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Abstract: Pulse power technology using nanosecond pulsed electric fields (nsPEFs) offers a 
new stimulus to modulate cell functions or induce cell death for cancer cell ablation. New 
data and a literature review demonstrate fundamental and basic cellular mechanisms when 
nsPEFs interact with cellular targets. NsPEFs supra-electroporate cells creating large 
numbers of nanopores in all cell membranes. While nsPEFs have multiple cellular targets, 
these studies show that nsPEF-
cell viability. Increases in intracellular Ca2+ alone were not sufficient for cell death; however, 
cell death depended of the presence of Ca2+. When both events occur, cell death ensues. 
Further, direct evidence supports the hypothesis that pulse rise-fall times or high frequency 

indicates in Jurkat cells that cytochrome c release from mitochondria is caspase-independent 
indicating an absence of extrinsic apoptosis and that cell death can be caspase-dependent 
and independent. The Ca2+ dependence of nsPEF-
that nanoporation of inner mitochondria membranes is less likely and effects on a  
Ca2+-dependent protein(s) or the membrane in which it is embedded are more likely a target 
for nsPEF-induced cell death. The mitochondria permeability transition pore (mPTP) 
complex is a likely candidate. Data demonstrate that nsPEFs can bypass cancer mutations 
that evade apoptosis through mechanisms at either the DISC or the apoptosome. 
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1. Introduction 

1.1. Therapies for Hallmarks of Cancer 

Cancer is a group of diseases that exhibit hundreds of genotypes defined by substantial numbers of 
mutations and thereby create a major obstacle for treatment. In order to deal with this diversity of 
cancer diseases, Hanahan and Weinberg [1,2] reasoned that since all mammalian cells express similar 
mechanisms for proliferation, differentiation and death, most cancers should share a limited number of 
common hallmarks that govern their behavior. These hallmarks include sustaining proliferation, evading 
growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, 
activating invasion and metastasis, reprogramming energy metabolism and evading immune  
destruction [2]. These hallmarks occur on a background of genetic instability that can lead to additional 
mutations. In addition, inflammatory responses by innate immune cells support several hallmarks, 
thereby promoting malignancies. Identifying these hallmarks provides a context to design targeted 
cancer therapies that interfere with specific molecules that play critical roles in proliferation and cell 
death. Over the last several years, significant progress has been made to understand the pathobiology of 
many cancers and although a number of treatments have been designed based on this knowledge, 
outcomes so far -have been limited. 

1.2. Physical Treatments that Target Whole Tumors  

Because of treatment resistances and relapses, combining targeted therapy with classical 
chemotherapy or radiation has become more common and is now a mainstay of cancer treatment [3]. 
However, there are some emerging therapies that have received limited attention, most likely because 
they are less conventional treatments. These include several local or regional treatments that target 
whole tumors by physical approaches including cryotherapy, radiofrequency ablation (RFA), 
electrochemotherapy (ECT) [4,5], electro-gene therapy (EGT) [6,7], irreversible electroporation  
(IRE) [8] and nanosecond pulse electric field (nsPEF) ablation [9 13]. RFA provides a relatively 
effective treatment choice for patients with non-resectable HCC [14], but ablation near major vessels 
and ducts is contraindicated. ECT is a common treatment in Europe for melanoma cutaneous 
metastases and clinical trials are on-going for treatment of liver metastases, bone metastases and soft 
tissue sarcomas [15]. EGT has successfully completed phase I clinical trials for treating melanoma with 
delivery of IL-12 [16] and evidence of responses in adjacent untreated lesions suggest there is at least a 
limited systemic response [17]. IRE ablation of locally advanced pancreatic cancer tumors appears to be 
safe and feasible for unresectable, locally advanced disease [18]. An early analysis of IRE treatment of 
perivascular malignant hepatic tumors demonstrates safety for treating liver malignancies; however, 
larger and longer follow-up studies are necessary to determine long-term efficacy [19]. 
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The last four modalities mentioned here - ECT, EGT, IRE and nsPEFs - all use electric fields for 
treatment. However, they are used very differently for each therapy. ECT is used to electroporate tumor 
cell plasma membranes in the presence of poorly permeable chemotherapeutic agents such as bleomycin, 
a glycopeptide antibiotic drug that causes DNA breaks. EGT also uses electroporation, but here it is 
designed to deliver genes that have anticancer activity or to boost the immune system. It is important 

the delivered gene. IRE 
extends electroporation by increasing electric fields (to low kV/cm) such that plasma membranes of 
tumor cells cannot recover from permeabilization and cells die primarily by necrosis. In contrast, 
nsPEFs extend electroporation by not only increasing the electric field (to tens of kV/cm), but also by 
decreasing pulse durations from microseconds or milliseconds used in ECT, EGT and IRE, into 
nanosecond durations. This not only creates pores in plasma membranes, but also in intracellular 
membranes. Furthermore, unlike electroporation pores, nsPEFs generate large numbers of nanopores in 
all cell membranes a phenomenon called supra-electroporation [20,21]. These unique characteristics 
are proposed to be responsible for apoptosis induction as well as other cell death mechanisms, which 
have been shown with nsPEFs in several cell types and tumor tissues [9,22 28]. Initially, intracellular 
granules were identified as nsPEF targets, but it could only be speculated whether apoptosis was 
induced as a result of intracellular effects [29]. The presence of apoptosis was demonstrated in studies 
soon after effects were observed in intracellular structures [9,22]. DNA damage was shown in 
fibrosarcoma tumors that exhibited tumor growth inhibition using early electrode designs [9]. However, 
whether DNA damage is a cause or a result of cell death by apoptosis is still unanswered. Others have 
demonstrated DNA damage [10,12,13,30,31], but it has not been directly linked to a cause of cell 
death. The latter study demonstrated considerable nuclear membrane and telomere damage as well, 
suggesting mechanisms other than poration are possible to induce cell death. In this same study and in 
two others [23,32] changes in cell morphology, phosphatidylserine externalization and caspase 
activation were demonstrated in cultured cells in vitro, but effects on corresponding intracellular 
structures were not analyzed. The presence of caspase activation and cytochrome c release into the 
cytosol suggested effects on mitochondria, but it was not determined whether this was a direct or 
indirect effect. Several studies indicated release of intracellular Ca2+ [24,32 35] and evidence for the ER 
as a possible Ca2+ release site [24,33,34]. It was suggested, but not proven, that nsPEFs modulated cell 
function through intracellular signal transduction mechanisms. This was based on finding that when 
nsPEF that were well below the threshold for PI uptake and apoptosis, effects were observed that were 
similar to purinergic agonist-mediated Ca2+ release from intracellular stores, which secondarily initiated 
capacitive Ca2+ influx through store-operated Ca2+ channels in the PM. It was also suggested that 
nsPEFs acted as anon-ligand agonist to induce intracellular signaling [24,25,36] based on these 
observations. While studies above indicated release of cytochrome c from mitochondria [22], other 
studies indicated mitochondrial-independent mechanisms in HCT116 cells that lead to caspase 
activation and cell death in the presence or absence of p-53 and Bax [25] and without release of 
cytochrome c in the presence of active caspases [26]. Mitochondria were also shown to be a possible 
intracellular target for cell death as indicat
different methods [26,27,37,38
active caspases [26,27], they did not show which event was responsible for the other.  
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In the studies here, we used N1-S1 hepatocellular carcinoma (HCC) cells to investigate effects of 
nsPEFs on subcellular structures and cell viability.  We also used Jurkat clones that were deficient in 
one of three apoptosis-related proteins, FADD, caspase-8 and APAF-1 [39 41], to investigate 
pathways for nsPEF-induced apoptosis. 

