Old Dominion University ODU Digital Commons

January 23, 2015: Storm Surge Modeling Tools for Planning and Response

Hampton Roads Sea Level Rise/Flooding Adaptation Forum

1-23-2015

Introduction to Storm Surge Modeling

Rick Luettich University of North Carolina

Follow this and additional works at: https://digitalcommons.odu.edu/hraforum_07 Part of the <u>Climate Commons</u>, <u>Geographic Information Sciences Commons</u>, <u>Meteorology</u> <u>Commons</u>, and the <u>Oceanography Commons</u>

Repository Citation

Luettich, Rick, "Introduction to Storm Surge Modeling" (2015). *January 23, 2015: Storm Surge Modeling Tools for Planning and Response.* 2. https://digitalcommons.odu.edu/hraforum_07/2

This Presentation is brought to you for free and open access by the Hampton Roads Sea Level Rise/Flooding Adaptation Forum at ODU Digital Commons. It has been accepted for inclusion in January 23, 2015: Storm Surge Modeling Tools for Planning and Response by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

Introduction to Storm Surge Modeling

Rick Luettich

Director, Institute of Marine Sciences Director, DHS Coastal Hazards Center of Excellence

Hampton Roads Sea Level Rise/Flooding Adaptation Forum Storm Surge Modeling Tools for Planning and Response THE UNIVERSITY of NORTH CAROLINA January 23, 2015

at CHAPEL HILL

Storm Surge Model Starting Point Basic Governing Equations

Mass Conservation

Storm Surge Model Starting Point Basic Governing Equations

Mass Conservation Newton's 2^{nd} Law of Motion: $\mathbf{F} = M \times \mathbf{a}$

Storm Surge Model Starting Point

Basic Governing Equations

Mass Conservation

Newton's 2^{nd} Law of Motion: $\mathbf{F} = \mathbf{M} \times \mathbf{a}$

+ Assumptions & Averaging

Shallow Water Equations (partial differential eqs.)

- water surface elevations (flooding)
- currents
- timescales > 10 minutes

What to Include?

Meteorology

- ✓ atmospheric pressure
- wind stress (friction at air-water surface)
- precipitation/runoff

What to Include?

Ocean Processes

✓ tides

- rotation of earth
- surface wave effects (may be problem dependent)
- large ocean processes (currents, thermal, SLR)
- 🛛 water density
- explicit vertical representation (3D)

What to Include?

Land

- topography land surface elevations, features
 friction at land surface
- inundation and dewatering of dry areas

Meteorology (wind / pressure in space & time)

- Observational wind fields H*Wind
 - Historical events
- Constructed from storm characteristics (e.g., max wind speed, storm size, center location)
 - Risk studies, design studies, forecasting
- > Dynamical (gridded) meteorological models
 - Reanalysis historical events
 - Forecasts forecasting

MUST CONVERT WIND SPEED TO WIND STRESS

Meteorology (precip / runoff in space & time)

- > Observational data river discharge
 - Historical events
- Statistical models
 - Risk studies, design studies
- > Dynamical models
 - Reanalysis historical events
 - Forecasts forecasting

Ocean Processes

- tides
 - specify values at edges of model domain
- rotation of earth included shallow water eqs
- surface wave effects
 - couple a dynamical wave model SWAN, WaveWatch3, WWM
- large ocean processes
 - specify starting water levels

Land – Basis of the "GRID"

- > topography land surface elevations, features
 - location specific
 - lidar or other sources of data
 - Needed for both dry land and ocean
- Friction at land surface
 - Dependent on surface cover and characteristics – (don't include buildings explicitly)
- inundation and dewatering of dry areas
 - specialized treatment in shallow water eqs.
 - must be supported by the GRID

The three R's of Storm Surge Modeling "Resolution, Resolution, Resolution"

Northern Gulf of Mexico

Coastal North Carolina Detail

- Grid (triangles) in Wrightsville Beach Area
- Try to align grid "lines" with coastline
- 20-30 meter beach resolution

How to get an Answer?

Approximate shallow water equations + various inputs and solve on computer, visualize results

- Different approximation methods
 - depend on type of GRID
 - optimized for type of computer scaling
- > Answer at every element in GRID
 - big GRIDS take more computer resources and more time
- Visualization of storm surge, flooding is important
 - GIS, Google Earth, etc high resolution
 - high resolution visualization doesn't necessarily mean high resolution model

