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Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA, 3School of Earth and Environmental
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Abstract Natural climate variations in the United States wind resource are assessed by using
cyclostationary empirical orthogonal functions (CSEOFs) to decompose wind reanalysis data. Compared to
approaches that average climate signals or assume stationarity of the wind resource on interannual time
scales, the CSEOF analysis isolates variability associated with specific climate oscillations, as well as their
modulation from year to year. Contributions to wind speed variability from the modulated annual cycle
(MAC) and the El Niño-Southern Oscillation (ENSO) are quantified, and information provided by the CSEOF
analysis further allows the spatial variability of these effects to be determined. The impacts of the MAC and
ENSO on the wind resource are calculated at existing wind turbine locations in the United States, revealing
variations in the wind speed of up to 30% at individual sites. The results presented here have important
implications for predictions of wind plant power output and siting.

1. Introduction

Between 2009 and 2013, wind turbine construction accounted for roughly 30% of new energy capacity
installed in the United States, and energy produced from wind now comprises approximately 3–4% of the
United States energy portfolio [American Wind Energy Association, 2013]. Although the total amount of avail-
able wind resource is of substantial concern when siting new wind plants, understanding the temporal
variability of this resource is of nearly equal importance, particularly for financing, insurance, and predic-
tions of power output. Changes in the temporal variability at different locations should also be taken into
account; this information is critical for understanding the extent to which wind measurements at one loca-
tion can be applied at another location, as well as for siting wind plants such that the total power production
in a particular region is not susceptible to a single climatic event, such as a strong El Niño. In the present
study, cyclostationary empirical orthogonal functions (CSEOFs) are, for the first time, used to assess the
variability of the wind resource on annual to interannual (i.e., multiyear) time scales at all locations in the
United States.

Much of the current understanding of interannual wind resource variability is based on relatively short
duration wind speed measurements at existing and prospective wind plant sites, or on data from numer-
ical weather prediction (NWP) and global and regional climate models (GCMs and RCMs, respectively).
In general, however, 1 or 2 years of on-site wind speed measurements do not provide a sufficiently long
data record to accurately predict wind plant production at a given location [Ramsdell et al., 1980; Gerdes
and Strack, 1999; Lackner et al., 2008], and some studies have suggested that at least 10 years of data
are necessary [Nfaoui et al., 1998; Landberg et al., 2003]. Typically, records of such length do not exist for
prospective sites.

Measure-correlate-predict (MCP) methods offer a practical approach to dealing with short data records,
and they have consequently become prevalent in the wind industry [Carta and Velázquez, 2011; Carta
et al., 2013; Bechrakis et al., 2004; Landberg et al., 2003]. These methods attempt to correlate short-term
data records at candidate sites with data available from nearby weather stations, which have much
longer records. These correlations are then used to generate long-term hindcasts of wind speed data at
candidate sites.

A major assumption underlying MCP methods is that wind speed data are statistically stationary through-
out the lifetime of the wind project [Carta et al., 2013; Brower, 2006] and that the historical distribution of
wind speeds will therefore propagate unchanged into the future. This assumption is questionable since the
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duration of most on-site wind data records is short relative to the period of low-frequency climate oscil-
lations such as the El Niño-Southern Oscillation (ENSO). It is thus reasonable to expect that wind speed
statistics may undergo unanticipated shifts or oscillations during the lifetime of a wind project. It has been
shown [Harper, 2005], for example, that strong El Niño events correspond to noticeable reductions in the
power production of four wind farms in South Dakota. MCP methods also assume a statistical correlation
between the wind resource at prospective sites and nearby weather stations. Recently, however, it was
found (M. C. Brower et al., A study of wind speed variability using global reanalysis data, https://www.
awstruepower.com/assets/A-Study-of-Wind-Speed-Variability-Using-Global-Reanalysis-Data2.pdf, 2013)
that wind speed variability can change significantly at locations separated by relatively short distances.

Wind resource assessments using NWP, RCMs, GCMs, and reanalysis data provide a possible solution to the
shortcomings associated with MCP. Such data have been used with some success for the study of long-term
variations in the wind resource over the United States [Breslow and Sailor, 2002; Pryor et al., 2009], parts of
Europe [Pryor et al., 2005; Cradden et al., 2014], and the entire globe [Archer and Jacobson, 2013]. While these
studies have provided valuable insights, however, identifying the effects of long-period natural internal cli-
mate oscillations such as ENSO or the modulation of the annual cycle requires a data decomposition that
allows specific climate signals to be isolated. Interannual variations of the annual cycle, in particular, arise
since incident solar radiation on the Earth is not purely periodic and exhibits longer period fluctuations [Wu
et al., 2008; Meehl et al., 2009]. It is not uncommon, for example, to experience an unusually cool summer
followed by a warmer than normal winter and another cool summer, which would constitute a weaker than
normal annual cycle. The existence of a modulated annual cycle (MAC) exhibiting interannual variations in
amplitude has been recognized in other climate studies [Kim and Chung, 2001; Wu et al., 2008] and can have
a substantial impact on wind resource availability beyond even the well-understood seasonal variations.

