Old Dominion University ODU Digital Commons

May 22, 2015: Megaproject Protective Structures for Hampton Roads

Hampton Roads Sea Level Rise/Flooding
Adaptation Forum

5-22-2015

Reducing Coastal Risk – Structural Protection around Greater New Orleans

Rick Luettich University of North Carolina

Follow this and additional works at: https://digitalcommons.odu.edu/hraforum_08

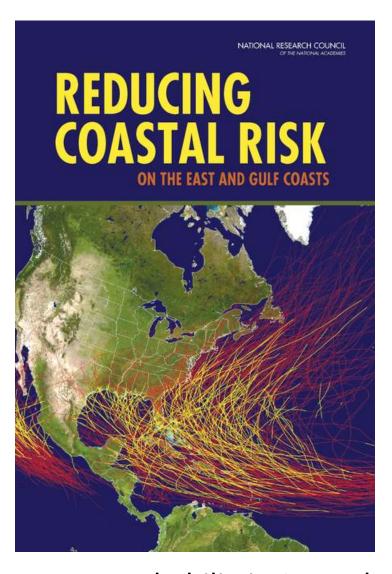
Part of the <u>Civil and Environmental Engineering Commons</u>, <u>Climate Commons</u>, <u>Emergency and Disaster Management Commons</u>, and the <u>Public Policy Commons</u>

Repository Citation

Luettich, Rick, "Reducing Coastal Risk – Structural Protection around Greater New Orleans" (2015). May 22, 2015: Megaproject Protective Structures for Hampton Roads. 3.

https://digitalcommons.odu.edu/hraforum 08/3

This Presentation is brought to you for free and open access by the Hampton Roads Sea Level Rise/Flooding Adaptation Forum at ODU Digital Commons. It has been accepted for inclusion in May 22, 2015: Megaproject Protective Structures for Hampton Roads by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.


Reducing Coastal Risk – Structural Protection Around Greater New Orleans

Rick Luettich
University of North Carolina at Chapel Hill

Hampton Roads Sea Level Rise/Flooding Adaptation Forum Megaprojects – Protective Structures for Hampton Roads

5/22/2015

Reducing Coastal Risk

Committee on U.S. Army Corps of Engineers Water Resources
Science, Engineering, and Planning:
Coastal Risk Reduction

National Research Council
Rick Luettich, Committee Chair

Probabilistic Coastal Flood Hazards Mapping Workshop 5/15/2015

Committee Membership

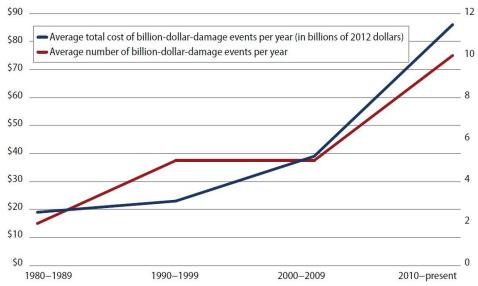
- RICHARD LUETTICH, JR., Chair, University of North Carolina
- GREGORY BAECHER, University of Maryland
- SUSAN BELL, University of South Florida
- PHILLIP BERKE, Texas A&M University
- ROSS COROTIS, University of Colorado
- DANIEL COX, Oregon State University
- ROBERT DALRYMPLE, The Johns Hopkins University
- TONY MACDONALD, Monmouth University
- KARL NORDSTROM, Rutgers University
- STEPHEN POLASKY, University of Minnesota
- SEAN POWERS, University of South Alabama
- DON RESIO, University of North Florida
- AP VAN DONGEREN, Deltares, The Netherlands

NRC Staff:

Stephanie Johnson, Deborah Glickson, Anita Hall, Sarah Brennan

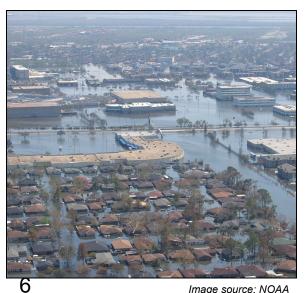
Statement of Task

Focus on reducing flood risk from storms along the East and Gulf Coasts:


- To what extent have coastal risk-reduction strategies proven effective (life safety, economic return)?
- What are the regional and national implications of expanded coastal risk reduction?
- How might risk-related principles contribute to project design standards and increase community preparedness?
- What general principles might be used to guide future U.S. investments in coastal risk reduction?

