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Two Modes of Cell Death Caused by Exposure to
Nanosecond Pulsed Electric Field
Olga N. Pakhomova*, Betsy W. Gregory, Iurii Semenov, Andrei G. Pakhomov

Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America

Abstract

High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF), are a novel
modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the
cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns
pulses in U937 cells is the loss of the plasma membrane integrity (‘‘nanoelectroporation’’), leading to water uptake, cell
swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1–2 hr after nsPEF exposure. The
uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the
presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early
necrotic death; however the long-term cell survival (24 and 48 hr) does not significantly change. Cells protected with
sucrose demonstrate higher incidence of the delayed death (6–24 hr post nsPEF). These cells are more often positive for the
uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling,
these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after
nsPEF and poly-ADP ribose polymerase (PARP) cleavage is detected in 2 hr. Staurosporin-treated positive control cells
develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and
apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the
necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by
enabling or blocking cell swelling.
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Introduction

Cell death induction by nsPEF has recently been proposed as a

new therapeutic modality to ablate cancer. Cytotoxic efficiency of

nsPEF against multiple cancer types has been demonstrated both

in vitro [1–7] and in vivo [1,5,6,8–10]. Interestingly, cancer cells

reportedly were more vulnerable than matching normal cell lines

[7]. Contemplated advantages of nsPEF over other ablation

methods include higher probability of complete elimination of

cancer cells; reduced collateral damage to healthy tissues and

extracellular matrix; relative simplicity of the treatment; inhibition

of angiogenesis; minimal systemic side effects; and fast recovery.

The exact mechanisms responsible for nsPEF cytotoxicity have

been a subject of numerous studies [1–4,11–17], but nonetheless

remain elusive. Early studies in this area have noted fast and

massive externalization of phosphatidylserine in nsPEF-treated

cells, which was interpreted as a sign of apoptosis and a proof that

apoptosis is the prevailing or even the sole mode of cell death after

nsPEF [4,18,19]. As a result, the vast majority of studies into

nsPEF-induced cell death focused solely on the apoptotic death

pathway. Indeed, various types of cells exposed at lethal nsPEF

doses expressed such manifestations of apoptosis as caspase

activation, poly-ADP ribose polymerase (PARP) cleavage, cyto-

chrome C release into the cytoplasm, and internucleosomal DNA

fragmentation [4,6,12,14]. The only type of necrosis considered in

these studies was the so-called ‘‘secondary necrosis’’ (a final cell

destruction following the apoptotic process in vitro).

However, the validity of PS externalization as a sign of apoptosis

has been challenged with understanding that nsPEF opens pores in

the cell plasma membrane. These pores could provide passage for

calcium ions into the cell, causing scramblase activation and fast

PS externalization [20,21]. In addition, the pores can serve as a

lipid-water interface pathway from the cell inside to the outside,

allowing for calcium-independent lipid scrambling by a hypothet-

ical ‘‘lateral drift’’ mechanism [22,23]. In either case, the fast onset

of PS externalization (,1 sec after nsPEF) suggested that this effect

is not necessarily a step in the organized apoptotic process. These

findings suggested that the conclusion about apoptosis prevalence

after nsPEF (which was based primarily on the PS externalization

data) may need to be revisited and revised.

Concurrently, several groups reported that nsPEF-treated cells

typically swell [17,24–27], which is a morphological hallmark of

necrosis. Permeabilization of the cell plasma membrane was

identified as the principal cause of the necrotic cell transformation

[17,24]. Recently we reported that a significant fraction of nsPEF-

treated Jurkat and U937 cells died at intervals much shorter than

what it typically takes to complete the apoptotic process [12]. The

number of ‘‘live’’ cells (impermeable to Trypan blue) decreased

almost twofold already at 2 hr after the nsPEF exposure (600

pulses, 10 ns, 100 kV/cm), but the internucleosomal DNA
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fragmentation developed only in 3 hr; hence, a large fraction of

cells died before reaching this apoptotic step. Significant cell death

could be observed in the absence of PARP cleavage, suggesting a

caspase-independent mechanism [28]. In agreement with the

above findings, Yin et al. [6] observed destroyed cells and cell

fragments after intense nsPEF treatments in vitro, and interpreted it

as a necrotic effect of exposure. Several studies have reported both

apoptotic and necrotic cell death after nsPEF treatments of tumors

in vivo [9,29].

In this study, we show that cell swelling and membrane rupture

are the predominant mechanisms of the early cell death following

nsPEF exposure. The prevalence of the early necrotic death was

characteristic for nsPEF treatments with either ‘‘long’’ 300-ns

pulses or ‘‘short’’ 60-ns pulses, within a wide range of doses, and

for diverse pulse delivery protocols. This primary necrotic death

prevented the development and observation of apoptosis in nsPEF-

treated cells. However, the inhibition of the primary necrosis led to

a much higher incidence of delayed cell death by apoptosis.