2. Results and Discussion 

2.1. NsPEFs Induce Nanopores in Plasma Membranes 

Early papers published using pulse power with nsPEFs on mammalian cells suggested that effects  
on intracellular structures occurred without permanent disruption or permeabilization of plasma  
membranes [29,33]. This was based on a simple electrical model for biological cells, which predicted 
that because pulse durations were shorter than the plasma membrane charging time, there were 
increasing probabilities for electric field interactions with cell substructures. When nsPEFs were applied 
to human eosinophils loaded with calcein, intracellular granules were breached without apparent effects 
on plasma membranes [29]; that is, without calcein leaking out or propidium iodide (PI) entering 
through plasma membranes [33]. When Ca2+ was imaged in real-time in Jurkat cells exposed to nsPEFs, 
or ultra-short high-field electric pulses, there were increases in cytosolic Ca2+ concentrations within 
milliseconds [33]. These were the first demonstrations of a broadening of conventional electroporation 
to include effects on intracellular membranes. This phenomenon was further supported by 
demonstrat  
with homogeneous magnitudes in surface membranes typical of electroporation. In contrast, shorter 
pulses (300 ns and 60 ns durations) caused temporally delayed surface membrane permeability changes 
that were heterogeneous in magnitude [42]. Intracellular effects of nsPEFs were also supported by 
showing differential permeabilization of lipid vesicles based on differences in charging times of the 
vesicle membrane capacitance and selective permeabilization of large intracellular vesicles without 
observably affecting plasma membranes [43].  

While effects on intracellular structures were easily measured, the apparent absence of plasma membrane 
effects was due to the creation of pores on the order of nanometers, referred to as nanopores.  
This was predicted through modeling using a transport lattice approach for electric field effects on cell 
membranes to induce large numbers of pores in all cell membranes. This effect was designated  
supra-electroporation [20,21]. The presence of nsPEF-induced nanopores was demonstrated experimentally 
as voltage-sensitive and inward-rectifying membrane pores [44]. These membrane pores had ion-channel-like 
properties that were mostly impermeable to propidium iodide. Since nsPEFs affect intracellular membranes,  
it was supposed that these were also nanopores in nature. Using various cell types loaded with a  
thallium-sensitive fluorophore, nsPEF-treated cells exhibited increases in intracellular thallium before 
responding to PI, demonstrating that nanopores were smaller than 1.0 1.5 nm [45]. Van der Waals diameter 
for thallium is about 0.39 nm and Ca2+ is about 0.46 nm [46]. 

Understanding the formation, size and life-time of lipid membrane pores have been greatly served by 
computer simulation with Molecular Dynamics (MD) [47 50]. In many cases, MD simulations have 
been supported by experimental evidence. In other cases, they have provided models that predict 
molecular movement of molecules in plasma membranes, which can be analyzed for consistency with 
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other models and with results from experimental analysis of artificial bilayers and living cells. There is 
general agreement that the primary role in pore formation is played by water dipoles as they create 
water defects and as they increasingly interact with the electric field at the lipid-water interface; initial 
steps in pore formation do not depend on the nature of lipid headgroups. The reorientation of the water 
molecules at the water bilayer interface is relatively fast. The limiting step to the complete 
reorganization of bilayers is the translocation of lipid head groups inside the hydrophobic lipid  
domain [47 52]. Switching off electric fields appears to allow a complete resealing and reconstitution of 
bilayer, with the limiting step being the dissociation of the headgroup-headgroup interactions in the 
membrane core [48]. It has also been shown that there is no pore formation near a membrane channel 
inserted into the bilayer, which was attributed to a stabilization of the anchoring lipid head groups to the 
side chains of the channel [48]. Results suggested that there was no distortion of the ion channel formed 
by hydrogen bonds with the peptide ring [48]. This is expected to be the case for both long duration 
pulses and nanosecond pulses [53]. 

MD simulations have been correlated with experimental observations of phosphatidylserine 
externalization in lipid bilayers [49]. While experimental observations of these events cannot be obtained 
with nanosecond resolution, MD discerned molecular events of nsPEF-driven pore formation and 
phosphatidylserine externalization. Nanopores were formed within nanoseconds when electric fields of 
appropriate magnitudes were applied to cells. While hydrophilic, nanometer-diameter, aqueous pores 
were forming, phosphatidylserine was pulled electrophoretically from the inner leaflet to the outer 
leaflet of the lipid membrane. 

In another study, MD provided insight into the life cycle of electropores. Pore life-time was divided 
into discrete stages of pore creation (initiation, construction and maturation) and pore annihilation 
(destabilization, degradation, deconstruction and dissolution) [50]. The electric field gradient across the 
membrane determines the pore creation time; the higher the electric field, the faster pores form. Some 
stages of pore life-time are more electric field-dependent than others. Pore initiation, formation of a 
water column across the membrane interior, is the major electric field-dependent step in pore creation. 
Pore construction and maturation as well as pore degradation, deconstruction and dissolution, are not 
dependent on electric fields. The magnitude of the electric field that initiates pore formation is a weak 
determinant of pore annihilation, which is much longer lived than pore formation time. Pore destruction 
time takes about 75 times longer than pore construction. Generally, pores created at higher electric 
fields are less ordered than those formed at lower electric fields. Pore annihilation may depend on the 
structure of the pore, which is affected by pore-initiating electric fields. This study was in general 
agreement with previous stochastic pore hypotheses of electroporation effects [51,52], but further 
enhanced that model by providing multiple electric field-dependent and -independent stages in pore 
creation and annihilation.  