Sponsored by USACE, as the 3rd phase of a 5-year study to provide advice on a range of scientific, engineering, and water resources planning issues

Concern - Coastal Risk is Increasing


- Population in southeastern and southern US coastal areas increasing 2x national average
- Warming climate / sea level rise are increasing hazards
- Tropical storms and floods ~ 50% of all natural disaster losses
- Federal Gov't payout for recovery increased from ~6% in 1950s to ~75% for Sandy

Landscape for Coastal Risk Management

- No central leadership or unified vision: Responsibilities spread over multiple levels of government
 - FEMA, USACE, HUD, NOAA, USGS; state, local governments
 - Each driven by different objectives, authorities
 - No coordinating body with singular focus on coastal risk
 - No national priorities (even though the federal government is now paying ~75% of recovery costs)

- Vast majority of funding for coastal risk-related issues is provided only after a disaster occurs
 - Mostly for response & recovery
 - Small fraction for mitigation

Landscape for Coastal Risk Management

- Few comprehensive regional evaluations of coastal risk have been performed
 - Risk reduction efforts tend to be local, not regional (even though storm response and critical resources, e.g. sand, are often regional)

 USACE is not authorized to address coastal risk at a national scale.

- Lack of alignment of risk, reward, resources, and responsibility
 - Resulted in significant inefficiencies and inappropriate incentives that increase the nation's exposure to risk

Image sources: N. Aquino, FEMA, committee

Risk Reduction Strategies

RISK = HAZARD X CONSEQUENCE

- Reduce the hazard (flooding, wave attack)
 - Hard structures (seawalls, surge barriers)
 - Nature-based strategies
 - Beach nourishment and dune building
 - Saltmarsh, seagrass, reefs
- Reduce the consequences
 - Building elevation and flood proofing
 - Non-structural (e.g., Land-use planning, preparedness, buyouts)

Optimal approaches will be site-specific, may involve multiple strategies

Strategies to Reduce the Hazard: Beach Nourishment and Dune Building

 Short term environmental impacts significant; longterm impacts unknown

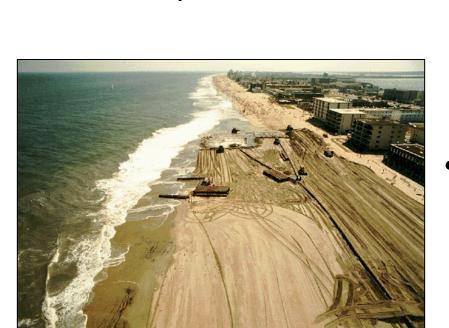
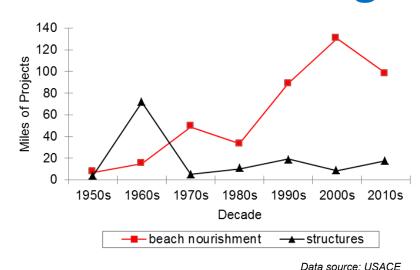



Image source: NOAA

 Can be designed to reduce short-term impacts and increase ecological value

Strategies to Reduce the Hazard: Other Nature-Based "Green"

Approaches
Saltmarsh, seagrass, mangroves, coral or oyster reefs, etc.

- Provides substantial ecological benefits and varying levels of coastal risk reduction
 - Low to moderate energy events can be effective for waves & erosion
 - Moderate to high energy events more effective for damping waves than surge
 - May require large expanses of habitat
 - Continued research needed to develop design guidance, alone & combined with hard structures
- May motivate conservation and restoration activities

Image sources: NOAA

Strategies to Reduce the Hazard: Hard Structure "Grey" Approaches

- Hard structures are likely to become increasingly important in densely populated urban areas - space is limited for nature-based strategies
- Adverse environmental impacts exist, designs can lessen these impacts