Materials and Methods

Cells and Media
Experiments were performed in a suspension cell line U937

(human monocytes). The cells were obtained from ATCC

(Manassas, VA) and propagated at 37uC with 5% CO2 in air in

RPMI-1640 medium supplemented with 10% fetal bovine serum,

2 mM L-glutamine, 100 IU/ml penicillin, and 0.1 mg/ml strep-

tomycin. The media and its components were purchased from

Mediatech Cellgro (Herdon, VA) except for serum (Atlanta

Biologicals, Norcross, GA). Other chemicals used for this study

were from Sigma–Aldrich (St. Louis, MO) unless noted otherwise.

Modifications of the Growth Medium to Inhibit nsPEF-
induced Cell Swelling
The nsPEF-induced water uptake is driven by the colloid-

osmotic mechanism and can be blocked by the presence of a

nanopore-impermeable solute such as sucrose [26]. Importantly,

this effect is achieved without changing the integral osmolality of

the extracellular medium.

In this study, the RPMI medium containing sucrose (hereinaf-

ter, ‘‘RPMI+sucrose’’) was produced by mixing RPMI (containing

cells and all supplements listed above) with an isoosmotic

(290 mOsm/kg) water solution of sucrose. Mixing was performed

at the proportion of 4:1 or 7:3, yielding fractional osmolalities due

to the sucrose of 58 or 87 mOsm/kg, respectively. As found in

preliminary experiments (data not shown), such fractions of

sucrose provided an accurate colloid-osmotic balance to the

cytosol, thereby preventing any volume changes in cells permea-

bilized by nsPEF.

An unavoidable side effect of the isoosmotic mixing of RPMI

with sucrose was the dilution of nutrients, salts, serum, and other

ingredients of the medium. This dilution was well tolerated by

cells, although could cause a minor slowdown of the propagation

rate. Nonetheless, in order to match this dilution, the parallel

control samples were diluted by an isoosmotic NaCl solution at the

same proportions (‘‘RPMI+NaCl’’). Na+ and Cl- ions are small

solutes capable of passing the nanopores and therefore do not

prevent the water uptake [25,26]. As shown below, the growth rate

of control U937 cells (not exposed to nsPEF) in RPMI+sucrose was
the same as in RPMI+NaCl.

In several sets of experiments, the parallel control samples were

diluted with fresh RPMI instead of NaCl (‘‘RPMI+RPMI’’). In

such cases, cells were left in RPMI+sucrose and in RPMI+RPMI

only for a brief time interval (e.g., 30 min). Afterwards, all samples

were diluted 10x with fresh RPMI, thereby canceling out any

differences in the medium composition.

The exact protocols that were employed for each specific

experiment are described in the Results section and in figure

captions. As shown below, the RPMI+sucrose medium always

modified the effects of nsPEF in a similar way, irrespective of the

specific protocol employed.

nsPEF Exposure Methods and Protocols
In most experiments, we used trapezoidal pulses of 300 ns

duration from an AVTECH AVOZ-D2-B-ODA generator

(AVTECH Electrosystems, Ottawa, Ontario, Canada). Pulse

trains of needed duration at a selected repetition rate of 200 Hz

were triggered externally from a model S8800 stimulator (Grass

Instruments Co., Quincy, MA). Pulses were delivered to an

electroporation cuvette with cells using a 50- to 10-Ohm transition

module (AVOZ-D2-T, AVTECH Electrosystems) modified into a

cuvette holder. The pulse amplitude and shape were monitored

using a Tektronix TDS 3052B oscilloscope. More details of this

exposure procedure were reported earlier [30].

Main findings of this study were replicated using 60-ns pulses

from a high-voltage home-made pulse generator described

previously [4,31]. The goal for testing 60-ns pulses and different

exposure protocols was to demonstrate that the established

mechanisms of cell death hold true for diverse nsPEF treatments

rather than just for a specific, randomly chosen type of treatment.

The 60-ns pulse generator utilizes the pulse forming network

technology and a simple spark gap in the atmospheric air works as

a switch. With this device, the pulse repetition rate can only be

approximately controlled by the rate of network charging. We

utilized the pulse rate of about 1 Hz, and the number of pulses

delivered to the sample was controlled manually. Because of

multiple differences in the pulse delivery protocols for 300- and 60-

ns pulses, any quantitative comparison between these treatments

was not intended.

For nsPEF exposure, cells were harvested during the logarith-

mic growth phase, pelleted by centrifugation, and resuspended in a

fresh growth medium. As found in preliminary experiments, the

cell density at the time of exposure within the range from 0.5 to

86106 cells/ml did not affect the nsPEF efficiency (data not

shown). For cell survival studies, the cell density at the time of

exposure was 0.6 or 1.26106 cells/ml; for Western blot

measurements which required larger cell quantities, the density

was increased to 76107 cells/ml.

