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[1] Submarine canyons which indent the continental shelf are frequently regions of steep
(up to 45�), three-dimensional topography. Recent observations have delineated the flow
over several submarine canyons during 2–4 day long upwelling episodes. Thus upwelling
episodes over submarine canyons provide an excellent flow regime for evaluating
numerical and physical models. Here we compare a physical and numerical model
simulation of an upwelling event over a simplified submarine canyon. The numerical
model being evaluated is a version of the S-Coordinate Rutgers University Model
(SCRUM). Careful matching between the models is necessary for a stringent comparison.
Results show a poor comparison for the homogeneous case due to nonhydrostatic effects
in the laboratory model. Results for the stratified case are better but show a systematic
difference between the numerical results and laboratory results. This difference is shown
not to be due to nonhydrostatic effects. Rather, the difference is due to truncation errors in
the calculation of the vertical advection of density in the numerical model. The calculation
is inaccurate due to the terrain-following coordinates combined with a strong vertical
gradient in density, vertical shear in the horizontal velocity and topography with strong
curvature. INDEX TERMS: 4255 Oceanography: General: Numerical modeling; 3337 Meteorology and

Atmospheric Dynamics: Numerical modeling and data assimilation; 4520 Oceanography: Physical: Eddies and

mesoscale processes; KEYWORDS: model, sigma, error, topography, upwelling, canyon

Citation: Allen, S. E., M. S. Dinniman, J. M. Klinck, D. D. Gorby, A. J. Hewett, and B. M. Hickey, On vertical advection truncation

errors in terrain-following numerical models: Comparison to a laboratory model for upwelling over submarine canyons, J. Geophys.

Res., 108(C1), 3003, doi:10.1029/2001JC000978, 2003.

1. Introduction

[2] Both laboratory and numerical models have been used
to study processes in coastal ocean circulation. Recent studies
have compared test simulations from different numerical
models with the disquieting result that the solutions differ
not only quantitatively but, in some cases, qualitatively
[Haidvogel and Beckmann, 1998]. Given the wide variety
of processes and parameterizations in these models, the
cause(s) of these differences have not been identified.
[3] The traditional method for verifying numerical mod-

els is to compare to an analytical solution. However, only a
limited number of analytic solutions exist for stratified flow
over steep topography. An alternative evaluation method is
to compare results from different models. However dis-

agreements between the models frequently tend to raise
questions instead of answering them.
[4] We chose to compare results from numerical simu-

lations to those from a physical (laboratory) model of both
homogeneous and stratified fluids flowing over a submarine
canyon on a continental shelf. This problem activates a
number of physical processes (discussed below) making it a
good test case [Haidvogel and Beckmann, 1998]. The
circulation we consider starts impulsively; the adjustment
to steady state is compared between the two models.
[5] Laboratory models are thought to be better analogs for

geophysical scale flow than numerical models since a wider
range of length scales are active. Regional circulation is
produced by forces acting on scales from 100 km to 1 mm
(the turbulence dissipation scale), a range of 8 orders of
magnitude. A laboratory model has scales from 1 m to 1 mm,
a range of three orders of magnitude. Numerical models
represent scales from the domain size to the grid spacing, the
ratio of which is typically 100 (the number of grid points in
one direction), a range of two orders ofmagnitude. Onemight
argue that sub-grid-scale parameterizations represent scales
smaller than the grid, but these formulations range in quality
from approximately correct to merely plausible but unveri-
fied [Gent et al., 1995]. These problems with formulations
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are added to issues of truncation errors in numerical schemes,
domain distortion (e.g., bottom-following coordinates), and
other parameterizations (e.g., equation of state, estimates of
bottom or surface stress, etc.). Therefore, laboratory models
should represent good solutions (assuming appropriate labo-
ratory technique) which can be used as a stringent test for
numerical models.
[6] The extrapolation of laboratory analogs to a geo-

physical scale system involves measures of similarity.
Similarity theory applied to fluid dynamics has yielded
rich results over the centuries [Batchelor, 1967]. Flows
with the same values of nondimensional ratios, which
compare sizes of physical processes, will be identical other
than having different scales. One need not match all non-
dimensional numbers in such a comparison, only the
‘‘important’’ ones. In many cases, ‘‘important’’ is easy to
determine; in others it is open to interpretation. For advec-
tion over a canyon the important nondimensional numbers
are a Rossby Number, a Burger Number, a Froude Number
and a geometric number describing the shape of the canyon
[Allen et al., 1999].
[7] First we present an overview of the flow regime under

consideration. Next the two flow representations (laboratory
and numerical) are presented and their results are compared
for both homogeneous fluid and stratified fluids. The
discussion includes an estimate of the effect of nonhydro-
static terms in the laboratory results and an estimate of the
effect of errors in density advection on the numerical
results.

