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RESEARCH ARTICLE

Mevalonate-Farnesal Biosynthesis in Ticks:
Comparative Synganglion Transcriptomics
and a New Perspective
Jiwei Zhu1, Sayed M. Khalil1, Robert D. Mitchell1, BrookeW. Bissinger1, Noble Egekwu2,
Daniel E. Sonenshine2, R. Michael Roe1*

1 Department of Entomology, North Carolina State University, Raleigh, North Carolina, 27695, United States
of America, 2 Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, 23529, United
States of America

*Michael_roe@ncsu.edu

Abstract
Juvenile hormone (JH) controls the growth, development, metamorphosis, and reproduc-

tion of insects. For many years, the general assumption has been that JH regulates tick and

other acarine development and reproduction the same as in insects. Although researchers

have not been able to find the common insect JHs in hard and soft tick species and JH appli-

cations appear to have no effect on tick development, it is difficult to prove the negative or to

determine whether precursors to JH are made in ticks. The tick synganglion contains

regions which are homologous to the corpora allata, the biosynthetic source for JH in

insects. Next-gen sequencing of the tick synganglion transcriptome was conducted sepa-

rately in adults of the American dog tick, Dermacentor variabilis, the deer tick, Ixodes scapu-
laris, and the relapsing fever tick,Ornithodoros turicata as a new approach to determine

whether ticks can make JH or a JH precursor. All of the enzymes that make up the mevalo-

nate pathway from acetyl-CoA to farnesyl diphosphate (acetoacetyl-CoA thiolase, HMG-S,

HMG-R, mevalonate kinase, phosphomevalonate kinase, diphosphomevalonate decarbox-

ylase, and farnesyl diphosphate synthase) were found in at least one of the ticks studied but

most were found in all three species. Sequence analysis of the last enzyme in the mevalo-

nate pathway, farnesyl diphosphate synthase, demonstrated conservation of the seven pre-

nyltransferase regions and the aspartate rich motifs within those regions typical of this

enzyme. In the JH branch from farnesyl diphosphate to JH III, we found a putative farnesol

oxidase used for the conversion of farnesol to farnesal in the synganglion transcriptome of I.
scapularis and D. variabilis. Methyltransferases (MTs) that add a methyl group to farnesoic

acid to make methyl farnesoate were present in all of the ticks studied with similarities as

high as 36% at the amino acid level to insect JH acid methyltransferase (JHAMT). However,

when the tick MTs were compared to the known insect JHAMTs from several insect species

at the amino acid level, the former lacked the farnesoic acid binding motif typical in insects.

The P450s shown in insects to add the C10,11 epoxide to methyl farnesoate, are in the

CYP15 family; this family was absent in our tick transcriptomes and in the I. scapularis
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genome, the only tick genome available. These data suggest that ticks do not synthesize

JH III but have the mevalonate pathway and may produce a JH III precursor.

Introduction
Ticks are ectoparasites and important vectors of human and animal diseases. They ranked sec-
ond only to mosquitoes as vectors of life-threatening or debilitating human and animal diseases
and transmit a larger variety of pathogen-borne diseases than any other arthropod [1]. Patho-
gens harbored by ticks cause Lyme disease, Rocky Mountain spotted fever, tick paralysis, tick
toxicoses, heartwater disease, irritation, tick bite allergies, immune responses and others dis-
eases and cause economic losses in animal production due to blood loss and disease. How ticks
regulate their development and reproduction is of special interest because of their unique life
style as obligatory blood feeders and their ancient divergence from crustaceans and insects [2].
Also, understanding the endocrinology of ticks like that in insects will provide new approaches
to their control.

Insect molting, development through instars and stages, metamorphosis and reproduction
are regulated by two hormones, ecdysteroids and juvenile hormone (JH). The presence of
ecdysteroids and JH at the same time produces a larval-larval molt, ecdysteroids in the absence
of JH initiate metamorphosis, and in most insects studied, JH initiates the synthesis and depo-
sition of yolk protein in the eggs, a process known as vitellogenesis [3–6]. Crustacea (also a
mandibulate group like insects) use ecdysteroids and methyl farnesoate but not JH, to regulate
their development [6–12].

Because ticks and mites as terrestrial arthropods are similar in appearance and have similar
developmental stages as insects, the general assumption for many years has been that ticks
were like insects in the hormones used for regulating reproduction [1]. This was especially sup-
ported by Pound and Oliver [13] in studies with ticks and Oliver et al. [14] in mites where they
found that JH in vivo could rescue anti-JH effects and initiate egg development. However, since
these initial reports, a number of subsequent studies have not supported a role for JH in egg
development in ticks. Taylor et al. [15] and Chinzei et al. [16] found JH topically applied to
ticks did not affect egg production; Sankhon et al. [17] showed that ecdysteroids initiated vitel-
logenin synthesis in fat body in organ culture; Friesen and Kaufman [18] showed that ecdyster-
oids did the same in vivo; and Thompson et al. [19, 20] and Khalil et al. [21] showed that
ecdysteroids and not JH in vivo resulted in the expression of the vitellogenin (Vg) message, the
appearance of Vg protein in the hemolymph, and the production of brown (vitellogenic) eggs.
In addition, Neese et al. [22] were unable to find any of the common insect JHs in a species of
both hard and soft ticks by highly sensitive radiometric biosynthesis and EI SI GC/MS.

The synthesis of JH III in insects occurs in the stomatogastric nervous system (in the insect
head) and consists of two parts, the mevalonate pathway from acetate to farnesyl pyrophos-
phate followed by the JH branch ending in JH III. There are two well characterized enzymes in
the JH branch shown to be involved in JH III biosynthesis in insects, i.e., a JH methyltransfer-
ase which adds a methyl ester to produce methyl farnesoate or JH III and a P450 in the family
CYP15 which adds a C10R,11 epoxide [1, 23]. The characterization of the genes, messages or
enzymes in the mevalonate pathway and JH branch, fundamental to the developmental biology
of crustaceans and insects, has never been investigated in ticks. With the advancement in high
throughput, highly repetitive DNA sequencing and bioinformatics, a tick transcriptome can be
examined for the presence or absence of every enzyme in the mevalonate-JH pathway. In the
current study, this approach was used to examine separate synganglion transcriptomes of two
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hard tick species and one soft tick species with comparative work with the first tick genome to
provide evidence whether there is a potential role for the mevalonate and at least parts of the
JH branch in tick development.

Materials and Methods

Ticks
American dog ticks, Dermacentor variabilis, were reared as described by Sonenshine [24] and
were colonized at the Old Dominion University Animal Facility in Norfolk, VA, USA. The col-
ony originated from ticks originally collected near Richmond, Virginia, USA. Immature stages
were fed on Norway rats, Rattus norvegicus. Adult male and female ticks were allowed to feed
and mate naturally within a plastic capsule attached to their host, the New Zealand white rab-
bit, Oryctolagus cuniculus, or withheld from blood feeding and/or mating depending on the
conditions of the particular experiment. Black-legged ticks, Ixodes scapularis, were reared as
described also by Sonenshine [24]. The ticks were collected near Armonk, NY, USA. Adult
ticks were confined within plastic capsules attached to New Zealand white rabbits and allowed
to feed to repletion. Larvae and nymphs were allowed to feed on albino mice,Mus musculus.
Relapsing fever ticks, Ornithodoros turicata, were obtained originally from Dr. James H. Oliver,
Georgia Southern University, Statesboro, GA, USA. This particular colony originated from
burrows of the gopher tortoise in FL, USA. They were maintained in wood chip litter. Adults
and nymphs were fed on albino mice. The rearing conditions were 26 ±1°C, 92 ± 1% relative
humidity, and 14:10 light versus dark for all ticks.