Immediately following nsPEF exposure, cells were diluted to

0.2–0.76106 cells/ml into RPMI+RPMI, RPMI+sucrose, or

RPMI+NaCl medium and stored in the incubator until further

measurements or manipulations.

In several early series of experiments, cells were placed in the

modified medium prior to nsPEF exposure. Although slightly

lower electrical conductance of RPMI+sucrose compared to other

media could affect the efficiency of nsPEF, we observed no

differences compared to post-exposure dilutions.

In any series of experiments, samples in different media and/or

exposed to different nsPEF parameters were handled in exactly the

same manner, and different treatments were applied in a random

sequence. All series were also accompanied by parallel sham-

exposed controls.

NsPEF exposures were performed at a room temperature of 22–

24uC. Heating of cell samples by nsPEF did not exceed 7uC, as
measured with a fiber optic ReFlex-4 thermometer (Nortech

Fibronic, Quebec City, Canada).

Cell Death Triggered by Nanosecond Electric Pulses
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Viability Assays
Cell survival was measured at different times after nsPEF

exposure using either MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) assay or a fluorescent dye exclu-

sion/quenching method (AO/PI assay). Both assays were

described in detail previously [30].

In brief, for the MTT assay (BioAssay Systems, Hayward, CA)

we used a 96-well format and a Synergy 2 microplate reader

(BioTEK, Winooski, VT). 10 ml of the MTT reagent were added

to 100 ml of cell suspension and incubated for 4 hr until adding the

solubilization buffer. The plates were left on an orbital shaker

overnight and the absorbance was read at 570 nm.

The AO/PI assay utilized a mixture of a membrane-permeable

dye acridine orange (AO) and a membrane-impermeable dye

propidium iodide (PI). This method detected only massive PI

uptake characteristic for dead cells with fully ruptured plasma

membrane. Immediately prior to measurements, a 20 ml aliquot of
the cell suspension was mixed with the equal volume of staining

solution (0.5 mg/ml AO and 100 mg/ml PI in a phosphate-

buffered saline, PBS). The sample was loaded into a counting

chamber of the automated cell counter Cellometer Vision with

two-channel cell fluorescence detection (Nexcelom Bioscience

LLC, Lawrence, MA). Live cells were distinguished by bright AO

fluorescence (exc./em. 475/535 nm). In cells with compromised

membrane AO emission was quenched by PI uptake. Combined

fluorescence of either AO or PI (exc./em. 525/595 nm) was used

to determine the total (live+dead) cell counts.

Cell Diameter Measurement
Cells in the counting chamber of the Cellometer were imaged in

bright field, automatically de-clustered and distinguished from

debris. The automated recognition of cells in the sample was

verified manually and corrected if needed. The diameters of 400–

600 cells per sample were automatically measured from the image

and logged using Cellometer software.

Microscopy
Cell images were taken using an Olympus IX71 inverted

microscope equipped with a Retiga 2000R Fast 1394 CCD

camera (QImaging, Surrey, BC, Canada). We used 5 mg/ml PI

and 1 mM YO-PRO-1 dye (Life Technologies, Grand Island, NY)

as fluorescent markers of membrane permeabilization. The dyes

were added about 10 min prior to scheduled measurements, and

cells were allowed to settle down. Images taken with a 20x,

0.40 NA dry objective were captured and processed with

MetaMorph 7.5.2 software (Molecular Devices, Foster City, CA).

For a more detailed but mostly qualitative analysis of

morphological effects of nsPEF, we used an Olympus FluoView

1000 confocal scanning system. It utilized an IX81 microscope

equipped with differential-interference contrast (DIC) optics. 10-ml
aliquots of cells with the dyes already added were placed on a

coverslip, allowed to settle down for 5–10 min, and then examined

with a 40x, 0.95 NA objective. Due to the small size of the sample

and varied times for cell settling, the images were not used for cell

scoring.

Caspase 3/7 Activity
We utilized a Caspase- GloH3/7 Assay from Promega

Corporation (Madison, WI) according to manufacturer’s instruc-

tions. Briefly, cells were exposed at 76106 cells/ml and diluted

tenfold into RPMI+sucrose or RPMI+NaCl. The cells were

incubated at 37uC in 5% CO2 humidified air. In 1, 2, 6, and 24 hr

after nsPEF, cells were aliquoted in triplicate at 50 ml/well into a

96-well plate; 10 ml of Caspase- GloH3/7 reagent were added to

each well, and the plate was briefly mixed on an orbital shaker.

After 40 min of incubation at room temperature, the level of

luminescence was measured by the Synergy 2 reader.

U937 cells incubated with 10 mM staurosporin were used as a

positive control for the induction of apoptosis.