CSEOFs provide an ideal framework for determining the temporal and spatial variabilities of the wind
resource due to the MAC, ENSO, and other climate oscillations. CSEOFs have been used previously to exam-
ine spatial and temporal variations in sea surface height on interannual time scales [Hamlington et al., 2011,
2012, 2014], and in the present study they are used to decompose wind reanalysis data. Using the CSEOF
analysis, the maximum and minimum combined effects of the MAC and ENSO are quantified, and the impli-
cations of these extrema for the available wind resource are identified at existing wind turbine locations in
the United States. This analysis provides a comprehensive picture of the spatial variability of MAC and ENSO
effects on the United States wind resource, and the future role of CSEOFs in predictions of wind plant power
output and siting is outlined.

2. Cyclostationary Empirical Orthogonal Function Analysis
In order to extract the variability associated with the MAC and ENSO in the United States, a CSEOF analysis
[Kim et al., 1996; Kim and North, 1997] is applied to monthly averaged wind speed data. The CSEOF method
decomposes space-time data into a series of modes composed of a spatial component (known hereafter as
the loading vector (LV)) and a corresponding temporal component (known as the principal component time
series (PCTS)). The LVs are spatial maps with physical dimensions (m/s in the present analysis) that, when
multiplied by the nondimensional PCTS, give different CSEOF modes for the wind speed distribution. The
primary difference between the CSEOF technique when compared to more traditional eigenvalue analy-
ses is that CSEOF LV maps are time varying over a specified nested period. That is, the LVs are spatial maps
which capture the temporal evolution related to an inherent physical process, while the corresponding PCTS
explains the amplitude of the physical process through time. Larger values of the PCTS indicate increased
strength of the physical process at a particular time, while decreased values indicate a weakening of the
process. CSEOFs thus provide significant advantages when compared to the more widely used empirical
orthogonal functions (EOF), since they avoid the assumption of stationarity in the decomposed spatial pat-
terns and eliminate or reduce the mixing of physical signals across several modes, as frequently occurs in
analyses based on EOFs.

The nested period of the CSEOF analysis is selected a priori, with the choice of period usually based on phys-
ical understanding or intuition regarding the data to be studied. When studying the annual signal known
to be present in many geophysical data sets, for instance, a nested period of 1 year is chosen. Each of the
resulting LVs then consists of 12 spatial maps (when using monthly data) that describe the physical evolu-
tion of the annual cycle throughout the year. The corresponding PCTS describes the amplitude change, or
strength, of the annual cycle from year to year. Additional, much more extensive details on the algorithms
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and numerical procedures underlying CSEOF analyses are provided in Kim et al. [1996], Kim and North [1997],
and Hamlington et al. [2011].

In recent years, CSEOFs have been increasingly used for the study of climate oscillations and physical
processes in the Earth system across a range of time scales and climate variables [Kim and Chung, 2001;
Hamlington et al., 2011, 2012, 2014; Yeo and Kim, 2014]. In such studies, the PCTS from the CSEOF analy-
sis is often compared with climatic indices such as the Multivariate ENSO Index (MEI) in order to identify
the contribution of known climate oscillations to the temporal variability of a particular physical quantity.
A similar approach is taken in the present study, where the quantity examined is the wind speed and LV
maps provided by the analysis are used to determine the spatial distribution of interannual variations in the
wind resource.

3. CSEOF Decomposition of Wind Speed

In the present study, the CSEOF analysis is performed on the NCEP North American Regional Reanalysis
(NARR) monthly wind speed data set [Mesinger et al., 2006], which covers the time period from 1979 to
2014. Wind speeds are analyzed at a height of 80 m above the Earth surface, which is a standard hub height
for modern horizontal axis wind turbines. Data in the NARR data set are provided at specified geopoten-
tial pressure levels and have been interpolated to 80 m. While providing a shorter data record than other
reanalysis products, the spatial resolution (roughly 0.5◦) of this data set is relatively high.