The animals used for tick rearing were housed in cage sizes in strict accordance with the rec-
ommendations in the Guide for the Care and Use of Laboratory Animals of the National Insti-
tutes of Health. The animals were provided ad libitum water and a commercial food
appropriate to the animal species and animal age. All rodents received at least one housing
type enrichment item during cage changes (examples were polycarbonate tunnels (for rats),
igloos (for mice), alfa twist or envirodry); all rodents received at least one chewing type enrich-
ment item during cage changes (examples were Nylabone and wooden blocks); and other food
enrichment (ex. included but was not limited to sunflower seeds, Fruity Gems1, Vegie Bites1
and Fruity Bites1). All rabbits received at least one enrichment item per week unless otherwise
directed by the investigator, attending veterinarian or designee, or the facility manager. Exam-
ples of items to be given included but was not limited to Nylabones, Bunny Blocks, Jingle Balls
and Dumb Bells. All rabbits received food enrichment at least three times per week. Examples
of food enrichment included but was not limited to Timothy cubes, hay, Vegie Bites1, Fruity
Gems1, and fresh fruit or vegetables.

Ethics statement
In this study, we strictly followed the recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health to minimize pain and discomfort of
the animals. The protocols were approved by the Old Dominion University Institutional Ani-
mal Care and Use Committee (Animal Welfare Assurance Number: A3172-01). These proto-
cols (#10–018 and #10–032) are on file at the Office of Research, Old Dominion University,
Norfolk, VA, USA.

Tissue dissection, total RNA isolation, cDNA synthesis and sequencing
Synganglia from different adult ticks under study were isolated by dissection and included the
pedal nerves and lateral segmental organs. All lab bench surfaces, petri dish dissecting
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containers and instruments used in the dissections were treated with RNaseZap (Ambion, Aus-
tin, TX, USA) to limit RNA degradation. All containers used were autoclaved and kept sterile
until needed and never re-used. Because of the challenges of establishing and maintaining
three different tick species in the laboratory, generating the number of ticks needed to collect
enough tissue for transcriptome construction, developing different aged adults which was
dependent in part on the developmental biology which differed between different tick species,
the dissection of large numbers of synganglia from different species and different developmen-
tal stages, and the need to obtain RNA that was not degraded, the transcriptomes in this study
were generated over an extended time period. During this period, there was a rapid evolution
in the sequencing and bioinformatics technologies available in our core facility at North Caro-
lina State University. Also for the sake of time and cost, it was not always possible or necessary
to standardized all aspects of the transcriptome construction and data analysis to achieve the
goals of our research. The 454 and Illumina sequencing was conducted in the Genome
Sequencing Laboratory at North Carolina State University.

RNA purity. The quality and purity (260/280 nm) of the total RNA was first determined
using a Nanodrop 2000 spectrophotometer (Thermofisher, Wilmington, DE, USA). Samples
with low purity (<1.8) were discarded. A Bioanalyzer 2100 (Agilent Technologies) was used
next to determine the integrity of RNA samples; samples that did not meet minimum require-
ments (RNA integrity� 8) were discarded [25].

D. variabilis transcriptome. The D. variabilis synganglion 454 transcriptome was made
from approximately 50 synganglia each from unfed, part-fed virgin (attached to the host for
4–5 days), part-fed virgin forcibly detached from the rabbit host and held in culture for 4–5
days, part-fed mated (allowed to mate for 1 day), and replete (1 day post drop off from the
host) females. Tissues from each feeding stage were homogenized separately in TRI Reagent
(Sigma-Aldrich, St. Louis, MO, USA). RNA pellets were rehydrated in 100 mM aurintricar-
boxylic acid to prevent degradation [26]. Approximately 3μg total RNA from each group was
pooled. The mRNA was isolated using an Oligotex mRNA isolation kit (Qiagen, Valencia, CA,
USA). Purified mRNA was precipitated using ethanol then rehydrated and combined with
10 pmol of modified 30 reverse transcription primer (50ATTCTAGAGACCGAG GCGGCCGA
CATG T(4)GT(9)CT(10) VN-30) [27] and 10 pmol SMART IV oligo (50-AAGCAGTGGTAT
CAACGC AGAGTGGCCATTACGGCCGGG-30) [28]. The mRNA and primers were incu-
bated at 72°C for 2 min and then combined with the following reagents on ice: 1 ml RnaseOut
(40 U/μl), 2 μl 5× first strand buffer, 1 μl 20 mM dithiothreitol (DTT), 1 μl deoxynucleotide tri-
phosphate (dNTP) mix (10 mM each) and 1 μl Superscript II reverse transcriptase (Invitrogen,
Carlsbad, CA, USA). The reaction was incubated at 42°C for 90 min, then diluted to 30 μl with
Tris-EDTA (TE) buffer (10 mM Tris HCl, pH 7.5, 1 mM ethylenediaminetetraacetic acid) and
stored at -20°C until further use. Second strand cDNA was synthesized by combining 5 μl first-
strand cDNA with 10 pmol modified 30 PCR primer
(50ATTCTAGAGGCCGAGGCGGCCGACAT G(4)GTCT(4)GTTCTGT(3)CT(4)VN-30) [27],
10 pmol of 50 PCR primer (50AAGCAGT GGTATCAACGCAGAGT-30) [28], 5 μl 10× reaction
buffer, 1 μl dNTP mix, 2 μl MgSO4, 0.4 μl Platinum Taq DNA polymerase High Fidelity and
34.6 μl H2O (Invitrogen). Thermal cycling was conducted as follows: 94°C for 2 min followed
by 25 cycles of 94°C for 20s, 65°C for 20 s and 68°C for 6 min. The first PCR reaction was con-
ducted, and 5 μl aliquots from cycles 18, 22 and 25 were analyzed on a 1% agarose gel to opti-
mize the number of cycles. Five additional reactions were conducted to produce sufficient
quantities of cDNA for 454 library preparation. The contents were combined, and the cDNA
was purified using a PCR purification kit (Qiagen) according to the manufacturer’s recommen-
dations. The cDNA library was prepared with appropriate kits (Roche, Indianapolis, IN, USA;
Qiagen) for pyrosequencing on the GS-FLX sequencer (Roche) according to the
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manufacturer’s recommendations described previously by Margulies et al. [29]. The only devi-
ation from the protocol was prior to titration sequencing where following emulsification PCR,
DNA-positive beads were enriched to increase the number of reads collected during titration
[30].

I. scapularis transcriptomes. A 454 and two different Illumina synganglion transcrip-
tomes were made from adults of I. scapularis. For the 454 pyrosequencing, tissue processing,
RNA extraction and sequencing were conducted as described earlier for the D. variabilis syn-
ganglion transcriptome and also described by Donohue et al. [30] and Egekwu et al. [31]. The
dissections of I. scapularis ticks for the Illumina transcriptomes were conducted in phosphate-
buffered saline on ice (pH 7.0, 10mMNaH2PO4, 14 mMNa2HPO4, and 150 mMNaCl). The
synganglia were homogenized in Qiagen RLT buffer and total RNA extracted following the
manufacturer's recommendations (Qiagen). RNA samples were stored at -80°C until needed.
The total RNA was 3.25 μg from 30 part-fed virgin females synganglia for 454 pyrosequencing,
5.1 μg from a mixture of 50 unfed, part-fed virgin and replete female synganglia for the first
Illumina transcriptome (I) and 3.28 μg from 45 part-fed virgin females for the second (II) Illu-
mina transcriptome.