Image sources: Wikipedia, USGCRP, NOAA

Look for ways to couple grey and green approaches

Strategies to Reduce the Consequences

- Includes hazard zoning, building elevation, land purchase, and setbacks
- High documented benefitcost ratios (5:1 to 8:1)
- Given less attention by the federal government
- Other than building elevation, these are viewed as difficult to implement by states

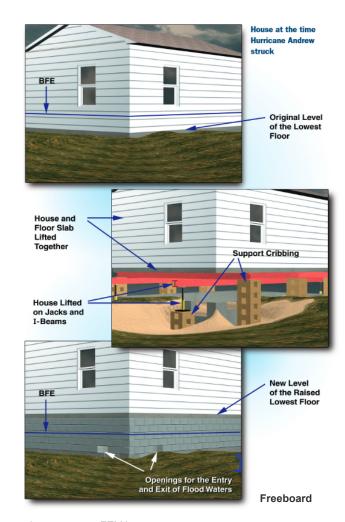


Image source: FEMA

Guiding Investments in Risk Reduction

Two basic approaches for evaluating investments:

- 1) Risk-standard
- 2) Benefit-cost

- There is no basis to justify a default 1-percent annual chance (100-year) design level for coastal risk.
- Benefit-cost analysis constrained by acceptable risk and social and environmental dimensions provides a reasonable framework
 - Constraints could include mass casualties or individual risk
 - Costs/benefits that are difficult to measure can also be constraints

Guiding Investments in Risk Reduction

- Capacity to consider different costs and benefits has been limited in USACE decision frameworks
 - National Economic Development (NED) given priority
 - Social / environmental benefits rarely influence decisions
 - Life-safety only recently a consideration for dams & levees.
- Principles and Requirements for Federal Investments in Water Resources (CEQ, 2013)
 - Provides framework for consideration of broad-based costs and benefits

Guiding Investments in Risk Reduction

- CEQ should expedite efforts to complete
 accompanying Guidelines required to implement the
 P&R.
- CEQ released Guidelines in 12/2014, enabling implementation of P&R which contain explicit instructions to consider
 - Healthy and resilient ecosystems
 - Sustainable economic development
 - Public Safety
 - Environmental Justice
 - Flood Plains
 - Watershed Approach

Vision Toward Coastal Risk Reduction

- A National Vision for coastal risk management is needed.
 - Use federal resources to reduce coastal risk vs enabling it to increase
 - Clarify roles and responsibilities of federal, state and local governments for reducing coastal risk
- The federal government should work with states to develop a national coastal risk assessment
 - Use this to assess economic, life-safety, social, and environmental costs and benefits under various risk management scenarios

Vision Toward Coastal Risk Reduction

- Stronger incentives are needed to improve pre-disaster risk mitigation efforts at the local level
 - Better align risk, rewards, responsibilities
- The USACE should seize opportunities within existing

and new authorities to strengthen coastal risk reduction

Image source: Wikipedia

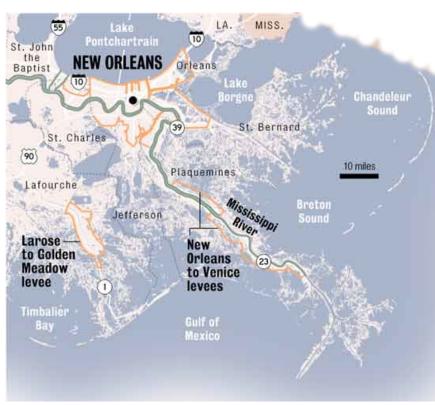
- Evaluate incentives (e.g., cost-share) for sound planning
- Develop modeling tools, expanded methodologies
- Re-evaluate 50-yr planning horizon