To examine effects of nsPEFs on plasma membranes and intracellular membranes, cells were loaded 
with Fluo-4 Direct to determine increases in intracellular Ca2+ and treated with single 600 ns pulses with 
a rapid rise-fall time at various electric fields. PI was added immediately after pulsing (Figure 1). 
Experiments were also carried out with Fluo-4 in the absence (blue line, diamonds) and presence (red 
line, squares) of EGTA to chelate all extracellular Ca2+. Figure 1 shows that intracellular Ca2+ was not 
detected in the absence of extracellular Ca2+, indicating there was no observable release of Ca2+ from 
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intracellular stores. Intracellular Ca2+ release had been observed in other cells [24,32 35], so it is not 
clear if this was typical of N1-S1 cells or if Ca2+ release is transient and absent when observations were 
made or if Fluo-4 is not sensitive enough to detect intracellular Ca2+ release. Intracellular Ca2+ is likely 
present in microenvironments where endoplasmic reticulum (ER) and mitochondria are in close contact. 
Thus, in these studies, an increase in Fluo-4 fluorescence was used as a marker for small ion, Ca2+ 
transport (0.46 nm) and PI was used as a marker for larger ion transport (1.0 1.5 nm) across plasma 
membranes. As electric fields were increased between 7.5 10 kV/cm (blue, diamonds), there were 
significant increases in cells with elevated Fluo-4 fluorescence, indicating small pores in plasma 
membranes. As electric fields were further increased up to 50 kV/cm, elevated Fluo-4 fluorescence 
plateaued with about half of cells exhibiting increases in Ca2+ as an apparent maximum response under 
these conditions. PI entry (green line, triangles) into cells was not observable until between  
40 50 kV/cm. As electric fields were increased up to 80 kV/cm, numbers of PI positive cells increased 
in an electric field-dependent manner. This indicates that between 7.5 and 50 kV/cm, nanopores 
between 0.46 nm and 1.5 nm were present before PI entered cells. Thus, nanopores are formed in 
response to nsPEFs with pulses as long as 600 ns, but as electric fields increased, so do pore sizes, 
suggesting that pores can expand with higher electric fields. 

Figure 1. Nanosecond pulsed electric fields (NsPEFs) can induce nanopores larger than 
Ca2+ ions and smaller than PI molecules. N1-S1 HCC cells were treated with one 600 ns 
pulse with a rise-fall time of 15 ns at the electric fields indicated on the X-axis. Cells were 
loaded with Fluo-4 Direct as described in the Experimental section. PI was added 
immediately after pulse treatments and cells were analyzed by flow cytometry 10 minutes 
after treatment. The Y-axis indicates the percentage of cells that exhibit fluorescence for 
either Fluo-4 or PI. When present, EGTA was 5 mM. Statistical significance is indicated at 
electric fields those electric fields with symbols; (;* p < 0.001 vs. PI control + p < 0.001 
vs. Fluo-4 control (ANOVA with Tukey correction; n = 3). These data have been previously 
published in a different format [54]. 

 

2.2. Transient Features in nsPEFs Differentially Modulate Intracellular Functions 

The hypothesis concerning effects of ultra-short pulses on intracellular membranes is related to the 
charging time / frequency of the plasma membrane, which is in the range of 70-100 ns or 10-14 MHz in 
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the frequency domain [29]. For pulses longer than the charging time of plasma membranes, such as the 
600 ns pulses (1.67 MHz) used in Figure 1, it is hypothesized that a fast versus a slow rise-fall time  
(or transient higher vs. lower frequency components) would make a difference as to whether or not 
intracellular effects are observed. In Figure 2, this hypothesis was directly tested by using single 600 ns 
pulses (1.67 MHz) with rise-fall times of 15 ns (67 MHz) or 150 ns (6.7 MHz), considerably faster and 
slower, respectively, than the plasma membrane charging time. To observe changes in plasma 
membranes, Fluo-4 was used to observe influxes of Ca2+ 10 minutes after treatment. As shown in  
Figure 1, there was no measurable release of Ca2+ from intracellular stores. To observe changes in 
intracellular membranes, TMRE was used  
10 minutes after treatment. Cell viability was determined 24 hours after treatment.  

Figure 2. NsPEF fast rise- cell viability (A and B) N1-S1 HCC 
cells were loaded with Fluo-4 Direct to determine Ca2+ influx (red squares) and with TMRE 

Section. The Y-axis indicates the percentage of cells with fluorescence for either Fluo-4 or 
TMRE, which were determined 10 minutes after nsPEF treatment. In parallel experiments, 
the percentage of viable cells (black triangles) was determined 24 hours after treatment as 
described in the Experimental section. (C) Cells were treated with one 600 ns pulse with a 
15 ns fast rise-fall time waveform (blue line, panel A) or a 150 ns slow rise-fall time 
waveform (red line, panel B) at the indicated electric fields. For Panels A and B significant 
differences from control sham 
Fluo-4 (+p < 0.001, n = 3,); for TMRE (# p < 0.03, n = 3) and cell viability (* p < 0.001,  
n = ). These data have been previously 
published in a different format [54]. 
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In both 15 ns (Figure 2A) and 150 ns (Figure 2B) rise-fall time pulses, there were electric field-
dependent increases in cells with elevated intracellular Ca2+. All electric fields above 20 kV/cm for the 
15 ns and 150 ns pulses were statistically significant for increases in intracellular Ca2+ (+). As electric 
fields were incr 40 
kV/cm for the 15 ns rise-fall time pulse (#). For the 150 ns rise- was dissipated, 
but not significant 70 kV/cm. For both 15 ns and 150 ns pulses, cell viability decreased parallel to 

fast rise-fall time pulses have a greater 

intracellular effect of the fast rise-fall time pulse was an apparent determinant of cell viability [54].  
By using a slow, 150 ns pulse rise-fall time and introducing a slightly mismatched load, a bipolar tail 

occurred at the end of the pulse waveform, and a more dramatic difference was observed between 
plasma membrane and intracellular membrane effects (Figure 3). Using the same experimental design as 
in Figure 2, Figure 3 shows that Ca2+ influx was electric field-dependent and statistically significance 
between 7.5 and 10 kV/cm, significantly lower than either rise-fall time pulses in Figure 2. In contrast, 

 under 
these conditions. This clearly shows that effects o
primarily responsible for cell death; increases in intracellular Ca2+ through plasma membranes alone, or 
release from intracellular stores alone, were not responsible for cell death. Figures 2 and 3 also show 
that transient features resulting from pulse rise-fall times have major effects on intracellular structures / 
functions, but not on plasma membranes. Furthermore, fast pulse rise-fall times of nsPEFs are primary 
determinants of intracellular effects. Since there were no decreases in cell viability 24 hours after 
treatment, the results also indicate that for pores in the range of 1.5 nm generated under these 
conditions (see Figure 1), cells were able to repair these pores and had sufficient levels of ATP for 
repair processes at least 24 hours after nsPEF treatment.  