For Illumina sequencing, the Illumina TruSeq RNA Sample Prep Kit v2 (Part No.
15026495, Illumina, Inc. San Diego, CA, USA) was used. Following PCR amplification, adapt-
ers were included for sequencing with paired ends. For paired ends, Illumina GA-II sequencing
adapters were ligated to the fragments as described by the Illumina’s Paired-End Sample Prepa-
ration Guide (catalogue number PE-930-1001).

O. turicata transcriptome. For the O. turicata Illumina transcriptome, 50 synganglia
from replete female adult ticks were dissected in phosphate-buffered saline (described earlier)
and the synganglia homogenized in Qiagen RLT buffer. Total RNA was extracted according to
the manufacturer’s protocol using the RNeasy mini kit (Qiagen). A total of 6.97μg of total RNA
was obtained and sequencing conducted using the Illumina Truseq RNA Sample Prep Kit v2
(Part No. 15026495, Illumina). After RT-PCR amplification, paired end sequencing was con-
ducted using Illumina GA-II sequencing adapters ligated to the fragments as described by the
Illumina's Paired-End Sample Preparation Guide (catalogue number PE-930-1001) and
Egekwu et al. [32].

Bioinformatics
For each transcriptome, duplicate reads, primer sequence contamination, adapter sequences
and ambiguous base calls were trimmed. The assembly of the D. variabilis synganglion 454
transcriptome was done with GS Assembler (Roche) using default parameters. The other three
transcriptomes (I. scapularis 454; Illumina transcriptome and O. turicata Illumina transcrip-
tome) were assembled with the CLC-BIO program [33]. The assembled contiguous sequences
will be referenced in this study as "contigs." The putative functions of contigs in each transcrip-
tome were identified (annotated) by the Basic Local Alignment Search Tool (BLAST) against
the GenBank non redundant database and EST database [34] with an e-value of E-06 (or
lower) for the Illumina assemblies and E-10 for 454 pyrosequencing. Additional BLAST
searches were done for selected contigs of interest against the conspecific I. scapularis genome
(www.vectorbase.org).

BLASTx and BLASTp searches of the D. variabilis, I. scapularis and O. turicata synganglion
transcriptomes as well as transcriptomes generated for the D. variabilismale reproductive sys-
tem and midgut described elsewhere [35, 36] were conducted for insect specific matches using
the insect enzymes described before in JH III biosynthesis by Noriega et al. [37] and Belles et al.
[38]. BLASTp searches were also conducted of the I. scapularis genome (www.vectorbase.com)
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using the CYP15A1 message from D. punctata (AAS13464) proven to catalyze the formation
of the C10,11 epoxide of JH [23]. The search revealed 500 CYP genes in the I. scapularis
genome; 20 selected matches based on being full length and having the lowest e-value were uti-
lized to construct an optimal neighbor joining phylogenic tree using the Molecular Evolution-
ary Genetics Analysis (MEGA) program [39]. Sequence alignments of CYP15A1 were
performed with ClustalW (www.ebi.ac.uk/clustalw). Sequence alignments of farnesyl diphos-
phate synthase, methyltransferase and farnesol oxidase were performed with Jalview Version
2.8.2 [40].

Results and Discussion

Tick transcriptomes
All of the enzymes that comprise the JH biosynthetic pathway in insects (the mevalonate path-
way followed by the JH branch from farnesyl PP to JH III) (Fig 1) are found in the corpora-
allata, which is part of the stomatogastric nervous system located ventral and dorsal to the
insect brain [41]. The insect brain and ventral nerve cord comprise the central nervous system
(CNS) and along with the stomatogastric nervous system regulates neuroendocrine and endo-
crine functions. Typically, the mevalonate pathway in most animals would lead to the synthesis
of steroids, but arthropods, including insects and ticks, have lost the ability to synthesize ste-
roids de novo (Fig 1). JH biosynthesis is regulated by neuropeptides allatotropins and allatosta-
tins produced in the brain that regulate JH biosynthesis in the stomatogastric nervous system
and more specifically in the corpora allata in insects.

The tick’s synganglion, which is the tissue source for our transcriptomics research, is located
in the center of the body in the tick hemocoel and is homologous in insects with (i) the CNS
(brain and ventral nerve cord) and (ii) the stomatogastric nervous system which in insects
would include the corpora allata, (the site of biosynthesis of JH) [1]. A retrocerebral organ
complex is located on the dorsal side of the supraesophageal region of the synganglion in what
should be the same region as the insect stomatogastric nervous system. It has also been hypoth-
esized that the lateral segmental organs located in the lateral nerve plexus between the pedal
nerves leading from the synganglion may be the site of JH synthesis in ticks, primarily based on
the abundance of smooth endoplasmic reticulum in these glands and the histological similarity
of these organs to the insect corpora allata [5]. By developing transcriptomes to the entire syn-
ganglion including as much of the pedal nerves as possible and the lateral segmental organs,
our dissections should include at least the tick equivalent of the insect corpora allata and essen-
tially includes all of the tick CNS and stomatogastric nervous system. The only exceptions for
the latter may be the tick equivalent of the insect ingluvial ganglia and nerves leading to the
ingluvial ganglia (if present in ticks). For our research, we generated and examined synganglion
transcriptomes from three different adult tick species, D. variabilis and I. scapularis (hard
ticks) and O. turicata (soft tick). Transcriptomes from two other tissues, D. variabilis adult
midgut and male reproductive system where JH biosynthesis would not be expected based on
insect systems, were used for comparisons.

D. variabilis synganglion transcriptome. The transcriptome generated from the adult
American dog tick synganglia contained 532,136 filtered and vector-trimmed reads and the
average length of the reads was 229 base pairs (bp) (Table 1). Redundant sequences were
assembled with the GS Assembler algorithm (Roche Indianapolis, IN, USA) and 21,119 contigs
were obtained; the Basic Local Alignment Search Tool or BLAST analysis of the National Cen-
ter for Biotechnology Information (NCBI) database was conducted to predict putative func-
tions of the contigs. A search against the GenBank nonredundant (nr) database by BLASTx
using a translated nucleotide query with an e-value cut-off of e-10, resulted in at least one
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Fig 1. Juvenile hormone III and cholesterol bio-synthesis pathways in insects, modified from Bellés et al. [38].

doi:10.1371/journal.pone.0141084.g001
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match for 13,344 sequences (63.2% of the expressed genes). There were 6,045 transcripts that
had an expected value (e-value) of 1e-06 or lower when compared to the GenBank nr database
using BLASTx [30].