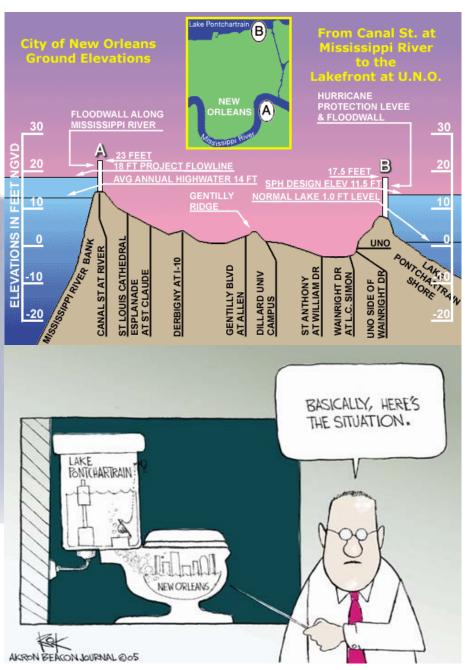
Summary

- Coastal risk is increasing
- Current framework for addressing coastal risk is reactive rather than proactive and encourages risky development
- Full array of risk reduction strategies should be considered
- Benefit-cost analysis (constrained by acceptable risk, social/ environmental considerations) is an appropriate decision framework for investments. PR&G provide a framework for this
- A national vision for coastal risk management is needed
- Federal government, states should develop a national coastal risk assessment
- Stronger incentives needed to better align risks, rewards, and responsibilities

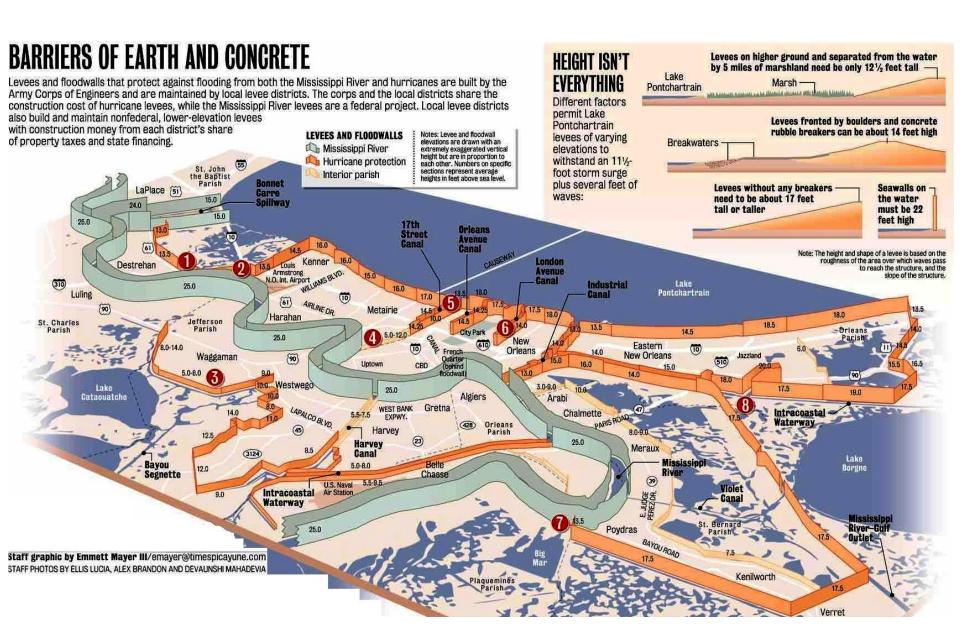
Epilogue - New Standards for Flood Protection in the Netherlands