Immunoblot Analysis and Quantitation of Poly-ADP
Ribose Polymerase (PARP) Cleavage
Specific PARP cleavage is an established hallmark of apoptosis

[32,33]. Both the full-length 116 kDa PARP and its 89 kDa

fragment can be detected together by immunoblotting. Quantita-

tion of the apoptotic fraction of cells from the relative amounts of

intact and cleaved PARP is intrinsically ratiometric and therefore

more quantitative than most of comparable assays.

At 1, 2, 6, or 9 hrs after nsPEF exposure, samples containing

approximately 46105 cells were chilled on ice and pelleted by

centrifugation. The pellet was washed twice with ice-cold PBS and

lysed in 30 ml of a buffer containing 20 mM HEPES (pH 7.5),

200 mM NaCl, 10 mM EDTA, 1% Triton X-100, and freshly

added 1 mM DTT (dithiothreitol), 10 mM Leupeptin, 1 mM

PMSF (phenylmethanesulfonyl fluoride), and 0.2 mg/ml Benza-

midin. The samples were vortexed and centrifuged at 15,000 g at

4uC for 10 min. The supernatant containing PARP was stored at

280uC.
Proteins were separated by electrophoresis on a NuPAGE 4–

12% Bis-Tris SDS-polyacrylamide gel (Life Technologies) and

then transferred to Immun-Blot Low Fluorescence PVDF mem-

brane (Bio-Rad Laboratories, Hercules, CA) by wet electroblotting

at 30 volts for 1 hr. Odyssey marker IRDye 680/800 was added as

a molecular weight standard (LI-COR Biosciences, Lincoln, NE).

The blots were blocked by incubation overnight at 4uC in the

Odyssey blocking buffer (LI-COR Biosciences).

Rabbit anti-PARP primary polyclonal antibodies (Roche

Diagnostics GmbH, Mannheim, Germany) were diluted 1:2,000

in the Odyssey blocker with 0.2% Tween-20. Donkey anti-rabbit

IgG(H+L) secondary antibodies conjugated with an infra-red

fluorophore IRDye-680LT (LI-COR Biosciences) were diluted

1:20,000 in the same buffer. The blots were treated with the

primary antibodies for 1 hr at room temperature, washed 4 times

(5 min each) in PBS with 0.1% Tween-20, treated with secondary

antibodies for 1 hr, and washed again.

The membranes were imaged using Odyssey 9120 Infrared

Imaging System (LI-COR Biosciences) in the 700 nm channel.

The images were quantified using MetaMorph software (Molec-

ular Devices).

The fraction of the cleaved PARP (K, %) was measured as:

K~100|1:3S= 1:3SzLð Þ where L and S are the fluorescence

intensities of the 116 kDa full-length PARP and of the 89 kDa

PARP fragment, respectively. The coefficient 1.3 was used for S

mass correction. The quantitative data from 4–5 independent

experiments were processed for each timepoint and for each type

of nsPEF treatment. Staurosporin-induced apoptosis was used as a

positive control.

General Protocols and Statistics
All of experiments were designed to minimize potential biases

and to ensure the accuracy and reproducibility of results. All

experiments included a sham-exposed parallel control group,

which was subjected to all the same manipulations and procedures

as the nsPEF-exposed samples, excluding only the nsEP exposure

itself. Various regimens of the nsPEF treatment and parallel

control experiments alternated in a random manner, and no

‘‘historical’’ controls were accepted. Diverse buffer conditions were

Cell Death Triggered by Nanosecond Electric Pulses
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also tested in parallel. When measurements were made in triplicate

(e.g., cell viability using MTT assay), the mean of the three values

was counted as a single experiment. To achieve statistical

significance, we usually ran 4–6 independent experiments per

each group (a minimum of 3). Student’s t-test with Dunnet’s

correction when applicable [34,35] was employed to analyze the

significance of differences. The data were presented in the graphs

as mean values +/2 s.e. The difference at p,0.05 level (2-tailed)

was regarded as statistically significant. Due to multiple statistical

comparisons made (exposures versus controls; different buffers;

different timepoints; etc) we chose to let the error bars speak for

the statistical difference with minimum use of special symbols. For

clarity, the special symbols were only used for the RPMI+sucrose
groups, to indicate the significant difference from the RPMI+NaCl

group (*) and from the sham-exposed control (#). In fact, most

effects reported below were quite robust and statistically significant

at p,0.01 or better at least for several timepoints.

Results

Sucrose Inhibits nsPEF-induced Cell Swelling and
Prevents Membrane Rupture
In a recent study [26], we showed that 60- as well as 600-ns

pulses cause water uptake and cell swelling due to the colloid-

osmotic imbalance [25,36–38]. In brief, the water uptake results

from the fact that small solutes can diffuse through membrane

pores towards the concentration equilibrium, whereas the larger

solutes cannot. Hence, the larger solutes remain trapped inside the

cell, thereby creating an osmotic gradient to attract water. This

gradient can be counterbalanced by replacing small solutes (such

as Na+ and Cl-) in the bath buffer with larger, pore-impermeable

solutes such as sucrose. Such replacement prevents cell swelling

even though the osmolality of the extracellular buffer remains

unchanged [26].