I. scapularis synganglion transcriptome. Three separate transcriptomes were constructed
for the black-legged tick (Table 1). For the first Illumina transcriptome (I, Table 1) mixed
unfed, part-fed and replete female synganglia were extracted to create a cDNA library.
Sequencing of this library produced a total of 34,520,330 reads with an average read length of
68 bp. After vector trimming, the raw reads were assembled using CLC-BIO [33] into a total of
41,249 contigs with an average length of 480 bp. BLASTx against the NCBI database was used
to predict putative functions of the contigs. Searches against the GenBank nr database using
BLASTx were conducted with an e-value cut-off of 1e-06. For the second I. scapularis Illumina
transcriptome (II, Table 1), part-fed adult female synganglia total RNA was extracted and used
to synthesize a cDNA library. After Illumina sequencing, a total of 117,900,476 raw reads were
produced with an average length of 72 bp (Table 1). Assembly with the CLC-BIO [33] algo-
rithm produced a total of 30,838 contigs with an average length of 655bp. The putative func-
tions for these contigs were predicted with BLASTx using the NCBI database. The third
transcriptome was constructed using 454 pyrosequencing. Part-fed female synganglia total
RNA was extracted and a cDNA library constructed followed by 454 pyrosequencing on a
GS-FLX sequencer (Roche). Pyrosequencing generated 456,073 total reads with an average
length of 267 bp per read (Table 1). The reads were assembled with the CLC-BIO algorithm
[33] which produced 20,630 contigs with an average length of 523 bp. BLASTx against the
NCBI database was used to predict putative functions of the contigs. Searches for protein func-
tion were conducted against the GenBank nr database with BLASTx using a translated nucleo-
tide query, with an e-value cut-off of e-10.O. turicata synganlion transcriptome—Synganglia
were dissected from blood fed female O. turicata, total RNA extracted and a cDNA library con-
structed. After Illumina sequencing, a total of 63,528,102 raw reads was generated. The assem-
bly of raw reads was conducted with the CLC-BIO [33] assembly program (CLC BIO,
Cambridge, MA) and yielded 132,258 contigs with an average contig length of 438 bp. Batch
BLAST from Blast2go pro [42] was used to compare these contigs with the nr database from
NCBI to establish putative functions with an e-value cut off of e-6.

Table 1. Comparison of transcriptomes from different tick species, sexes, tissues and sequencingmethods.

Tick Sequencing method Sex/Feeding stage/Tissue Number of
reads

Average read length
(base pairs)

Number of
contigs

D. variabilis 454 pyrosequencing
(GS-FLX)

50 synganglia each from unfed, part-fed
virgin and part-fed mated

532,136 229 21,119

I. scapularis Illumina Truseq-I 50 synganglia mixed from unfed, part-fed,
and replete females

34,520,330 68 41,249

Illumina Truseq-II 45 part-fed female synganglia 117,900,476 72 30,838

454 pyrosequencing
(GS-FLX)

30 part-fed female synganglia 456,073 267 20,630

O. turicata Illumina Truseq 50 replete female synganglia 63,528,102 438 132,258
1D. variabilis 454 pyrosequencing

(GS-FLX)
500 each from male accessory glands,

testes vas deferens
563,093 300 12,804

2D. variabilis Sanger 3unfed and fed ticks of both sexes 23,045 Not Available 1,679

1D. variabilis male reproductive system transcriptome from Sonenshine et al. [35].
2D. variabilis (midgut) transcriptome from Anderson et al. [36].
3Number of ticks unknown.

doi:10.1371/journal.pone.0141084.t001
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Additional comparative transcriptomes. Our research results with synganglion tran-
scriptomes were compared with transcriptomes from two additional tissues exclusive of the
CNS, namely, the male reproductive system and midgut of the American dog tick. The former
was constructed using 500 part fed adult males accessory glands, testes and vas deferens and
454 pyrosequencing produced 563,093 reads which averaged 300 bp per read and assembled
into 12,804 contigs (Table 1). Putative functions were determined by BLASTx against the
NCBI database. A total of 3,951 contigs were found to match known genes, with an e-value
cut-off of e-10, when compared to the GenBank nr database by BLASTx [35]. The midgut tran-
scriptome was developed from unfed and fed male and female adults and was conducted by
our group prior to the availability of 454 or Illumina sequencing. We obtained 23,045 reads
which were assembled using the CAP2 assembler [43] into 1,679 contigs (Table 1) [36]. The
contigs were initially identified with BLASTx, BLASTn, and ROS-BLAST using the nr NCBI
protein database. Then, the characterized proteins were compared to a custom-prepared
ACARI database, the Gene Ontology (GO) database, and to the NCBI conserved domains data-
base (CDD) including KOG, PFAM and SMART for putative functional assignments.

Putative mevalonate (farnesyl-PP) pathway in the tick synganglion
The initial steps in JH biosynthesis comprise the mevalonate or farnesyl-PP pathway (Fig 1).
This pathway is important in many organisms leading to the steroid (cholesterol) biosynthesis
pathway. Steroids are essential in membrane function and comprise the structure of hormones
essential for life. Insects do not synthesize cholesterol de novo [38,44], and we unable to find
squalene synthase, squalene monoxygenase and lanosterol synthase involved in steroid synthe-
sis (Fig 1) in any of our transcriptomes. The mevalonate pathway uses acetyl-CoA as a starting
material which undergoes condensation with another acetyl-CoA subunit via acetoacetyl-CoA
thiolase to form acetoacetyl-CoA. Then acetyl-CoA condenses with acetoacetyl-CoA to form
2-hydroxy-3-methylglutaryl-CoA (HMG-CoA) through HMG-CoA synthase (HMG-S).
HMG-CoA then is reduced to mevalonate by NADPH with the enzyme HMG-CoA reductase
(HMG-R) (Fig 1), which is the rate limiting step in cholesterol synthesis. HMG-R is an impor-
tant regulator step in steroid biosynthesis and has been the focus of research into the develop-
ment of anti-cholesterol drugs. Mevalonate is phosphorylated by mevalonate kinase (MK) to
5-phosphomevalonate, also known as phosphomevalonic acid. Then the enzyme phosphome-
valonate kinase phosphorylates 5-phosphomevalonate to 5-pyrophosphomevalonate (mevalo-
nate-5-PP). The enzyme, diphosphomevalonate decarboxylase metabolizes mevalonate-5-PP
to isopentenyl diphosphate (IPP) (Fig 1). The C-5 isoprene unit is used by prenyltransferases
to build prenyl chains whose carbon atom numbers are typically in multiples of five. Biogenesis
of the sesquiterpene precursor of JH III, farnesyl diphosphate (FPP), is achieved by FPP
synthase (FPPS, a prenyltransferase) which catalyzes the head to tail condensation of three iso-
prene units. In the latter reaction, the chain initiator is the allylic isomer of IPP, dimethyl allyl
diphosphate (DMAPP), the production of which is catalyzed by an IPP isomerase (IPPI) [37,
38, 41, 45].