A 1 year nested period is used for the CSEOF analysis. The 1 year nested period has been selected to target
the MAC, a primary signal of interest in this study. In previous studies, a 1 year nested period has also been
shown to be suitable and used to extract the variability associated with ENSO [e.g., Kim and Chung, 2001;
Hamlington et al., 2011]. While a 2 year nested period may be more appropriate for capturing the biennial
oscillation from warm to cold phase in addition to the lower frequency variability of ENSO (see Yeo and Kim
[2014], for example), the 1 year nested period coupled with a simple CSEOF regression technique (discussed
in more detail below) is appropriate for capturing the ENSO-related wind speed variability over the United
States. Prior to performing the CSEOF decomposition, wind speed anomalies are calculated by removing the
mean and linear trends from each point in space. As a result, the subsequent CSEOF modes represent depar-
tures from the mean field; negative values in the CSEOF modes represent reductions in the wind speed
relative to the mean, while positive values represent increases relative to the mean.

The LVs and PCTS for the first mode resulting from the wind speed anomaly CSEOF decomposition are
shown in Figure 1. This mode describes over 50% of the variability in the data set, as determined by the
first eigenvalue of the CSEOF decomposition. Following the analysis in Kim and Chung [2001] and Wu et al.
[2008], this mode represents the MAC since the PCTS in Figure 1 (bottom row) is strictly positive, thus indi-
cating that the physical period of the first-mode signal is fully described by the temporal variation of the
12 LV maps contained within the 1 year, or annual, nesting. A simple and intuitive justification for this
conclusion is provided, for example, through consideration of the hypothetical surface temperature: with
a 1 year nested period, the temperature transition from winter to summer and back to winter would
be captured in the LVs, but if the PCTS were to change sign, this would imply that winter and summer
had “reversed” their identities. The strictly positive nature of the PCTS thus ensures that the LV describes
variability with a 1 year period. In Figure 1, the LV maps describing the spatial patterns of the MAC in wind
speed anomaly are shown in the top and middle rows (averaged monthly according to the corresponding
labels in order to produce one map for each season), while the bottom row shows the PCTS describing the
amplitude modulation of the annual cycle from year to year. As further evidence that this mode represents
the MAC, the PCTS and LVs can be recombined, and by computing the mean over the region of interest, the
1 year period of the signal becomes clear (see Figure S1 in the supporting information).

The LV maps in Figure 1 show that, for much of the country, wind speeds are highest in the winter when the
poleward temperature and pressure gradients are strongest, and that the lowest wind speeds occur during
the summer. Examining the spatial patterns further, the highest wind speeds resulting from the annual cycle
occur during the winter in the northwestern United States and extend down through the Rocky Mountain
region. In general, the LV maps obtained from the CSEOF analysis for the first (i.e., MAC) mode are consistent
with results from studies performed at specific sites [e.g., Klink, 1999], thus providing additional verification
that the first mode is related to the annual cycle.
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Figure 1. Mode 1 of the CSEOF decomposition, explaining the MAC, after removing the long-term trend for the NARR near-surface wind speed data set so that
the CSEOF analysis is performed on the wind speed anomaly. (top and middle rows) LVs (units of m/s, averaged monthly according to the labels to produce one
map for each season) and (bottom row) PCTS (dimensionless), representing the interannual amplitude modulation of the annual cycle, are shown.

The CSEOF analysis further indicates how the strength of the annual cycle varies from year to year. The PCTS
in Figure 1 (bottom row) shows that the strength of the annual cycle in the United States can differ by over
25%. Most notably, the strength of the annual cycle from 2005 to 2006 decreased by approximately 30%
which, when coupled with the LV maps in Figure 1 (top and middle rows), represents a significant change in
the wind resource availability for many areas of the country.

In prior studies of sea level or sea surface temperature [Hamlington et al., 2011, 2012], the second mode
of the CSEOF decomposition was generally found to describe ENSO-related variability. In the CSEOF wind
speed anomaly decomposition performed here, the second mode describes 5% of the variance in the data
set. As a first step in determining if the mode is related to ENSO, the second-mode PCTS is correlated with
the MEI [Wolter and Timlin, 2011], giving a correlation coefficient of 0.58 over the entire 35 year data record.
As discussed in Yeo and Kim [2014], however, a longer data record is typically needed to fully capture the
ENSO variability with a single mode.