Fig. 1 shows a typical time dynamics of cell volume changes

following nsPEF treatment. All cell samples were exposed to 600

pulses (300-ns pulse duration, 7 kV/cm, 200 Hz) in a standard

RPMI medium. Immediately after the exposure, the samples were

mixed 7:3 with isoosmotic NaCl or sucrose as described above.

Sham-exposed cell samples that served as controls were diluted the

same way.

The diameter of control cells did not depend on the time of

incubation after nsPEF or on whether the sucrose or NaCl was

added to the medium. The distribution of cell diameters was bell-

shaped, with the peak at 16–18 mm. NsPEF exposure caused rapid

swelling in the RPMI+NaCl group, eventually followed by

membrane rupture and cell destruction. The destroyed cells

shrunk abruptly, almost to the size of the nucleus, so the cell death

was manifested as an increased fraction of smaller cells. This mode

of cell death was essentially identical to the classic scenario of

hemolysis caused by the electroporation of erythrocytes [38].

Consistent with the earlier observations [26], the dilution of

RPMI with sucrose fully prevented cell swelling (Fig. 1, right

column). Consequently, sucrose also prevented the secondary cell

shrinkage due to the membrane rupture.

Dual Effect of Sucrose on Cell Survival
While it was most logical to expect that the inhibition of cell

swelling and prevention of membrane rupture by sucrose should

improve cell survival, the experiments showed that it was not the

case. At 24 hr after nsPEF exposure, and for a wide range of

exposure intensities, the cell survival stayed remarkably the same

in the presence or absence of sucrose (Fig. 2).

This unexpected finding has stimulated the analyses of the time

course of nsPEF-induced cell death under diverse conditions

(Fig. 3). Panels A, B, and C represent three independent series of

experiments. In all these series, cell survival was monitored by the

AO/PI assay for up to 24 hr (A) or 48 hr (B and C) after the

nsPEF exposure. For experiments in panel A, cells in RPMI were

diluted with either sucrose or fresh RPMI prior to nsPEF

treatment. For experiments in panels B and C, the dilution with

either sucrose or NaCl was performed immediately after the

exposure. The nsPEF exposure was either 600 pulses, 300 ns,

200 Hz at 7 kV/cm (panels A and B), or 50 pulses, 60 ns,

approximately 1 Hz at 40 kV/cm (panel C).

Irrespective of the methodological differences, the effects

observed in these experiments were similar. In sham-exposed

cells, modifications of the growth medium had little or no effect:

cells grew similarly in RPMI+sucrose and in RPMI+NaCl (panels

B and C), and perhaps slightly faster in the RPMI (panel A). At the

same time, the presence of sucrose profoundly improved the

survival of nsPEF-exposed cells at early time intervals (1–8 hr).

However, at the later time intervals the cells protected by sucrose

continued to die, whereas those without sucrose protection already

started to recover. Eventually, the percent of viable cells became

the same, and the protective effect of sucrose was nullified.

This phenomenon can also be illustrated by measuring the

fraction of dead (PI-positive) cells at different times after nsPEF

exposure (Fig. 4). Without the sucrose protection, the fraction of

dead cells increased rapidly to its maximum at 8–10 hr, and

gradually decreased afterwards. With the sucrose protection, the

fraction of PI-positive cells increased after a delay of several hours,

but showed no reduction within the period of observation.

To summarize, the presence of sucrose efficiently inhibited the

early cell death (just as expected from the blockage of cell swelling),

but the rescued cells nonetheless died later on because of some

other reason. As a result, the cell survival at intervals of 24 and

48 hr was not significantly improved by the inhibition of cell

swelling (Figs. 2 and 3).

Blockage of Cell Swelling Switches the Cell Death
Pathway from Necrosis to Apoptosis
The cell survival data reported above were consistent with

gradual changes in the cell appearance and the uptake of

membrane-impermeable dyes with time after nsPEF (Fig. 5).

At 0.5–1 hr after the exposure, cells left in the RPMI were

swollen and developed necrotic-type blebs (also sometimes called

‘‘blisters’’). In the presence of sucrose, nsPEF-exposed cells

displayed few if any morphological changes. In both these cell

populations, the plasma membrane was partially compromised,

allowing the uptake of YO-PRO-1 but not of PI (propidium ion is

larger than YO-PRO-1 and has low permeability through nsPEF-

opened pores [25,26,39]). Later on, membrane rupture in swollen

cells resulted in massive PI uptake and dual staining of dead cells

by both Yo-PRO-1 and PI. However, cells that did not rupture

became impermeable to YO-PRO-1 and regained the normal

appearance. At 4 and 6 hr after nsPEF, most of cells in RPMI

were either dead (double-stained) or normal (no staining). In the

presence of sucrose, many cells developed cytoplasm fractionation

(apoptotic blebbing) and remained permeable to YO-PRO-1.