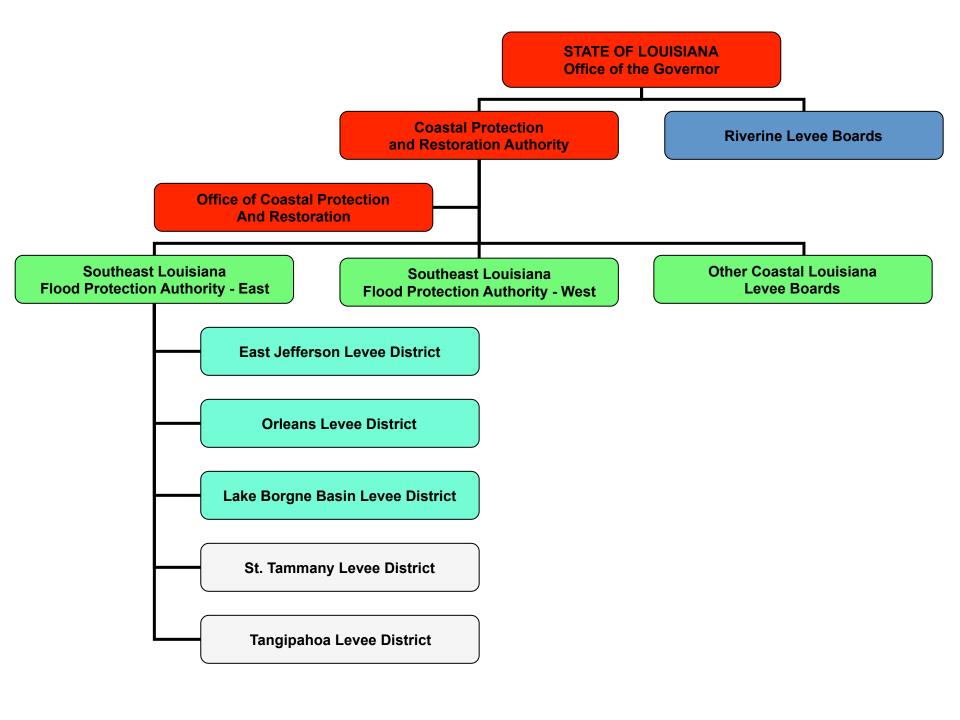
- Announced September 2014
- Revision to flood protection standards dating to 1950s, under development since 2006.
- Risk-based, flood protection standards to control the probability of flooding from a national perspective
 - Benefit-Cost analysis controls 2/3 of country
 - Local Individual Risk individual probability of death by flooding < 10⁻⁵
 - Catastrophic loss of life or economic loss resilience
 - Protect vital and vulnerable infrastructure resilience
- Prioritizes protection system upgrades (completed by 2050)
- Results in varying level of protection nationally