In the past, identification of precursors of JH or JH itself in ticks were conducted by the
chemical isolation of the products in the mevalonate-JH biosynthetic pathway [22, 24, 46].
This work was challenging in insects because of the small size of the corpora allata, the source
of JH, the difficulty of obtaining a clean dissection of the corpora allata, and the extremely low
production levels of the hormones. Tracer studies using radiolabeled acetate have also been
used in insects and ticks [22]; this approach is problematic because of variations in enzymatic
rates at each step of biosynthesis (which makes detection of intermediates difficult), organ cul-
ture methods are needed that mimic in vivo conditions and again, there is the need to dissect
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the corpora allata. These problems are even more challenging for the study of ticks because (i)
their small size compared to many insects, (ii) ticks do not have a distinct head region, (iii) the
stomatogastric and CNS are condensed into a single synganglion, and (iv) tick rearing itself is
difficult requiring feeding on a live animal host at each stage of its development. For these rea-
sons and as an alternative approach, we conducted in this study the first global analysis of gene
expression in ticks for the enzymes in the mevalonate-JH III biosynthesis pathway examining
the synganglion of three tick species representing hard and soft ticks; the goal was to determine
whether adult ticks have the potential of making JH III or its precursors by the detection of the
enzymes that comprise the JH III biosynthesis pathway (Fig 1). Our focus was JH III biosynthe-
sis since this pathway has been well characterized in insects [38] including our recent identifi-
cation of the entire pathway in the genome of the termite [47]. Also, the synthesis of JH III is
exclusive to the lower insects and therefore most likely to also be found in ticks.

A BLASTx and BLASTn search of the synganglion transcriptomes of D. variabilis, I. scapu-
laris and O. turicata (Table 1) for the insect enzymes involved in the synthesis of JH III (Fig 1)
was successful in identifying all of the transcripts of the enzymes involved in farnesyl-PP bio-
synthesis (Table 2). The putative messages characterized were acetoacetyl-CoA thiolase (60%
identical to insects), hydroxymethylglutaryl-CoA synthase (60% identical to insects), hydroxy-
methylglutaryl-CoA reductase (50% identical to insects), mevalonate kinase (38% identical to
insects), phosphomevalonate kinase (52% identical to insects), diphosphomevalonate decar-
boxylase (54% identical to insects), and farnesyl diphosphate synthase (64% identical to
insects) among the three transcriptomes examined. The top three insect BLAST matches for D.
variabilis, I. scapularis and O. turicata in the mevalonate pathway are listed with contig num-
ber, length (bp), e-value (ranging from 0.0 to 6.3), and percent identity (Table 2). For O. turi-
cata, all of the enzymes in the mevalonate pathway was found except farnesyl diphosphate
synthase (the last step for the synthesis of farnesyl-PP); however, this enzyme was found in
both the D. variabilis and I. scapularis transcriptomes with the lowest e-values in the e-11 and
e-12 range, respectively. Matches for many of the other enzymes in the mevalonate pathway
were found in D. variabilis and I. scapularis with the best matches occurring in the forming
ranging from e-14 to e-42 (Table 2). A BLASTx and BLASTn search of the I. scapularis genome
for the insect enzymes involved in the synthesis of juvenile hormone (JH) III [48] revealed the
presence of all but two of the enzymes involved in the farnesyl-PP pathway. The genes found
were acetoacetyl-CoA thiolase, hydroxymethylglutaryl-CoA synthase, hydroxymethylglutaryl-
CoA reductase, mevalonate kinase, phosphomevalonate kinase, diphosphomevalonate decar-
boxylase and farnesyl diphosphate synthase. The top insect BLAST results from these I. scapu-
larismessages had e-values ranging from e-44 to 0.0. Isopentenyl diphosphate isomerase and
geranyl diphosphate synthase were not found. Fig 2 shows the farnesyl diphosphate synthase
(FPPS) contig 9824 (KT728823) from the I. scapularis transcriptome and FPPS
(XP_002408650) from the I. scapularis genome (www.vectorbase.org) aligned with FPPS
described in Bombyx mori and Drosophila melanogaster [49]. In the alignments, seven prenyl-
transferase conserved regions previously identified by Koyama et al. [50] are highlighted in
boxes. Only the last two conserved regions were found for contig 9824 because this contig from
the I. scapularis transcriptome is not a full length sequence. But all seven prenyltransferase con-
served regions were found in the FPPS sequence from the I. scapularis genome; also the region
II and VI two aspartate-rich motifs (marked with “X” on top) were identified (Fig 2), further
evidence for the presence of FPPS in the synganglion and genome of I. scapularis. The FPPS
sequence from the I. scapularis genome shares 43% identity with the FPPS found in B.mori (e-
value of e-85); the FPPS (contig 9824) from the I. scapularis transcriptome shared 27% identity
with an e-value of 6e-05. Even with 27% sequence identify, both messages share a high level of
amino acid conservation. FPPSs are unique and diversified. There are three different copies of
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FPPS in B.mori, six in the honey bee, Apis mellifera, two in the monarch butterfly, Danaus
plexippus, and one each in the fruit fly, Drosophila melanogaster, the malaria mosquito, Anoph-
eles gambiae and red flour beetle, Tribolium castaneum [51]. Two FPPS messages were found
between the I. scapularis synganglion transcriptome and genome (Fig 2).

The mevalonate pathway is an important metabolic pathway that exists in all higher eukary-
otes and many bacteria and is involved in multiple metabolic functions. For example, it can
play a role in cholesterol synthesis and maintaining membrane structure. The pathway is also
involved in membrane-bound protein prenylation, the addition of hydrophobic molecules to

Fig 2. Sequences alignment of farnesyl diphosphate synthase (FPPS2) fromBombyxmori andDrosophila melanogasterwith contig 9824 and
XP_002408650 from I. scapularis transcriptome and genome. Farnesyl diphosphate synthase (FPPS2) described from Bombyx mori and Drosophila
melanogaster aligned with contig 9824 from the I. scapularis transcriptome and FPPS (XP_002408650) from the I. scapularis genome. The boxed regions are
the seven prenyltransferase conserved regions previously identified by Koyoma et al. [50]. “X” above the amino acids indicates position of Asp residues
within the two aspartate-rich domains. Below the sequence alignment is the conservation panel which is measured as a numerical index (9–0) reflecting the
conservation of physicochemical properties in the alignment. * (asterisk) denotes the highest identity score (identical residues in all species) followed by a
score of 9 for the next most conserved group of residues containing substitutions by amino acids included in the same physicochemical class as described by
Livingstone and Barton [52].

doi:10.1371/journal.pone.0141084.g002
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proteins, and important in cell signaling and carcinogenesis. The mevalonate pathway contrib-
utes to the synthesis of heme A and ubiquinone that participate in electron transport across cel-
lular membranes and the synthesis of isopentenyl adenine, which is present in some transfer
RNA. The pathway can also produce hormonal messengers such as cytokinins and phytoalex-
ins in plants, steroid hormones in mammals [53], defensive secretions, pheromones, and JH in
insects [54], [38]. Since its final product is typically cholesterol that functions in maintaining
cell membranes, most of the research on the mevalonate pathway has focused on vertebrate
systems and its close association with human cardiovascular diseases [55].

Insects cannot synthesize cholesterol since they lack squalene synthase, squalene monooxy-
genase and lanosterol synthase in the sterol branch (Fig 1). We have identified all of the
enzymes involved in the mevalonate pathway from acetyl-CoA to FPP in the three tick tran-
scriptomes that were examined (Table 2) and part of the pathway in the I. scapularis genome
[48]. The mevalonate pathway was also found in the spider mite, Tetranychus urticae, genome,
a close relative to ticks [56]. Although the mevalonate pathway has other functions such as ubi-
quinone synthesis, dolichol synthesis and protein prenylation [44], we were not able to find
any of the enzymes that make up this pathway in the D. variabilismale reproductive or midgut
transcriptomes examined. Because of the ubiquitous distribution of fat body in ticks and its
deposition on trachea, it is unlikely that fat body messages were not present in any of the tran-
scriptomes that were examined. The evidence so far suggests that the mevalonate (farnesyl-PP)
pathway is present only in the synganglion which is inclusive of the stomatogastric nervous
system and the likely tick equivalent of the insect corpora allata. Its presence only in the syn-
ganglion further suggests that, like in insects, the pathway is involved in a regulatory function
and possibly is contributing to the production of a JH precursor beyond farnesyl-PP (further
discussion follows).