An explanation as to why this pulse waveform has effects on Ca2+ 
further analysis. As shown in Figure 2, the slow rise-fall time does not have as great an effect 
as the fast rise-fall time waveform; rise-fall times (frequency components) appear to be one factor. 
Another factor that likely contributes to differences between the slow rise-fall time waveforms in 
Figures 2B and 3 is the mismatched load presumably contributing to 
pulse in Figure 3. This suggests that intricacies of pulse waveforms can have significant impact on cell 
structures and functions. As others have postulated 55,56], two stimuli are 
required to open the mPTP including a noxious stimuli such as increases in ROS and elevated Ca2+ 
levels. This ultimately results in mitochondrial Ca2+ overload and  
and the available data from this study, it is suggested that the pulse itself, an increase in  
ROS [57], or an effect of the pulse on Ca2+ -dependent structure such as the mPTP complex or a 
component of it, is sufficient to serve as a second hit with elevated Ca2+ as the first (or vice versa). It is 
also known that concentrations of Ca2+ required are highly dependent on the prevailing cellular 
conditions, such as oxidative stress, adenine nucleotide depletion, elevated phosphate concentrations 

58,59]. These results show that there are subtleties about the pulse waveforms that have 

plasma membranes. 
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Figure 3. Ns  (A) N1-S1 HCC cells were loaded 
with Fluo-4 Direct to determine Ca2+ influx (red squares) and with TMRE to determine 

the Experimental Section. The Y-axis indicates the 
percentage of cells with fluorescence for either Fluo-4 or TMRE, which were  determined 
by flow cytometry 10 minutes after nsPEF treatment. In parallel experiments, the percentage 
of viable cells (black triangles) was determined 24 hours after treatment as described in the 
Experimental section. (B) Cells were treated with one 600 ns pulse with a 150 ns slow  
rise-fall time waveform (red line, panel B) with a mismatched load. Statistical differences vs. 
sham control (0 kV/cm): All n = 3; No significance with cell viability or with TMRE; for 
Fluo-4  *p < 0.03. . 

 

2.3. NsPEF-Induced Ca2+ Mobilization and Cell Viability  

Calcium as a second messenger can have  myriad of effects on cell functions. While studies show that 
nsPEFs affect cell plasma membranes and intracellular membranes, what functions are regulated by Ca2+ from 
intracellular and/or extracellular sources in response to nsPEFs? NsPEF-induced Ca2+ release from the ER 
exhibited similar kinetics and appeared to target the same inositol 1,4,5-trisphosphate- and thapsigargin-
sensitive Ca2+ pools in the ER that are activated by the purinergic agonist UTP [24,34]. These receptors 
secondarily initiate capacitative Ca2+ influx through store-operated Ca2+ channels in plasma membranes. This 
led to the concept that nsPEFs could act as a non-ligand agonist and modulate cell functions through 
intracellular signal transduction mechanisms [24,25,36]. This was exemplified by nsPEF-induced mobilization 
of Ca2+ and modulating neutrophil functions [35], activation of human platelets [36], excitation of cardiac 
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myocytes [60] and activation of Ca2+-mediated activation of AMP-activated protein kinase signaling, which 
responds to cellular energy status [61]. A new Ca2+ function is shown by its requirement for nsPEF-induced 

 (Figure 4). 

Figure 4. NsPEF- 2+-dependent. N1-S1 cells were loaded 
with TMRE as indicated in the Experimental section. Cells were then treated with one  
600 ns pulse with a rise-fall time of 15 ns at either 40 or 60 kV/cm or sham treated  
(0 kV/cm). The Y-axis indicates the percentage of cells that exhibited fluorescence for 

treatment in the presence or absence of BAPTA-
symbols indicate treatments that were significantly different (p < 0.05, n = 3) from sham 
treatment (0 kV/cm). There were no significant difference between treatments with EGTA 
and EGTA/BAPTA-AM compared to sham treated controls (0 kV/cm). 

 

Figure 3 showed that even when there were no nsPEF-
effects on plasma membranes, and possibly on intracellular membranes, led to increases in intracellular 
Ca2+ levels. Several observations led to an interest to determine whether there would be a decrease in 

Ca2+. First, nsPEFs induced formation of nanopores in cell 
membranes that increase intracellular Ca2+ levels (see Figure 1). In addition, mitochondria are known to 
participate in intracellular Ca2+ compartmentalization and Ca2+ overload of mitochondria can lead to cell 
death [62,63]. Further, opening the Ca2+- and voltage-dependent mitochondria permeability transition 
(mPTP) causes 64].  

To determine whether nsPEF- Ca2+-dependent, Figure 4 shows 
experiments where N1-S1 HCC cells were preincubated in 
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either EGTA or both EGTA and BAPTA-AM, which chelates extracellular and intracellular Ca2+, 
respectively. Cells were then sham treated or treated with single 600 ns pulses with a rise time of 15 ns 

d 1, 10 and 30 minutes after treatment. Experiments 
with BAPTA-AM alone are not shown because it cannot chelate all Ca2+ coming from both extracellular 
and intracellular sources; values at 40 and 60 kV/cm were not significantly different (p < 0.05) than 
those values in the absence of BAPTA-AM and/or EGTA. Results are shown in Figure 4 for the 10 
minute time point. Both 40 kV/cm and 60 kV/cm induced a rapid, electric field-dependent decrease in 

by another 10 20 % of cells 
30 minutes after treatment. In the presence of EGTA and EGTA & BAPTA-AM, there were no 
significant Ca2+ extinguished the effects of nsPEFs , 
indicating that nsPEF-induced decreases are Ca2+-dependent. Similar results were shown for 
two different Jurkat clones, E6.1 and A3 (data not shown); although some Ca2+-independent loss of 

was observed in Jurkat cells, the loss was significantly Ca2+-dependent. These results have 
significant implications for determining mechanisms for nsPEF effects on mitochondria and for cell 
viability (Figure 3) ected if nsPEFs caused 
nanoporation of inner mitochondria membranes; based on the supra-electroporation hypothesis [20,21]. 
However, nanoporation of inner mitochondria membranes is not expected to be Ca2+-dependent. Thus, 
nsPEFs appear to have effects distinct from nanopore formation. A possible explanation for these 
results is that nsPEF-  complex, a complex 
protein structure spanning the inner and outer mitochondria membranes, or the membrane in which it is 
imbedded. Additional studies are needed to fully address this issue. 