In order to alleviate some of the challenges posed by the relatively short data record studied here, a simple
CSEOF regression technique (described in more detail in Hamlington et al. [2012] and used in recent studies
such as Yeo and Kim [2014]) is used to reduce mode mixing and improve the representation of ENSO vari-
ability by a single mode. The PCTS from the CSEOF decomposition of the wind speed anomaly is regressed
onto the MEI to obtain a set of regression coefficients, one for each of the modes used in the regression. The
first 18 modes are used (excluding the MAC mode) corresponding to a little less than 40% of the variance
in the original data. The number of modes used is determined based on overfitting criteria and a simple
F test. These regression coefficients are then multiplied by each corresponding LV obtained from the wind
speed anomaly CSEOF decomposition prior to the regression (further details are provided in the support-
ing information). This creates a single wind speed anomaly LV with temporal evolutions described by the
MEI. That is, the regression technique is used to create a LV with an accompanying PCTS that corresponds to
the MEI. The resulting CSEOF mode is shown in Figure 2, with the top and middle rows providing seasonal
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Figure 2. Regressed CSEOF mode of the near-surface wind speed anomaly data set representing the variability associated with ENSO. (top and middle rows) LVs
(units of m/s averaged monthly according to the labels to produce one map for each season) and (bottom row) PCTS (dimensionless) are shown. The Multivariate
ENSO Index (MEI; red) is plotted with the PCTS (blue) to demonstrate the relationship between the mode and ENSO. The LV maps depict the positive phase
of ENSO.

spatial patterns describing ENSO-related wind speed variations, and the bottom row showing the PCTS and
the MEI.

The LV maps shown in Figure 2 indicate that during an El Niño event (corresponding to positive values of
the PCTS), wind speed anomalies obtained by multiplying the PCTS and LVs are strongly negative in a large
portion of the country during the winter and spring seasons, particularly through the western Great Plains
and up through the Ohio River Valley. This is, in turn, indicative of a suppression of the wind speed in these
regions during an El Niño event. Conversely, during a La Niña event (corresponding to negative values of
the PCTS), the opposite effect is observed, with a positive wind speed anomaly and increased wind speeds
through much of the country during the winter and spring. The effect of ENSO on the wind speed over
the continental United States is smaller yet still significant (roughly 1 m/s in some regions) in the summer
and fall.

Previous studies have established that ENSO is teleconnected to storm tracks over North America, partic-
ularly during the winter and spring [Horel and Wallace, 1981; Wallace and Gutzler, 1981]. Enloe et al. [2004]
extended these studies by examining the impact of ENSO on peak wind gusts at specific locations across
the United States and were able to relate the shift in storm tracks to changes in peak wind gusts. During an
El Niño event, the storm track is shifted to the south and flattened. Following the discussion in Enloe et al.
[2004], this leads to decreased winds for much of the central and northern United States, as can also be
seen in the spatial patterns in Figure 2. Agreeing with the analysis in Enloe et al. [2004], the opposite effect
occurs during a La Niña event. St. George and Wolfe [2009] also found that El Niño reduces winter winds in
the southern Canadian Prairies, consistent with the results shown here. Once again, therefore, the LVs and
PCTS in Figure 2 are consistent with the relatively limited observations of ENSO-related variability from prior
studies, while at the same time providing more comprehensive coverage of this variability over the entire
United States.
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Figure 3. Maximum percentage increase and decrease in the wind speed anomaly relative to the long-term mean for the (a and c) MAC (increase and decrease,
respectively) and (b and d) ENSO (increase and decrease, respectively), as given by the modes shown in Figures 1 and 2.

4. Discussion and Conclusions

With the first and the regression-reconstructed second CSEOF modes representing the MAC- and
ENSO-related wind speed variabilities, it is possible to begin an assessment of the effects of climatic oscilla-
tions on the wind resource across the United States. To understand the range of potential impacts resulting
from MAC and ENSO variabilities, the maximum percentage increase and decrease in the wind speed rel-
ative to the long-term mean is computed. Figure 3 shows the largest percentage increase and decrease
observed in the 35 year record relative to the mean wind speed for the MAC and ENSO. The MAC can
cause changes in the wind speed (both increasing and decreasing) greater than 40%, with the western
United States particularly affected. By examining the areas of maximum variability in Figure 2, the region
of increased wind speed in the Great Plains shown in Figure 3b corresponds to the cold phase of ENSO (i.e.,
La Niña). In other words, when the PCTS is negative indicating a La Niña, the contribution to wind speed in
the Great Plains that is negative in the winter LV maps becomes positive. Similarly, comparison with Figure 2
indicates that the substantial suppression of wind speed in the Great Plains shown in Figure 3d corresponds
to the warm phase of ENSO (i.e., El Niño). The increase in wind resource off the northwestern coast of the
United States, shown in Figure 3b, is connected with the warm phase of ENSO using similar reasoning.