Putative farnesal branch in ticks
Following the mevalonate pathway, there are two metabolic routes possible: the steroid biosyn-
thetic pathway and the JH branch (Fig 1). In most animals, the final product of the mevalonate
pathway is the synthesis of steroids like cholesterol. Insects lack the genes required for the pro-
duction of cholesterol from farnesyl-PP; this include squalene synthase which catalyzes the
reductive condensation of farnesyl-PP [44]; [57]; [38]. Searching through our tick transcrip-
tomes (Table 1), we were not able to find any of the enzymes that make up the steroid biosyn-
thesis pathway.

The JH branch (farnesyl-PP to JH III) found in insects involves five enzymes: farnesyl
diphosphate pyrophosphatase, farnesol oxidase, farnesal dehydrogenase, JH methyl transferase
and JH epoxidase (Fig 1). A BLASTx and BLASTn search of our synganglion transcriptomes of
D. variabilis, I. scapularis and O. turicata (Table 1) for the insect enzymes involved in the JH
branch (Fig 1) was successful in identifying (i) farnesol oxidase, a short chain dehydrogenase
implicated in the conversion of farnesol to farnesal, and (ii) a methyltransferase that potentially
could add a methyl ester to farnesoic acid or JH acid to produce methyl farnesoate or JH III,
respectively (Table 2). We did not search for farnesyl diphosphate pyrophosphatase and farne-
sal dehydrogenase in the JH branch since these enzymes have not been identified yet in insects
[38].

Absence of a JH epoxidase (CYP15A1) in ticks. The last step in JH biosynthesis in insects
is the epoxidation of methyl farnesoate or farnesoic acid by a P450 which adds a C10,11 epox-
ide with a specific R-enantiomeric C10 asymmetric carbon to produce JH III or JH III acid,
respectively. The JH epoxidases so far characterized in insects are in the P450 family CYP15A1.
An absolute functional assignment has been demonstrated in insects to this P450 family, where
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the CYP15A1 message was cloned from the corpora allata of the cockroach, Diploptera punc-
tata, and shown to add an epoxide at the proper location with C-10R high stereo selectivity
[23]. All members of the CYP15 family share>40% identity at the amino acid level and those
with>55% identity are in the CYP15A subfamily [58]. We were not able to find any JH epoxi-
dases in the CYP15A1 family in any of our tick transcriptomes (Table 3) or in the I. scapularis
genome [48]. We found two hundred P450 transcripts in the I. scapularis genome that varied
in length (not all were complete transcripts), but none were specific to the CYP15A1 subfamily.
Fig 3 shows the alignment of XP_002410454 from the I. scapularis genome with CYP15A1
from D. punctata and S. gregaris (the latter also shown to add an epoxide to make JH III; [23]).
XP_002410454 is a full-length sequence we identified in the I. scapularis genome that shared
the highest identity and lowest e-value with the JH epoxidase CYP15A1 in D. punctata. The
signature heme-binding region (F��G���C�G) was found in all of the P450s aligned as expected
including XP_002410454, suggesting the latter is a P450. A phylogenetic tree was constructed
for the top 20 (based on the lowest e-values compared to the cockroach JH epoxidase), full-
length sequences in the I. scapularis genome to CYP15A1 from D. punctata and S. gregaris (Fig
4). The D. punctata and S. gregaris enzymes are in the same clade as would be expected.
XP_002410454 also had the closest relationship with CYP15A1 but shared only 28% identity
with D. punctata JH epoxidase placing it outside of the CYP15A1 family and subfamily.
CYP15A1 also was not found in the spider mite genome [56].

Neese et al. [22] was unable to find that ticks could synthesize JH either in vivo or in vitro
using different tissues, including the synganglion, using a highly sensitive radiotracer method
in hard and soft ticks. In addition, these authors could not find any of the insect JHs in the
hemolymph of vitellogenic hard and soft ticks by EI GC-MS nor could they find JH in hard
ticks using the insect Galleria bioassay for JH. Furthermore, there is no consistent evidence
that JH or JH mimics when topically applied affect tick development or will induce vitellogene-
sis [1]. The lack of CYP15A1 in multiple synganglion transcriptomes from hard and soft ticks
(Table 3), in the genome of I. scapularis [48], and in the genome of the spider mite [56], further
supports the hypothesis that ticks do not make JH III or use JH in the regulation of their
development.

JH acid methyltransferase (JHAMT) in ticks. The enzymes involved in the last two steps
in JH biosynthesis in insects, JH acid methyltransferase (JHAMT) and JH epoxidase (Fig 1),
have been successfully validated at the functional level through cloning, expression and sub-
strate metabolism for their role in the synthesis of JH III [60]; [61]; [62]; [63]. The order of
metabolism appears to be variable depending on the insect; in the Lepidoptera, epoxidation
precedes esterification by JHAMT [64] and in the Orthoptera, Dictyoptera, Coleoptera and
Diptera the reverse occurs [65–69]. JHAMT transfers a methyl group from S-adenosyl-L-
methionine (SAM) to farnesoic acid or JH acid depending on the insect. Thus, JHAMTs must
have a conserved SAM binding motif which is typical of the general SAM-dependent methyl-
transferase family [38].

JHAMTs have been found and characterized in insects but not in ticks. We found over 100
different methyltransferases in each of our tick synganglion transcriptomes, and there is evi-
dence from the study of the I. scapularis genome of a large expansion of this gene family [48].
The expansion of this gene family is not found in any insect so far studied. The methyltrans-
ferases with the top two highest matches to putative insect acid methyltransferases based on e-
values are shown in Table 3 along with the matches to functionally proven JHAMTs (shown in
bold). For the latter for D. variabilis, the e-values range from e-25 to e-18, for I. scapularis e-24
to e-19 and for O. turicata from e-34 to e-25 (Table 3). These data alone suggest that ticks have
a JHAMT in their synganglia. Methylases including methyltransferases are responsible for
transferring a methyl group from a donor to an acceptor substrate, and there are many types of
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methyltransferases in insects, e.g., DNA methyltransferase, histone methyltranferase, JHAMT
and others. The putative association of tick methyltransferases as JHAMTs in Table 3 based on
low e-values and high identity has to be considered with caution, since most methyltransferases
identified in insects have been associated with JH biosynthesis. Also note in Table 3, there were
matches ranging from e-32 to e-17 for acid methyltransferases which have not been function-
ally proven to be involved in JH synthesis. Selected methyltransferases of maximum length
from the transcriptomes of D. variabilis, I. scapularis and O. trunicata were further aligned
with insect acid transferases that are reported in the literature to be JHAMTs from Bombyx
mori (NP_001036901), Drosophila melanogaster (NP_609793), Tribolium castaneum
(NP_001120783), and Aedes aegypti (XP_001651876). Recombinant JHAMTs from Bombyx
mori [60], Drosophila melanogaster [61], Tribolium castaneum [62], and Aedes aegypti [63]
were shown to convert farnesoic acid into methyl farnesoate, as well as JHA into JH III and
therefore are functionally proven JHAMTS which have the ability to metabolize both farnesoic