2.4. Possible Cellular Targets and Cell Death Pathways for nsPEFs 

After the initial paper presented evidence that nsPEF affected intracellular structures [29] and 
considering that cell viability was decreased by nsPEFs [22], other studies were designed to investigate 
what effects nsPEFs had on cell death mechanisms. Since nsPEFs were shown to be effective in 
decontamination of bacteria and amelioration of biofouling [65], it was reasoned that nsPEFs could 
eliminate cancer cells by inducing apoptosis, especially given the impact on intracellular structures and 
their functions. As indicated in the Introduction, several studies [9,22 27,30 35,37,38] identified 
several indicators of apoptosis such as caspase activation as well as effects on cell structures including 
phosphatidylserine externalization, Ca2+ release from intracellular stores, DNA damage and dissipation 

linked to cell death and it remained to be determined whether cell death was initiated by direct nsPEF 
effects on these structures or indirect effects as a result of membrane poration and metabolic changes or 
both direct and indirect effects.  

More directed towards studies that are reported here, a series of in vitro studies with HCT116 
human colon carcinoma [25], B16f10 mouse melanoma [26] and mouse E4 squamous carcinoma  
cells [27] demonstrated nsPEFs  induce apoptosis, which is often evaded in cancer cells [1,2].  
In addition, nsPEFs induced apoptosis equally in HCT116p53(+/+) and HCT116p53(-/-) cells, 
suggesting that cell death could occur without p53-mediated responses to DNA damage [25]. However, 
in studies with E4 squamous carcinoma cells [27] and B16f10 cells [26], which did and did not release 



Cells 2013, 2 147 
 

 

cytochrome c, respectively, elements of extrinsic and intrinsic apoptosis pathways were expected as well 
as other cell death mechanisms. To systematically investigate specific nsPEF targets and to determine 
cell death mechanisms, a study was carried out using human Jurkat clones that exhibited deficiencies in  
apoptosis-related proteins [28]. Although it was previously demonstrated that nsPEF-induced Jurkat 
cell death was coincident with cytochrome c release and caspase activation [22], it was not determined 
which initiator caspases were activated, whether a type II cell extrinsic and/or an intrinsic apoptosis 
mechanism was operative, whether cell death was actually dependent on caspase activation, or which 
cellular sites were targets for nsPEFs. Therefore, consideration was given to whether nsPEFs targeted 
one of more of five different cellular components for cell death induction (Figure 5). These components 
were (I) aggregation of the Fas receptor in plasma membranes; (II) permeabilization of plasma 
membranes, which included effects of sodium and Ca2+ influx on other cellular systems; (III) 
permeabilization of the ER, which would release Ca2+ and affect other systems, including calpain 
activation, stress responses and mitochondria function; (IV) permeabilization of the inner mitochondrial 
membrane or opening the mitochondria permeability transition pore (mPTP), which would result in 
dissipation of the ; and/or (V) DNA damage, which could affect other systems. Suspected 
pathways included 1) activation of the death induced signaling complex (DISC) with caspase-8 directly 
to caspase-3 activation as observed in type I cells, 2) activation of DISC with caspase-8-mediated Bid 
cleavage and tBid activation of mitochondria responses as observed in type II cells, 3) activation of 
mitochondria responses for cytochrome c release, apoptosome formation with APAF-1, caspase-9 and 
then caspase-3 activation. This last pathway could be initiated directly at mitochondria or mitochondria 
response to other internal signals such as protein unfolding response and/or DNA/nucleus damage 
signals to mitochondria. 

Figure 5. A model for determining nsPEF effects on cellular targets and apoptosis 
pathways. See text for details. 
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2.5. NsPEFs Do Not Induce Cell Death Through the Extrinsic Apoptosis Pathway in Jurkat Cells 

The first possibility tested whether the extrinsic pathway was activated by nsPEFs. This would cause 
an aggregation of Fas receptors, which are coupled to the DISC, comprising intracellular Fas receptor 
domains, FADD and caspase-8. In practice, the question was asked whether nsPEFs required the DISC 
to induce cell death. Caspase-3/7, -8 and -9 activities were determined in Jurkat clones that were 
wildtype (Wt) or deficient in caspase- -
determined to be time-dependent as well as electric field-dependent (data not shown). Caspase-9 and 
caspase- -8 clone. Caspase-8 was only weakly activated in the Wt clone 

- -8 clone.  
When cell viability was determined for each clone with increasing electric fields, it was determined 

that there were no differences in electric field-dependent decreases in cell viability; cell death in all 
clones exhibited identical electric field dependences (Figure 6). Electric field LD50 values were between 
30 and 40 kV/cm and pulsing at 60 kV/cm resulted in about 10% survival in all three clones. Thus, cell 
death in Jurkat clones treated with nsPEFs appeared to be independent of DISC or other mechanisms 
using FADD or caspase-8. This is in contrast to survival of Fas-
which we reproduced (data not shown). However, Jurkat cell death occurred when caspases were 
inhibited by z-VAD-fmk, which sensitizes cells to caspase-independent cell death pathway(s) with other 
apoptosis stimuli [66,67]. This has been characterized as programmed necrosis [68,69]. This indicates 
that like other apoptotic stimuli, nsPEFs can activate more than one cell death program, possibly 
programmed necrosis or necroptosis in the absence of active caspases.  

Figure 6. NsPEF-induced cell death in Jurkat clones does not require the DISC. Jurkat 
- -8) as well 

as the wildtype clone (A3) were treated with ten 60 ns pulses at 60 kV/cm and assayed for 
cell viability 24 hours after treatment as described in the Experimental section. There were  
no significant differences among clones at any electric field. These data have been 
previously published in a different format [28]. 
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In order to determine more convincingly whether FADD and/or caspase-8 were involved in  
nsPEF-induced apoptosis, cytochrome c release was investigated in the presence and absence of the 
pan-caspase inhibitor z-VAD-fmk -8. If caspase-8 activation, which requires 
FADD for DISC formation, led to cytochrome c release, it should be inhibited by z-VAD-fmk. 
However, the caspase inhibitor had no effect on cytochrome c release with any clone [27]. This argued 
against the possibility that nsPEFs activated the Fas receptor or that any DISC-mediated mechanism 
was involved in activating the type II cell pathway in Jurkat cells. 