These manifestations suggested that the delayed death in sucrose-

rescued cells could be a result of apoptosis.

Indeed, protection of nsPEF-treated cells by sucrose caused

profound activation of caspase 3/7 already at 1 hr after the

exposure, reaching maximum at 3–6 hr (Fig. 6). The cells left in

RPMI+NaCl after nsPEF exposure showed just minor caspase

activation. These findings were corroborated by another hallmark

Cell Death Triggered by Nanosecond Electric Pulses
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of apoptosis, namely the markedly increased cleavage of PARP

(Fig. 7). The data looked similar for exposures to 300- and 60-ns

pulses; taken together with the cell swelling and survival

measurements, the data indicated that the cell damage and cell

death mechanisms caused by 300- and 60-ns pulses were similar.

Figs. 6 and 7 also include the data for a chemically-induced

apoptosis as a positive control. We used staurosporin, a well-

established agent which, at the tested concentration, caused

apoptotic cell death in almost 100% of U937 cells (data not

shown). Interestingly, caspase 3/7 activation and PARP cleavage

in the staurosporin-induced apoptosis developed as much as 2–

3 hr later as compared to the nsPEF-induced apoptosis. One

possible interpretation of this observation is that nsPEF just

‘‘bypassed’’ the initial steps of the staurosporin-induced apoptotic

cascade [40]. At the same time, we showed earlier that the

internucleosomal DNA fragmentation in nsPEF-exposed cells

developed later than in heat-shocked cells [12]. Overall, the time

course of the nsPEF-induced apoptosis appeared within the time

limits reported for other apoptotic factors.

The Balance between the Two Modes of Cell Death
The proportion of necrotic, apoptotic, and non-apoptotic live

cells, as determined by different approaches, is presented in Figs. 8

and 9.

In Fig. 8, the fraction of PI-positive (dead) cells was determined

by the AO/PI assay. The remaining fraction of live cells was split

into the ‘‘apoptotic’’ and ‘‘non-apoptotic’’ subpopulations based

on the relative amounts of intact and cleaved PARP measured in

the same sample. With time after nsPEF exposure, non-apoptotic

cells could shift into either ‘‘apoptotic’’ or ‘‘dead’’ categories, and

the ‘‘apoptotic’’ cells could also become ‘‘dead’’.

After exposure to 600 pulses (300 ns, 7 kV/cm), 60% of cells

were already dead at 1 hr if kept in the RPMI+NaCl medium.

Taking into account the early occurrence of the cell death,

morphological signs (cell swelling and membrane rupture), and the

lack of concurrent caspase 3/7 activation or PARP cleavage, the

early cell death can be categorized as a primary necrosis. Later on,

a fraction of cells kept in RPMI+NaCl entered the apoptotic

pathway; however, even assuming that the entire cell loss after

2 hr was due to the apoptosis only, the cumulative fraction of

Figure 1. Sucrose inhibits cell swelling and membrane rupture caused by nsPEF. The bar charts show the frequency distribution of cell
diameter values at the indicated time intervals after nsPEF exposure and in sham-exposed controls. Cells were exposed in the RPMI medium and
placed immediately afterwards into either RPMI+NaCl or RPMI+sucrose (87 mOsm/kg due to sucrose); see text for more details. 400–600 cells per
group were measured at each timepoint. Note fast cell swelling followed by membrane rupture and apparent shrinkage in RPMI+NaCl, but not in the
RPMI+sucrose. Representative cell images in the differential interference contrast (DIC) and propidium iodide (PI) fluorescence channels illustrate
swelling and eventual membrane rupture in the RPMI+NaCl medium.
doi:10.1371/journal.pone.0070278.g001
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apoptotic cells was just 16%. In contrast, the same calculation for

sucrose-protected cells yields over 50% of apoptotic cells. Thus,

the primary necrosis was the predominant cell death pathway

unless cells were protected with sucrose. For the data in Fig. 8, the

primary necrosis was responsible for about 87% of the cell loss,

versus 43% in the presence of sucrose.

Fig. 9 shows the time dynamics of cell subpopulations

permeable to either YO-PRO-1, or both PI and YO-PRO-1, or

not permeable to any of the dyes. Notably, YO-PRO-1 is both a

sensitive indicator of membrane nanoelectroporation [25,39,41]

and a marker of selective membrane permeabilization early in the

course of apoptosis [42]. In contrast, the uptake of PI through

nanopores is minimal; with the employed method of PI detection,

its uptake manifests the irreversible cell destruction, by either

primary or secondary necrosis.