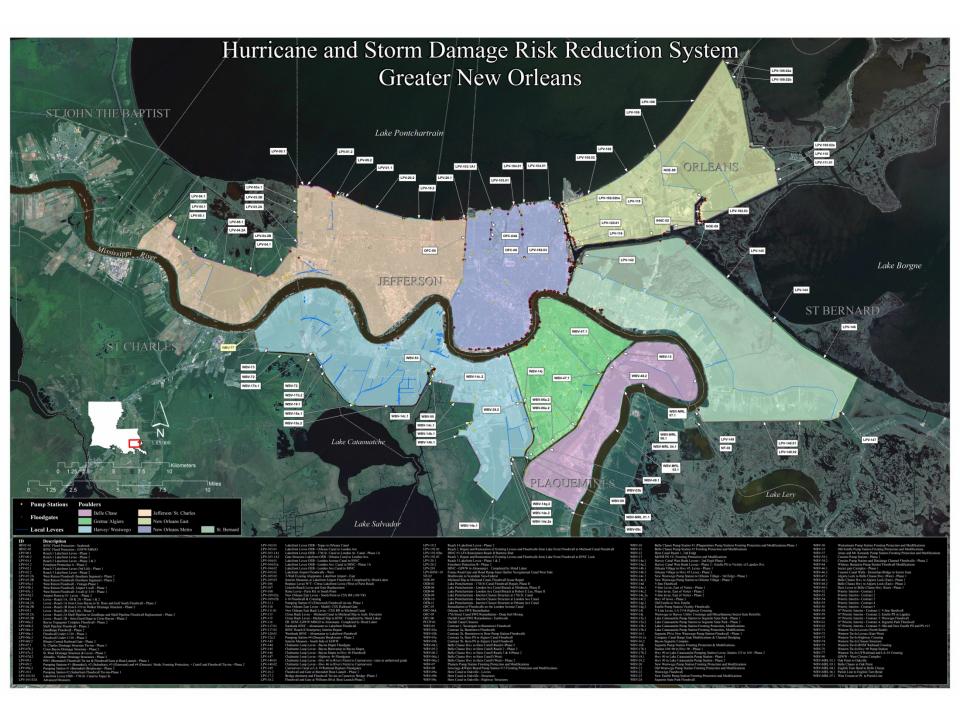

Epilogue - New Standards for Flood Protection in the Netherlands

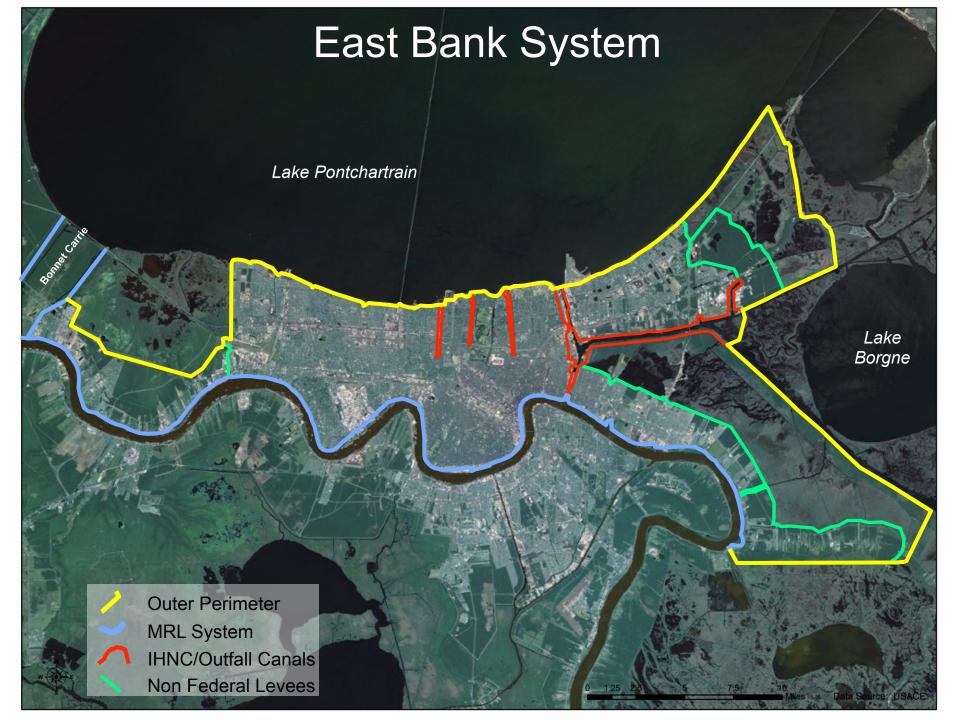

Epilogue - New US Policy

- "Guidelines" to accompany Principles and Requirements for Federal Investments in Water Resources released 12/2014
- EO 13690 Establishing a Federal Flood Risk Management Standard (FFRMS)1/30/2015
 - Updates Executive Order 11988 Floodplain Management
 - i. the elevation and flood hazard area that result from using a climate informed science approach that uses the best-available, actionable hydrologic and hydraulic data and methods that integrate current and future changes in flooding based on climate science;
 - ii. BFE + 2' non-critical, BFE + 3' critical
 - iii. area subject to flooding by the 0.2 percent annual chance flood
- North Atlantic Comprehensive Study step toward National Risk Assessment