2.6. NsPEFs Induce Intrinsic Caspase-Dependent at Lower Electric Fields (20-40 kV/cm) and 
Caspase-Independent Cell Death at Higher Electric Fields in Jurkat Cells 

Overall, these data indicate that nsPEF-induced cell death signals do not appear to pass within the 
typical type I pathway through DISC/caspase-8 to caspase-3 nor travel through the typical type II 
pathway through DISC/caspase-8/ tBid to cytochrome c. This suggested that signals pass within the 
apoptosome pathway. To answer this question, a Jurkat clone was used that was deficient in APAF-1 
by silencing with a siRNA plasmid permanently transfected into Jurkat clone E6.1 [39 41].  

To confirm that APAF-1 was not functional, cells were stimulated with ten 60 ns pulses at 60 kV/cm 
and assayed for caspase-9 and caspase-3 catalytic activity in both vector control and the APAF-1 
deficient clones. The vector control exhibited robust caspase-9 and caspase-3 catalytic activity that 
peaked 6 hours after treatment and the APAF-1 deficient cells had no activity for either caspase (data 
not shown). This confirmed the work of Shawgo et al. [39]. In the vector control, nsPEFs activated 
caspase-3/7 in an electric field-dependent, biphasic manner. There was no caspase-3 activation at  
10 kV/cm, although there were electric field-dependent increases in activity up to 40 kV/cm. However, 
at higher electric fields, caspase-3 activity was no greater then control at 60 kV/cm [28]. 

To determine cell death under these same conditions, cells were analyzed for survival 24 hours after 
treatment with nsPEFs (Figure 7). Cell death in the vector control was electric field-dependent with a 
threshold for cell death at 20 kV/cm, a LD50 between 40 and 50kV/cm and 70% cell death at 60 kV/cm. 

death was between 40 and 50 kV/cm with an electric field LD50 between 50 60 kV/cm. This indicates 
that at these electric fields, nsPEF-induced cell death is APAF-1- and caspase-3-dependent and suggests 
that cell death is induced at least in part by apoptosis at electric fields between 10 and 40 kV/cm. 
However, at 60 kV/cm when caspase-3 activity was similar to control [28], cell death was  
not significantly  

-independent.  
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Figure 7. NsPEF-induced cell death is caspase-dependent at lower electric fields  
(20 40 kV/cm) and caspase-independent at at in Jurkat 
cells: A Jurkat clone deficient in APAF-1 and its vector control were tested with ten 60 ns 
pulses with increasing electric fields. Cell viability was determined 24 hours later - as 
described in the Experimental section. The same results were obtained with the MTS assay. 
For statistical significance: + p< 0.05 vs. sham control (0 kV/cm); # p< 0.05 vector control 
clone vs. sh-APAF-1 clone; (n = 3). These data have been previously published in a different 
format [28]. 

 

2.7. NsPEFs Activate Bid but Do Not Alter Levels of Other Endogenous Bcl-2 Family Proteins 

Some reports have indicated that nsPEFs increase or decrease the levels of endogenous Bcl-2 family 
proteins [25,27,70]. To determine whether nsPEFs affected pro- or anti-apoptotic proteins in human 
Jurkat clones, immunoblots were analyzed when cells were treated with ten 60 ns pulses at 60 kV/cm 
using antibodies against pro-apoptotic Bak (Bax is not expressed in Jurkat cells), anti-apoptotic Bcl-2 
and Bcl-xl (Figure 8A) and anti-apoptotic BH3 only proteins Puma and Noxa (Figure 8B). In addition, 
since Bid is downstream of FADD and caspase- -8 clones were analyzed for Bid 
cleavage (Figure 8C, D). The only protein level that changed in response to this lethal nsPEF condition 
was t-Bid. Within the first 6 hours after treatment, Bak levels did not change nor did Bcl-2 levels, which 
was expressed at relatively low levels. Bcl-xl, which was highly expressed, did not change nor did levels 
of Puma, which were expressed at low levels. Noxa levels were not detected. The results with Puma 
and Noxa, which are expressed in response to direct DNA damage [71], suggest that DNA damage may 
not be a major response to nsPEFs in Jurkat cells. Figure 8C shows a typical time course immunoblot 
for Bid and t-Bid and Figure 8D shows results from a series of immunoblot experiments. T-Bid was not 
present in sham-treated control cells, but increased in a time-dependent manner when cells were 

cleavage reaching a peak around 3 hours and decreasing by 6 hours, while the Wt continued to increase 
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-8 clone exhibited the weakest activation of t-Bid, but was 
nevertheless present.  

Figure 8. NsPEFs induce Bid cleavage in a time-dependent manner in Jurkat cells. Cells 
were sham treated or exposed to ten 60 ns pulse at 60 kV/cm. Samples were prepared for 

separated by SDS-PAGE, transferred to PVDF membranes and probed with antibodies 
against various antigens (in kDa) A). Bak (25), Bcl-2 (28), Bcl-xl (30) and Actin (45) in the 
Wt clone; B). Puma (23), Noxa (15) and Actin (45) in the Wt clone; C). Bid (22), which 
also recognized t-Bid (15), and Actin (35) in three indicated clones. D). Bid and t-Bid from 

- -8) were 
quantified using Odyssey infrared imager, normalized to total Bid levels in control and 
expressed as the ratio of fluorescence of t-Bid to fluorescence of Actin, a loading control. 
Values, mean ± SE (n=3) from experiments like that shown in C. 

 

2.8. Bid Cleavage Is Sensitive to Inhibition of Caspases and Calpains in E4 Squamous Carcinoma and 
Jurkat Clones 

In nsPEF-induced cell death in E4 squamous cell carcinoma cells, Bid cleavage is only partially 
inhibited by EGTA indicating a Ca2+-dependent component as well as a Ca2+-independent  
component [27]. Unlike Jurkat cells, cytochrome c release in E4 cells was caspase-dependent  
(~50% 60%) as well as caspase-independent (~50%). This clearly demonstrated at least two different 
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mechanisms for cytochrome c release. In E4 cells, it was hypothesized that the caspase-independent 
mechanism was due to calpain activity, which has been demonstrated [72,73]. Using the calpain 
substrate Ac-LLY-AFC, it was shown that Ca2+-dependent and some Ca2+-independent calpain activity 
was indeed present [27]. Calpain could play a role in apoptosis through cleavage of Bid to  
t-Bid, which would then lead to cytochrome c release. Since caspase activity was shown to be  
Ca2+-independent [26], the Ca2+-dependency of Bid cleavage, assumed to be due to calpain activity, was 
tested in the absence of caspase activity [27] These studies indicated that 60 70% of the Ca2+ 
contributing to Bid cleavage comes from extracellular sources through plasma membranes and  
30% 40% comes from intracellular stores. 