Nanopores created by nsPEF still remained permeable to YO-

PRO-1 at 20 min after the exposure, as seen by YO-PRO-1

uptake by most cells. In the RPMI+NaCl medium, these cells

swelled and got destroyed (became PI-permeable) already within

an hour. In the RPMI+sucrose group, many cells remained

permeable just to YO-PRO-1 for several hours after the nsPEF

exposure. The fraction of PI-positive cells was much smaller and

stable at 1–4 hr after the exposure, followed by a delayed increase

by 6 hr.

Figure 2. Lack of the effect of sucrose on the 24-hr survival of
nsPEF-treated cells. Cells in RPMI were mixed with sucrose
(RPMI+sucrose; 60 mOsm/kg due to sucrose) or fresh RPMI (RPMI+RPMI)
before nsPEF exposure (600 pulses, 300-ns). At 30 min after the
exposure, all samples were diluted tenfold with fresh RPMI and
incubated until measuring cell survival by the MTT assay at 24 hr (mean
values +/2 s.e. for 6 independent experiments).
doi:10.1371/journal.pone.0070278.g002

Figure 3. Inhibition of swelling improves the short-term but not the long-term survival after nsPEF exposure. Panels A, B, and C
represent the data from three independent sets of experiments performed under different exposure conditions and using different protocols. For
panel A, cells in RPMI were mixed with sucrose (RPMI+sucrose; 60 mOsm/kg due to sucrose) or fresh RPMI (RPMI+RPMI) before nsPEF exposure (the
same protocol as in Fig. 2). For panels B and C, cells were exposed in the RPMI and placed immediately afterwards into either RPMI+NaCl or
RPMI+sucrose (87 mOsm/kg due to sucrose), same as in Fig. 2. See graph legends and text for more details. Cell survival was measured by the AO/PI
assay and normalized to the pre-exposure value (mean+/2 s.e., n = 4–6). Cell survival in sham-exposed controls is shown by dashed lines and open
symbols. * p,0.05 for the difference of RPMI+sucrose from RPMI+NaCl (or RPMI+RPMI); # p,0.05 for the difference of RPMI+sucrose from the
respective sham-exposed control. Other significant differences are not shown for clarity.
doi:10.1371/journal.pone.0070278.g003
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Discussion

While it is widely accepted that nsPEF-exposed cells die by

apoptosis, our results demonstrate for the first time that the

primary necrosis was the predominant cell death mode. We also

established that necrosis results from plasma membrane permea-

bilization, followed by water uptake, cell swelling, and eventual

membrane rupture. This necrotic pathway is similar to what is

seen with ‘‘classic’’ electroporation pulses or when applying

various other necrotic factors.

This result may appear contradictory to the prevalence of

nsPEF-induced apoptosis as reported by multiple other studies

Figure 4. Inhibition of swelling blocks the early cell death after nsPEF. Dead cells were identified by the AO/PI assay. The total number of
cells counted at each timepoint was taken as 100% (mean+/2 s.e., n = 4–6). The data in panels A and B are from the same experiments as in Fig. 3, B
and C. See text and Fig. 3 for details. PI uptake in sham-exposed controls is shown by dashed lines and open symbols.
doi:10.1371/journal.pone.0070278.g004

Figure 5. Effects of sucrose on cell swelling and membrane permeability. DIC and fluorescence images of nsPEF-exposed cells incubated in
either RPMI+RPMI or RPMI+sucrose. Green: YO-PRO-1; red: PI; yellow: both dyes overlapped. Parameters of exposure and times after it are given in the
legend. Cells were handled the same way as in Fig. 2 but without additional dilution at 30 min. The dyes were added 5–10 min prior to taking an
image. Note early cell swelling and rupture in the RPMI+RPMI but not in the RPMI+sucrose medium. The survivors show no YO-PRO-1 uptake in the
RPMI+RPMI, but remain permeable to the dye in the RPMI+sucrose group. An arrow points to a group of cells that display the apoptotic blebbing and
fragmentation.
doi:10.1371/journal.pone.0070278.g005
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[1,3,4,10,14,43]. However, these reports were based primarily on

the flow cytometry counts of cells that display PS externalization;

as discussed above, the relevance of this parameter to apoptosis in

nsPEF-treated cells is questionable.