From the maps shown in Figure 3, the effects of the MAC and ENSO can be determined at specific wind
turbine locations in the United States. Figure 4a shows the locations of more than 34,000 onshore wind tur-
bines with hub heights of at least 50 m, as provided by the United States Geological Survey [Diffendorfer
et al., 2014]. The maps of spatial variability in Figure 3 are subsampled at each of these locations to pro-
duce histograms of the maximum percentage increase and decrease in wind speed resulting from the MAC
(Figure 4b), ENSO (Figure 4c), and the combination of the two modes (Figure 4d). While active wind plants
are generally not located in the areas of highest variability associated with the MAC and ENSO, the wind
speed percentage increase and decrease approaches 30% for the MAC and 20% for ENSO, which is signifi-
cant when considering the long-term impact on the availability of wind resources. It should be noted that
the wind speed histograms in Figure 4 are calculated without regard to the power output of specific tur-
bines (i.e., 50 kW turbines are treated in the same way as 1.5 MW turbines). In the future, these histograms
may be weighted by the capacities of the individual turbines or even by the expected output calculated
using turbine power curves.

Maps such as those in Figure 3 and statistics such as those in Figure 4 can substantially aid in the under-
standing and prediction of uncertainty, variability, and total power output of current and future United
States wind energy capacity. In addition to maps of maximum percentage increase and decrease, the stan-
dard deviation of the wind speed can also be computed, providing a direct measure of the uncertainty at a
particular wind site over interannual time scales. Moreover, using the CSEOF analysis this uncertainty can be
attributed to particular climate signals such as the MAC or ENSO.

HAMLINGTON ET AL. ©2014. American Geophysical Union. All Rights Reserved. 150



Geophysical Research Letters 10.1002/2014GL062370

0 5 10 15 20 25 30 35 40
Percentage Change

0 5 10 15 20 25 30 35 40
Percentage Change

 Increase
 Decrease

0 5 10 15 20 25 30 35 40
0
2
4
6
8

10
12
14
16
18
20

Percentage Change

F
re

q
u

en
cy

 (
%

)

0
2
4
6
8

10
12
14
16
18
20

0
2
4
6
8

10
12
14
16
18
20

F
re

q
u

en
cy

 (
%

)

 Increase
 Decrease

230 240 250 260 270 280 290

25

30

35

40

45

50  Increase
 DecreaseA B 

C D 

Figure 4. Maximum percentage increase and decrease in wind speed anomaly relative to the long-term mean over the full 35 year record at (a) wind turbine
locations for (b) the MAC mode, (c) ENSO mode, and (d) the combination of both modes.

Coupled to the analysis of uncertainty and variability, the assumptions underlying MCP methods may also
be tested using the CSEOF analysis. By identifying and mapping sites where wind speed statistics vary signif-
icantly with known climatic oscillations, CSEOFs provide a means of validating or rejecting the fundamental
assumptions of MCP methods. In particular, the assumption of a high spatial correlation between wind
sites and nearby weather stations can be tested (provided that reanalysis data are available with sufficiently
high spatial resolution), as can the assumed statistical stationarity of the wind resource over interannual
timescales.

Finally, LVs and uncertainty maps such as those in Figures 1–3 can aid in siting of new wind plants by iden-
tifying locations with either a strong or weak, negative or positive, dependence on specific climate signals.
With maps such as those in Figures 1 or 2, in particular, it is possible to identify complementary wind sites
with negative spatial correlation such that a particular climatic event (e.g., a strong El Niño event) will have
a positive effect on the wind speed at one site and a negative effect at another site, thus leaving the overall
resource across the two sites relatively constant.

Given longer data records, the CSEOF analysis outlined here could be applied to the United States wind
resource in order to identify decadal and multidecadal trends, including long-term trends due to climate
change. Rather than using simply reanalysis data, the CSEOF analysis could also be applied equally well to
existing and new computational data from NWP simulations, RCMs, and GCMs. It should be noted that the
present study has only examined the wind speed variability at specific wind turbine locations; in the future,
the measured variations could be passed through real or representative wind turbine power curves in order
to obtain more direct assessments of the impact of ENSO and the MAC on the power output of installed
and prospective wind energy capacity. Finally, the present CSEOF analysis provides the spatial variation of
the MAC and ENSO climate signals, but further study is required in order to determine the physical reasons
(e.g., geography) for these variations.
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