Since Bid cleavage, which is downstream of FADD and caspase-8, occurred in all clones, it was of 
interest to determine what was responsible for t-Bid formation in the absence of DISC. Since Bid is 
known to be activated not only by caspases, but also by calpains [27,72,73], it was determined whether 
activation of Bid was sensitive to blockade by protease inhibitors. Figure 9 shows an experiment that 
analyzed formation of t-Bid -8 exhibited lowest levels of t-Bid, 
quantification was not determined. When calpains were inhibited by calpeptin and z-LLY-fmk  
40% 60% and 25%
respectively, suggesting that calpains were partially responsible for Bid cleavage. Caspase inhibition by 
the pan caspase inhibitor z-VAD-fmk inhibited Bid cleavage by 60% 80%. These results indicate that 
nsPEFs activate Bid by cleavage with both calpains and caspases. In other experiments, the calpain 
inhibitors calpeptin and PD150606 had no effect on cytochrome c release (data not shown). Therefore, 
unlike results from E4 cells [27], t-Bid induced by nsPEFs in Jurkat cells does not appear to be effective 
for cytochrome c release in response to activation by either caspases or calpains. Caspase cleavage of 
Bid must be downstream of cytochrome c, presumably by caspase-3 after activation by caspase-9. 

Figure 9. NsPEFs induce caspase- and calpain-dependent Bid cleavage in Jurkat cells. 
Jurkat A3 wildtype (dark bars) and a Jurkat clone  (light bars) 
were pre-incubated for 30 min in the presence of calpeptin (20 M), z-LLY-fmk (50 M), 
and z-VAD-fmk (50 M) prior to nsPEF treatment with ten 60 ns pulses at 60 kV/cm or 
sham treated. Cell lysates were prepared 3 hours post pulse, separated by SDS-PAGE like 
experiments shown in Figure 8C and Bid and t-Bid were quantified using Odyssey infrared 
imager and normalized to total Bid levels in control. Results were plotted as the percent 
inhibition of Bid cleavage in the absence of inhibitors. Values represent a single experiment. 
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2.9. Hypothesized Cell Targets and Cell Death Pathways Activated by nsPEFs  

Figure 10 gives an overview of our present understanding of cell death mechanisms induced by 
nsPEFs, at least in Jurkat cells. The dark green elements and arrows show primary effects and the light 
green elements and arrows show other events that are involved as cells die in response to nsPEFs. The 
mitochondria are primary targets (Figure 3) are due to time- and Ca2+-dependent 
effects possibly on the mPTP or other Ca2+ -dependent protein. However, additional studies are 
necessary to confirm this. For example, can overexpression of Bcl-2 or Bcl-xl or inhibition of mPTP 
prevent nsPEF- ? NsPEFs could also open mitochondria apoptosis-inducing 
channels (MACs) [74] and/or voltage-dependent anion channels (VDAC) [75]. They could also induce 
mitochondria Ca2+ overload [76] or promote death-induced bystander effects of Bak (or Bax) [77].  

Figure 10. A model for nsPEF-induced cell death in human Jurkat cells. 

 
 
The influx of Ca2+ most likely also leads to activation of calpain, which cleaves Bid (Figure 9), yet 

this does not seem to play a role in cytochrome c release because cytochrome c release is not affected 
by calpain inhibitors [28]. Thus, nsPEFs , especially with fast rise-fall times 
(Figure 2), a release of cytochrome c within 1.5 3 hours after treatment [22,28] and an activation of 
caspase-9 and -3 [28]. This occurs through formation of the apoptosome, clearly indicating activation of 
a well-characterized, mitochondria-, APAF-1-mediated apoptosis pathway. In addition, at high electric 
fields, nsPEF induced caspase-independent cell death (Figure 7). In these studies, caspases appear to 
cleave Bid (Figure 8C), but this does not lead to cytochrome c release [28]. Although DNA damage by 
double strand breaks was present in this Jurkat cell model as determined by Histone 2AX 
phosphorylation (data not shown), its role in cell death has not yet been clearly determined.  
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NsPEF-induced DNA damage has been demonstrated in a number of cell types by a number of assays  
in vitro [9,30,31,70] and in vivo [12,13]. In the Jurkat model here, the presence of DNA double strand 
breaks did not induce increases in Puma or Noxa (Figure 8B), suggesting this was not a major 
mechanism to activate intrinsic apoptosis in response to nsPEF-induced DNA damage. While such 
damage could lead to cell death, cell death has not been shown to be DNA damage- dependent like cell 

or on caspases shown here. Aggregation 
or other possible mechanisms for activating Fas receptors do not appear to play a role in nsPEF-induced 
cell death (Figure 6); cytochrome c release was not affected by inhibition of caspases with  
z-VAD-fmk [28], which would be required if cell death signals were initiated through formation of the 
DISC. Effects of nsPEFs on intracellular Ca2+ stores or on influx of Ca2+ alone were not responsible for 
cell death, since Ca2+ influx without effects 
Effects of nsPEFs on the plasma membrane were evident by the influx of Ca2+. The presence of 
nanopores in the plasma membrane was observed when influx of Ca2+ could be seen at lower electric 
fields than influx of propidium iodide (Figure 1). 

One of the frequently asked questions about using nsPEFs for cancer treatments is a concern for 
specificity towards cancer cells while sparing normal, non-cancerous cells. While some cells are more 
vulnerable to nsPEF cytotoxicity than other cells [30,78 80], it remains to be seen if such differences 
are clinically relevant. A recent report suggesting this evaluated paired tumor and normal cell lines 
obtained from ATCC from the same individual, using pulses with durations of 30 ns and electric field 
strengths at 30 kV/cm and repetition rates of 50 Hz [80]. The study indicated that there were tendencies 
for these pulses to be more cytotoxic to the human basal cell carcinoma (BCC, TE 354.T) cell line 
compared to its normal sister cell line (TE 353.SK). The BCC cells were less able to recover and 
exhibited more active caspases than normal sister TE cells. The authors suggest that preferential killing 
of tumor cells may be less injurious to normal skin cells surrounding BCC tumors. While these results 
are interesting, there still remains the question of how cancer cells compare to normal cells that are not 
in continuous culture. Future clinical trials treating BCC and other skin cancers will provide answers to 
this cancer vs. normal specificity for nsPEF cytotoxicity. Studies with nsPEF-treated ectopic B16f10 
melanoma tumors showed some transient skin damage, which recovered without scarring [10]. This 
suggests that nsPEF treatment of skin lesions in patients will heal without scarring. An unpublished 
clinical trial on human skin provides additional data for the absence of scarring as well as skin 
discoloration in response to nsPEF treatments. 

