: experimental data. Right col-
umn: calculation for hydrogen. The static field was~a! 10 V/cm,~b!
200 V/cm,~c! 700 V/cm,~d! 774 V/cm,~e! 830 V/cm, and~f! 840
V/cm. Scales are identical for each plot. Curves are normalized to
the coherent spike at zero delay time.
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evolution of the wave packet may be quite useful in prob-
lems of quantum control of molecular dissociation or auto-
ionization. It may also provide a useful comparison for clas-
sical trajectory models of complex quantum dynamics. These
problems will be addressed in future work.

We wish to acknowledge many useful discussions with D.
W. Schumacher, C. Raman, and C. W. S. Conover. This
work was supported by the National Science Foundation.
P.H.B. acknowledges partial support from the Miller Insti-
tute of the University of California at Berkeley.
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