Fig 3. Phylogenetic tree comparing the P450 CYP15A1 found inD. punctata and S. gregaria to P450s
found in I. scapularis genome. Phylogenetic tree comparing the P450s CYP15A1 known in D. punctata
(AAS13464) and S. gregaria (HQ634703) to add the C10,11 epoxide to methyl farnesoate to make JH III, to
the P450s in the I. scapularis genome with the top BLASTp matches (lowest e-values) to the D. punctata
CYP15A1 and which had the longest length in base pairs. The 20 full length CYPmessages with the lowest
e-values and maximum length available from I. scapularis were not in the CYP15A1 family (in a different
clade) as shown. The optimal neighbor-joining phylogenic tree was constructed by the Molecular
Evolutionary Genetics Analysis (MEGA) program. All of the accession numbers labeled with XPs are CYP
messages from the I. scapularis genome. The recombinant expressed CYP15A1s from D. punctata and S.
gregaria are labeled insect JH epoxidase. Percent identity was determined by BLASTp. The highest identity
message XP_002410454 shares 28% identity with D. punctata and 30% identity with S. gregaria. No
members of the Cyp15A family were found in the I. scapularis genome [48]. An alignment of the closest
sequence XP002410454 to the CYP15A1 family is shown in Fig 4.

doi:10.1371/journal.pone.0141084.g003
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Fig 4. Sequence alignment of XP_002410454 from the I. scapularis genomewith CYP15A1 fromD. punctataAAS13464 and S. gregaria HQ634703.
Sequence alignment (pairwise) for XP_002410454, the top BLASTmatch from the I. scapularis genome to that of the published sequences (GenBank) for
CYP15A1 from D. punctata AAS13464 [23] and S. gregariaHQ634703 [59]. The JH epoxidase is a member of the CYP15A1 family and has been cloned and
characterized from the corpora allata of D. punctata and S. gregaria. It has been demonstrated this enzyme can add an epoxide to the C10,11 position of
methyl farnesoate to produce JH III with high stereo selectivity (10R). All members of the family CYP15 share >40% identity at the amino acid level and >55%
identity at the subfamily level [58]. The boxed sequence on the alignment is the signature heme-binding motif of the P450 (F**G***C*G). An * (asterisk)
indicates positions which have a single, fully conserved residue. A colon indicates conservation between groups of strongly similar properties, scoring > 0.5
in the Gonnet PAM 250 matrix. A period indicates conservation between groups of weakly similar properties, scoring� 0.5 in the Gonnet PAM 250 matrix.
Based on our alignment, the I. scapularis sequence XP_002410454 only shares 28% identity with D. punctata and 30% identity with S. gregaria. Therefore
XP_002410454 is not a member of the CYP15 gene family.

doi:10.1371/journal.pone.0141084.g004
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acid and JHA [70]. The substrate (farnesoic acid or JH acid)-binding site is highlighted
with "+" in Fig 5, along with the residues (labeled with X) that interact with the methyl donor
(S-adenosylmethionine) and the carboxylic acid of the substrate methyl acceptors, farnesoic
acid or JH acid. Interestingly, most of the amino acids important in interactions with the
methyl donor (SAM) and the substrate (farnesoic acid or JHA) are highly conserved in the
insect JHAMT sequences. The insect JHAMTs and the methyltransferases from the D. variabi-
lis transcriptome have the classical SAM binding motifs, suggesting they are all methyltrans-
ferases. Two critical (conserved) residues near SAM, Gln-14(Q) and Trp-120 (W), bind the

Fig 5. Alignment of methyltransferases from ticks with that of known JHmethyltransferases from insects (based on published direct
demonstration of function or by bioinformatics).Contains the Gln-14 and Trp-120 residues which are important for farnesoic acid or JH acid interaction,
and part of the SAM binding motif. Both Gln-14 and Trp-120 residues are labeled with + on the top of the sequence. The SAM binding motif and ligand
interactions are marked with X on the top of the sequence. Selected methyltransferases with the maximum length in bps from the transcriptomes of D.
variabilis, I. scapularis andO. trunicatawere aligned with known insect JH methyl transferases from Bombyx mori (NP_001036901), Drosophila
melanogaster (NP_609793), Tribolium castaneum (NP_001120783), and Aedes aegypti (XP_001651876).

doi:10.1371/journal.pone.0141084.g005
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carboxyl group of farnesoic acid or JHA and place them in a suitable conformation for cataly-
sis. In alignment (Fig 5), those two sites were labeled with a "+". Both syn19251 and syn18552
from the D. variabilis transcriptome lack the Gln-14(Q) and Trp-120 (W). Instead they have
Lys (K) and Phe (F) in the place of Gln (Q). Amino acid Gln has a polar uncharged (neutral)
side chain, but Lys has a positively charged side chain and Phe (F) has a hydrophobic ring on
its side chain. Since they have different physical and chemical properties compare to Gln-14,
they are structurally not conserved compared with the insect JHAMTs. Overall, the tick acid
methyltransferases do not share the same key motifs as for the insect JHAMTs in the substrate
binding site. We can confirm the presence of the key SAM-binding motifs in almost every tick
methyltransferase we examined (Fig 5) but we are unable to locate a complete substrate-bind-
ing site for the JH precursors in the tick acid methyltransferases.

Neese et al. [22] incubated synganglion from the hard tick, D. variabilis, and the soft tick,
Onithodoros parkeri in organ culture with a high specific activity, 3H-methyl methionine; no
3H-methyl JH or 3H-methyl farnesoate could be found in the synganglion or culture media.
These studies also were conducted with and without the addition of farnesoic acid. In both
cases, radiolabeled methyl farnesoate and JH were not found while the same experimental con-
ditions were successful in producing these products in a positive, insect corpora allata control.
Furthermore, Neese et al. [22] were unable to find methyl farnesoate as well as the insect JHs in
the hemolymph of vitellogenic ticks of both of these same tick species by EI GC-MS. Interest-
ingly, methyltransferases were also found in the spider mite genome and these methyltrans-
ferases also lacked the insect substrate binding residues like in ticks (data analysis not shown),
but methyl farnesoate was reported by GC-MS in the spider mite. Acid methyl transferases
were not exclusive to the synganglion in ticks but were also found in the male reproductive
organs and midgut transcriptomes from D. variabilis (data not shown). Based on the current
evidence in ticks and mites, we cannot conclude that the methyltransferases in ticks are
involved in the synthesis of methyl farnesoate; however, more work is needed to re-examine
this question of whether ticks can synthesize methyl farnesoate. It is unlikely the tick methyl
transferases are involved in the synthesis of JH in ticks, since there are multiple lines of evi-
dence that ticks do not make or have JH and there is a lack of any biological effect when ticks
are treated with JH (discussed earlier).

Farnesol oxidase in ticks. Two of the enzymes in the early part of the JH branch, farnesyl
diphosphate pyrophosphatase and farnesal dehydrogenase (Fig 1), have not been characterized
in insects and were not studied in our transcriptomes (Table 1) or in the I. scapularis genome
[48]. At this juncture, there is no direct evidence the enzymes are present in ticks.