3. Experimental Section  

3.1. Cell Culture  

Wild type Jurkat T-lymphocytes (clone A3) and mutant cell lines deficient for FADD (clone I 2.1) or 
caspase-8 (clone I 9.2) were purchased from ATCC (Manassas, VA). The clone with APAF-1 silenced 
( -1) and its vector control (in Jurkat clone E6.1) were generous gifts from Dr. John Robertson, 
Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 
Kansas City, Kansas. These clones were grown and cultured as previously described [39 41]. N1-S1 
HCC cells were purchased from ATCC and cultured as previous described [54]. 
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3.2. Treatment of Cells with nsPEFs 

Cells were treated in cuvettes with nsPEFs as previously described [22,24 28]. Jurkat cells were 
exposed with or without ten pulses with durations of 60 ns (rise-fall times ~5 ns) and electric field 
strengths ranging from 0 to 60 kV/cm using pulse generators as previously described [22,24 28].  
N1-S1 cells were exposed to single 600 ns pulses with electric fields up to 80 kV/cm. Pulse rise-fall 
times were 15 ns or 150 ns with waveforms [54]. 

3.3. Determination of Propidium Iodide (PI) Uptake 

Cells were exposed to nsPEFs, PI was added to a final concentration of 2.5 mL immediately after 
pulsing and cell are analyzed by flow cytometry 10 minutes after nsPEF treatment. 

3.4. Flow Cytometry Analysis of Ca2+  

The levels of intracellular Ca2+ were determined using Fluo-4 Direct (Molecular Probes, Eugene, 
Oregon), which includes a proprietary formulation with probenecid to prevent transport of the 
fluorophore from the cell
ester (TMRE) (Immunochemistry Technologies LLC, Bloomington, MN) as previously described [27]. 
Cells were preincubated with Fluo-4 Direct for 60 min at 37 °C. During the last 15 min of Fluo-4 Direct 
incubation, 200 nM TMRE was added and incubated for 15 min. Cells were washed, resuspended in 
culture media, exposed to nsPEFs either a fast (15 ns) or slow (150 ns) rise-fall time and electric fields 
ranging from 0 80 kV/cm. Flow cytometric analysis was performed 1, 10 or 30 minutes after treatment 
with nsPEFs (ten minutes times are shown). Analysis by flow cytometry was with Becton Dickinson 
FacsAria flow cytometer. To determine Ca2+, cells were 
preincubated with or without 20 M BAPTA-AM and/or 5 mM EGTA for 30 minutes followed by 
nsPEF treatment.  

3.5. Determination of Cell Viability  

Cell viability was determined 24 hours after treatment with 
protocol in the CellTiter-Glo Luminescent Cell Viability Assay Kit (Promega, Madison, WI). The 
luminescent signals for ATP levels were directly proportional to cell numbers. Luminescence was 
analyzed in luminometer (Gemini XPS, Molecular Devices, CA). Identical results were determined with 
the MTS assay.  

3.6. Flow Cytometry Analysis of Cytochrome c Release 

Cytochrome c was assessed using the Innocyte Flow Cytometric Cytochrome c Release assay 
(Calbiochem) as previously described [27].  

3.7. Determination of Bcl-2 Family Proteins by Immunoblot Analysis 

At time points after nsPEF treatments, sham (control) and nsPEFs treated cells were collected and 
washed with cold PBS once and lysed in RIPA buffer (50mM Tris-HCL, 150mM NaCl, 1% NP-40, 
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0.5% sodium deoxycholate, 0.1% SDS) (Boston BioProducts) for 30 min at 4°C. The lysate were 
centrifuged at 14,000 rpm for 20 min at 4 °C and the protein content in supernatants was measured 
using BCA assay kit (Pierce). Equal amounts of protein (50 -polyacrylamide 

-Rad), transferred to PVDF membranes and blotted with primary 
antibodies to Bid/t-Bid (Cell signaling Technology, MA), Bcl-2 (mouse polyclonal, Santa Cruz 
Biotechnology), Bcl-xl (rabbit monoclonal, Cell Signaling Technology), Bak (rabbit polyclonal, Cell 
Signaling), Puma (rabbit polyclonal, Cell Signaling) and Noxa (rabbit polyclonal, Abcam) followed by 
IRDye 680-conjugated secondary antibody (LI-COR Biosciences) in blocking buffer for 1hour.  
Protein antibody complexes were quantified on an Odyssey Infrared Imaging System (LI-COR 

-Actin (1:1000; Cell signaling Technology) was used as a loading control. When 
included, the pan caspase inhibitor z-VAD- tors z-LLY-

-incubated for 20 minutes before treatment.  

4. Conclusions  

NsPEFs affect multiple cell targets including plasma membranes, membranes of intracellular Ca2+ 
stores such as ER, mitochondria and DNA. Based on studies presented here and under these conditions, 
Ca2+-dependent dissipation of  appears to most closely correlate with loss of cell viability. When 
intracellular Ca2+ urs. 
When Ca2+ was absent  in N1-S1 HCC or Jurkat clones A3 
and E6.1. However, based on the observation that permeabilization effects on plasma membranes for 
Ca2+ influx occur at lower electric fields (~10 kV/cm) Ca2+ will 
always be present when nsPEFs dissipate Ca2+-dependent 
suggests that effects are likely to be on Ca2+-dependent protein(s) such as the mPTP complexes than on 
nanoporation of the inner mitochondria membrane; however, this has not been shown directly. 
Nevertheless, such a result suggests that nsPEFs can have effects on protein structures as well as on cell 
membranes. This presents new paradigms for analyzing effects of nsPEFs on cell structures and raises 
new questions about how electric fields interact with lipids and amino acids to affect cell functions. 

The most likely effect of nsPEF-induced Ca2+-dependent d -dependent 
cell death, which occurs at lower electric fields as well as caspase-independent cell death at higher 
electric fields. cytochrome c release causes 
formation of the apoptosome for activation of caspases -9 and -3, which induces caspase-dependent cell 

-independent cell death in other cells. 
Because cell death can be caspase-independent, nsPEFs can bypass oncogenic mechanisms the evade 
apoptosis by blocking formation of the DISC or the apoptosome. This gives explanations for the 
efficacy of nsPEF for skin cancers [10 12,70,81 83] and other cancers [9,13,83] in vivo. 
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