The New Orleans Situation




N.O. largely below sea levelSome areas are sinking >inch/yr



Overview

Flood Protection Structures within SLFPA-East

187 Total miles of levee

3,500+ Acres of levee maintenance

8 Navigational structures

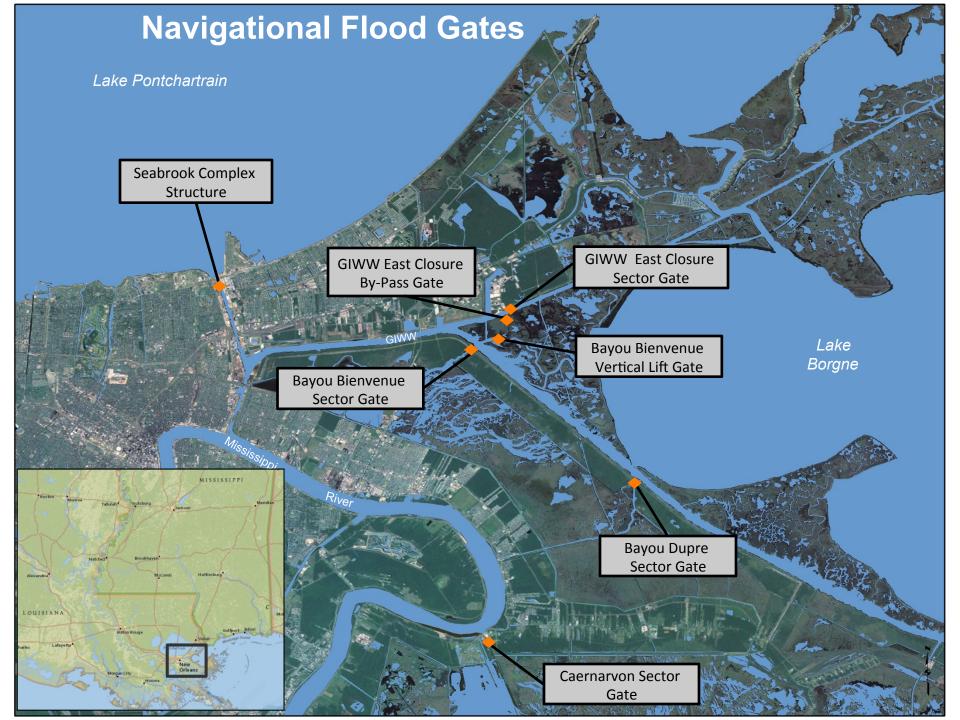
259 Land based floodgates

100 Valve gates

56 Total miles of canals

5.4 Miles of seawall

8 Pump stations



Swing Gate

Funding (Planning, Design and Construction)

- US Congress
 - Authorization
 - Appropriation (Fed Share)

Design and Construct

Project Partnering Agreement

- Local Sponsor
 - Matching Funds
 - LERRDS

Thinking and acting regionally

Operations and Maintenance Activities

- Levee Maintenance
 - Vegetation Management
 - Embankment Repairs
 - Floodwall Maintenance
 - Floodgate Operation and Maintenance

- Drainage Pump StationOperation and Maintenance
- Drainage Canal Maintenance
- Fleet Maintenance
- Permitting
- Inspection and Monitoring
- Emergency Response and Recovery

Operations and Maintenance

- Surge Barrier and Seabrook
 Complex
 - Acquiring Expertise
 - Coordinating with Maritime
 Interests
 - Funding

EMERGENCY RESPONSE AND RECOVERY

- Floodfight Activities (Response)
 - Monitor Conditions
 - Advise Officials
 - Close Gaps in system
 - Floodgates and Valves
 - Control Structures
 - Sandbagging
 - Initiate Pumping Operations
 - Provide safe havens for employees
- Recover
- After Action Review

Funding Challenges

Water respects no political boundaries – but money does!

Thinking and acting regionally, then there's a taxation

2016 Projected Annual O&M Revenue / Expenditures:

East Jefferson

\$ 10 M / \$ 10 M

2016 Projected Annual O&M Revenue / Expenditures:

East Jefferson

Orleans - general

Orleans - special

\$ 10 M / \$ 10 M

\$ 20 M / \$ 17 M

\$ 18 M / \$ 30 M

Lift project's estimated cost = \$40 - \$50 million.

2016 Projected Annual O&M Revenue / Expenditures:

```
East Jefferson
```

Orleans - general

Orleans - special

Lake Borgne Basin

```
$ 10 M / $ 10 M
```

\$ 3.8 M / \$ 3.8 M

2016 Projected Annual O&M Revenue / Expenditures:

```
East Jefferson $ 1
Orleans - general $ 2
Orleans - special $ 1
Lake Borgne Basin $ 3
```

Lake Borgne Basin (2015)

```
$ 10 M / $ 10 M
$ 20 M / $ 17 M
$ 18 M / $ 30 M
$ 3.8 M / $ 3.8 M
```

\$3.7 M / \$4.4 M

2014 & 2015 attempted prop tax increase = \$2.5 M /yr → \$6 M total / yr

Thinking and acting regionally

A Few Lessons Learned

- FEMA Accreditation (100 yr protection) does not equal flood safety
- Water respects no political boundaries
- Flood Protection is a shared responsibility
- Flood Protection and Coastal Restoration are not mutually exclusive
- A proactive approach is much less expensive than a reactive approach, (but reaction is often needed to get large \$ moving).
- O&M funding challenges are quite different from construction funding challenges....

Thinking and acting regionally