Figure 6. Inhibition of swelling in nsPEF-exposed cells
facilitates caspase 3/7 activation. The exposure parameters and
media are identified in the legend. Growth media were changed the
same way as in Fig. 1. Caspase-3/7 was measured by a luminescence
assay. For a positive control, apoptosis was induced by 10 mM of
staurosporin. Mean values +/2 s.e. for n = 3. See text and Fig. 3 for
details.
doi:10.1371/journal.pone.0070278.g006

Figure 7. PARP cleavage in nsPEF-exposed cells. A: The fraction of cleaved PARP is increased when nsPEF-exposed cells are protected with
sucrose. Mean values +/2 s.e. for n = 4–5. Growth media were changed the same way as in Fig. 1. NsPEF and media conditions are specified in the
legend. The numbers in parentheses correspond to the lanes in panel B, which shows representative Western blots for intact and cleaved PARP (116
and 89 kDa, respectively). See text and Fig. 3 for details.
doi:10.1371/journal.pone.0070278.g007

Figure 8. The structure of nsPEF-exposed cell populations with
and without blockage of cell swelling with sucrose. Bars show
relative fractions of non-apoptotic, apoptotic, and dead cells at different
timepoints after nsPEF (600 pulses, 300 ns, 7 kV/cm). Growth media
were changed the same way as in Fig. 1. Dead and live cells were
counted by the AO/PI assay. The fraction of apoptotic cells among live
cells was considered proportional to the fraction of cleaved PARP. The
data were averaged from 4–5 experiments; the error bars are omitted
for clarity.
doi:10.1371/journal.pone.0070278.g008
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Although a number of studies reported evidence for necrotic cell

death after nsPEF [4,6,9,17,28], this pathway has received little

attention. Most of research focused on cellular mechanisms of

nsPEF-induced apoptosis, whereas necrosis was viewed as a less

common and less important event. In this study, for the first time

we report that under standard cell culture conditions necrosis can

be a prevalent mode of cell death. This finding holds true for

rather diverse nsPEF exposure conditions, including different pulse

durations, E-field values, and pulse delivery protocols.

With that said, the balance between apoptosis and necrosis can

be profoundly dependent on the cell type and on the cell

environment. For example, cells that do not have a large ‘‘stock’’

of spare membrane to swell will have less time for membrane

repair after nsPEF, and are more likely to die from the membrane

rupture. This fact may explain why smaller Jurkat cells were more

vulnerable than larger U937 [12]. Cells within tissues in vivo may

have limited room for swelling. Instead of the presence of sucrose,

swelling can potentially be limited by the space constraints,

thereby shifting the in vivo cell death towards apoptosis.

The profound increase of apoptosis in nsPEF-treated cells in the

presence of sucrose raises a question if sucrose just ‘‘unmasked’’

the latent apoptosis or also facilitated the apoptotic cell death. For

example, in Fig. 9 (right panel, RPMI+sucrose), the pool of YO-

PRO-1 positive cells remained large for several hours after the

exposure. This pool concurrently shrunk due to both resealing of

nanopores and cell death, and expanded due to the development

of apoptosis. One may speculate that the presence of sucrose could

somehow inhibit the cell membrane repair, thereby leaving it

permeable to YO-PRO-1 for longer time. Such long-lasting

membrane disruption due to the impaired repair would be a

plausible explanation for the onset of apoptosis in sucrose-

protected cells; however, this mechanism does not appear to be

supported by the data. Indeed, a large increase in the fraction of

cells that did not uptake any of the dyes (between 0.3 and 2 hr)

argued for the successful pore resealing in the RPMI+sucrose
group. Therefore the development of apoptosis was not a side

effect of the sucrose; instead, it was an effect of nsPEF exposure

itself, which was masked by the faster necrotic process under the

normal cell culture conditions.

The fact that nsPEF triggers both necrotic and apoptotic death

mechanisms makes it an attractive modality for cancer ablation.

First, the concurrent induction of both cell death modes reduces

the chance for malignant cells to escape the death sentence,

despite the sophisticated death evasion mechanisms developed by

various cancers. Second, varying the nsPEF exposure parameters

and combining nsPEF with sucrose injection or a similar treatment

is an approach to deliberately induce either the apoptotic or

necrotic death, or a combination thereof. For an in vivo cancer

treatment, a carefully tuned combination of necrotic and apoptotic

cell death may be an optimal solution for tumor elimination

without excessive pain and inflammation while stimulating the

immunogenicity of tumor cells [2,44].
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Figure 9. The effect of sucrose on Yo-PRO-1 and PI uptake by nsPEF-exposed cells. Growth media were changed after nsPEF exposure (600
pulses, 300 ns, 7 kV/cm) the same way as in Fig. 1. The number of cells displaying no dye uptake, YO-PRO-1 uptake, and both YO-PRO-1 and PI uptake
were automatically counted in microscope images as described in Methods. The total number of cells counted in each sample was taken as 100%.
The PI-positive cells were presumed dead. YO-PRO-1-positive cells could be either apoptotic or just transiently permeabilized to this dye by nsPEF.
Cells negative for either dye were regarded as live, non-apoptotic. The data were averaged from 3 experiments; error bars are omitted for clarity.
doi:10.1371/journal.pone.0070278.g009
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