Short-chain dehydrogenases are needed for the conversion of farnesol to farnesal (a farnesol
oxidase) and then from fanesal to farnesoic acid (a farnesal dehydrogenase) (Fig 1). Mayoral
et al. [63] characterized the amino acid sequence and function of an NADP+-dependent farne-
sol dehydrogenase (AaSDR), a farnesol oxidase, in the corpora allata of the mosquito, Aedes
aegypti, which was shown to transform farnesol into farnesal. The AaSDRs have several con-
served motifs that placed them in the SDR family of proteins and in the subfamily cP2, and
orthologues have been found in another mosquito species, Anopheles gambiae, where they
shared 61–67% identity with the A. aegypti AaSDR. Table 3 shows the BLASTp matches for a
putative tick synganglion farnesol oxidase to the top three matches based on e-values in insects
which were annotated as farnesol oxidases and to the functionally validated farnesol oxidase
(AsSDR) in A. aegypti (shown in bold). For D. variabilis, the e-value was e-12 for the mosquito
that was functionally proven as a farnesol oxidase with the top other putative farnesol oxidase
matches ranging from e-102 to e-99 and for I. scapularis, was e-21 for the A. aegypti farnesol
oxidase with top other matches ranging from e-102 to e-99. No matches were found for the
soft tick. We reverse BLASTed the AaSDR sequence from Aedes aegypti against our D.
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variabilis synganglion transcriptome and found orthologues that matched the mosquito
AaSDR sequence. The D. variabilis contig 5964 (KT602362) shared 24% identity and an e-
value of 2e-9 with AaSDR. Based on the alignment in Fig 6, it shared several conserved motifs
with AaSDR, but not all the motifs could be found due to the short contig length. From
BLASTp searches conducted on the I. scapularis genome using the A. aegypti farnesol oxidase,
we found 79 dehydrogenases that shared 23%-30% identities with AaSDR (e-values ranging
from e-21 to 0.001). We aligned the top match (EEC12752) from the I. scapularis genome with
the A. aegypti AaSDR (Fig 7), and we found they shared 33% identity, with an e-value of 4e-22,
and all the conserved motifs were present (Fig 7). It appears from both our transcriptomic
studies in two hard tick species, D. variabilis and I. scapularis, and an analysis of the I. scapu-
laris genome, ticks have the enzyme farnesol oxidase which is involved in the conversion of far-
nesol to farnesal. A direct functional analysis will be needed in the future to confirm this

Fig 6. Farnesol dehydrogenase (AaSDR) from Aedes aegypti aligned with contig 5964 from theD. variabilis synganglion transcriptome. Highlighted
residues on both alignments show the conserved motifs that place them in the SDR family and the subfamily cP2. Below the sequence alignment is the
conservation panel which is measured as a numerical index (9–0) reflecting the conservation of physicochemical properties in the alignment. * (asterisk)
denotes the highest identity score (identical residues in all species) followed by a score of 9 for the next most conserved group of residues containing
substitutions by amino acids included in the same physicochemical class as described by Livingstone and Barton [52].

doi:10.1371/journal.pone.0141084.g006
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finding. Based on this discovery, a reasonable hypothesis is that the presence of farnesol oxi-
dase argues for also the presence of farnesyl diphosphate pyrophosphatase (Fig 1) since the lat-
ter is responsible for the synthesis of the substrate, farnesol. It is also possible that a farnesal
dehydrogenase is present to make farnesoic acid based on some evidence of methyl transferases
in ticks and mites and the report of methyl farnesoate in mites. However, the evidence is con-
flicting that supports the presence of insect JHAMTs in ticks or that ticks can synthesize methyl
farnesoate as already discussed. Our data based on the presence of a farnesol oxidase is that at
least the early parts of the JH branch but not JH is present in ticks, and more work will be
needed to understand what JH precursors in the JH branch are synthesized by ticks.

Model for the regulation of adult reproduction in ticks and a role for the mevalonate-
farnesal pathway. The most complete understanding of the endocrine regulation of tick
development is associated with female reproduction, and the most advanced understanding of

Fig 7. Farnesol dehydrogenase (AaSDR) from Aedes aegypti aligned with sequence EEC12752 from the I. scapularis genome.Highlighted residues
on both alignments show the conserved motifs that place them in the SDR family and the subfamily cP2. Below the sequence alignment is the conservation
panel, which is measured as a numerical index (9–0) reflecting the conservation of physicochemical properties in the alignment. * (asterisk) denotes the
highest identity score (identical residues in all species), followed by a score of 9 for the next most conserved group of residues containing substitutions by
amino acids included in the same physicochemical class as described by Livingstone and Barton [52].

doi:10.1371/journal.pone.0141084.g007
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this process is in the American dog tick, D. variabilis. Fig 8 is a model summarizing our current
understanding of this process in D. variabilis and the potential role of the mevalonate-farnesal
pathway in reproduction. In the initial steps for reproduction, both males and females must
find a host together. The females feed to a part-fed condition, stop feeding and remain
attached. Once the males fully feed, they detach from the host, find the part-fed female, mount
the female and then insert their mouthparts into the female genital pore. This stimulates the
production of the spermatophore and along with gonadotropin is transferred to the female
genital tract [1]. The transfer initiates the synganglion to release epidermal trophic hormone
(EDTH), stimulates rapid engorgement in the female to the replete (fully fed) condition, initi-
ates synthesis of the insect molting neuropeptides (the tick function is unknown), and release
of allatostatins and allatotropins (which may stimulate or inhibit the mevalonate-farnesal path-
way; Fig 8); these peptides can also have other function in insects. EDTH initiates the produc-
tion of ecdysteroids by the epidermis, which results in the synthesis of VgR in the ovaries and
Vg in the fat body and midgut; Vg is then secreted into the hemolymph. Vg moves into devel-
oping oocytes via VgR-receptor mediated endocytosis and is deposited as vitellin.

It appears that the enzymes in the mevalonate pathway are present in adult synganglia in at
least the three tick species examined, D. variabilis, I. scapularis and O. turicata. There was no
evidence of the P450 family CYP15A1 in either our transcriptomes or in the genome of I. sca-
pularis which in insects adds the C10,11 epoxide to make JH. Along with the lack of biochemi-
cal evidence for JH in ticks and lack of JH biological activity in ticks, it appears ticks do not
make JH. However, we provide evidence that an earlier part of the JH branch is present for the
synthesis of farnesal from farnesol by the enzyme farnesol oxidase. Methyltransferases were
also found in the synganglia, but they lacked the JH or farnesoic acid binding motif found in
insects, and biochemical studies did not show ticks could synthesize methyl farnesoate or had

Fig 8. Model for the endocrine regulation of vitellogenesis in D. variabilis and the potential role of the
mevalonate-farnesal pathway. Abbreviations in Fig: EDTH, hypothesized epidermal trophic hormone; Vg,
vitellogenin; VgR, Vg receptor; 20-E, 20-hydroxyecdysone.

doi:10.1371/journal.pone.0141084.g008
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methyl farnesoate in their hemolymph. We hypothesize that ticks synthesize JH precursors
found in the JH branch at least at the level of farnesal but the presence of methyl farnesoate is
equivocal and more work is needed. It is likely that the mevalonate-farnesal pathway has some
regulatory role in adult development potentially being regulated by neuropeptides that in
insects regulate JH biosynthesis, allatotropins and allatostatins, and which are also found in
adult ticks. The exact role of the mevalonate-farnesal pathway is unknown and the products
from this pathway have not yet been identified in ticks.
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