[8] Submarine canyons are common features of the con-
tinental shelf. A typical canyon cuts from the continental
slope into the continental shelf about halfway to the coast.
Data sets including off-axis information are available over
Astoria Canyon [Hickey, 1997], Lydonia Canyon [Butman,
1983], Barkley Canyon [Allen et al., 2001] and Carson
Canyon [Kinsella et al., 1987]. Submarine canyons are
regions of enhanced upwelling during upwelling favourable
conditions and thus are important in evaluating cross-shelf
exchange in coastal regions. The problem used to compare
the two models is a short duration upwelling event. Previous
numerical studies have shown qualitative agreement with
the observations [Klinck, 1996; Allen, 1996; She and Klinck,
2000].
[9] After acceleration of the shelf break current (in the field

due to the wind or shelf waves) a flow pattern forms over the
canyon with strong variation in the vertical (Figure 1). In
particular: level 1, the near surface current is not affected or
is only weakly affected by the canyon and travels straight
over the canyon; level 2, flow just above the canyon rim
moves over the canyon, descends into the canyon, turns
toward the canyon head and crosses the downstream
canyon rim near the head; level 3, slightly deeper flow
over the continental shelf bends into the canyon near the
mouth, traverses up the canyon and crosses the downstream
canyon rim near the head; and level 4, deep flow within the
canyon turns cyclonically. Flows numbered 2 and 3 above
form the active layer (Figure 1). Observations [Hickey,
1997; Allen et al., 2001] show a trapped eddy over the

Figure 1. A schematic of flow over a canyon. The near surface and deep layer are shown explicitly. The
deep shelf flow and the upwelling current together form the active layer. The shelf-break depth is
approximately 200 m in the field and is 2.2 cm in the lab. The near surface flow extends down about 150 m
from the surface in the field and 1.6 cm from the surface in the lab. The near surface flow-passes over the
canyon with little deflection. In the active layer the flow is strongly constrained by the topography. Flow in
the deep layer turns cyclonically. [after Allen et al., 2001]
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canyon (in flow numbered 2 above). The presence or
absence of the eddy is due to the amount of stretching near
the canyon rim [Allen et al., 2001].
[10] The parameters governing the advective flow over a

submarine canyon during an upwelling event are [Allen et
al., 1999] (1) a Rossby number: Ro = U/fr where U is the
incident velocity at the half length of the canyon and at the
depth of the shelf break Hs, f is the Coriolis parameter and r
is the radius of curvature of the shelf break isobath; (2) a
Froude number: U/NHs where N is the buoyancy frequency
at the depth of the shelf break; (3) a Burger number: (N Hs)/
fL. The length of the canyon L is measured, at shelf break
depth, from the shelf break to the head (last isobath
deflected significantly by the canyon); (4) a Geometric
parameter Ge = W/Wsb where Wsb is the width of the canyon
at the shelf break. The width of the canyon W is measured at
half length. The geometric scales, strength of stratification
and rotation rate for the laboratory model were chosen to
give values of the nondimensional parameters similar to
those for Astoria Canyon (Table 1).

2. Model Details

[11] The test problem is largely determined by the labo-
ratory setup, in which the flow is started with a rapid change
in rotation rate of the table. The numerical model (SCRUM
Version 3.1, a terrain-following coordinate model, Song and
Haidvogel [1994]) is configured as closely as possible to the
laboratory setup with an initial, impulse-like body force
starting the flow. The body force is applied over one
rotation period to match the time over which the rotation
rate of the table is changed.
[12] Two sets of lab experiments are considered, one with

homogeneous fluid, and the other with stratified fluid. The
laboratory and numerical geometries using a homogeneous
fluid are identical. However, in the stratified case the
horizontal dimension was increased by a factor of 10 to
reduce the bottom slope and allow the simulation to
proceed. Appropriate adjustments were made to other
parameters (detailed below) to preserve the relevant non-
dimensional ratios.

2.1. Laboratory Scale Model

[13] Physical or laboratory models have their specific
limitations. Generally, the scale of the model implies
moderate Reynolds number (order 1000). Either the viscous
effects are minimized or the molecular viscosity in the tank
is assumed to model a uniform eddy viscosity in the real

world. The second major laboratory limitation is the neces-
sity of exaggerating the vertical scale. The total vertical
scale must be large enough to reduce viscous effects; yet the
total horizontal scale is limited by the size of the apparatus.
In some cases (here, in the homogeneous case), vertical
exaggeration leads to nonhydrostatic effects that would not
be expected in the real world. Although the eventual goal of
our research is to model the real world, here where we are
comparing two models, the numerical model is configured
to use uniform molecular viscosity.
[14] The laboratory experiments were performed on a 1-m

diameter, computer-controlled rare earth motor-driven rotat-
ing table at the University of British Columbia. The outside
tank is a cylindrical Plexiglas tank of radius 50 cm. It was
fitted with a Plexiglas insert to give a generic coastal
bathymetry consisting of a flat abyssal plane, a steep
continental slope (slope 45� in laboratory) and a continental
shelf (slope 5� in laboratory). The continental shelf and
slope were fitted to the outside of the tank with the abyssal
plane in the center. Without the canyon, the topography has
cylindrical symmetry. A 22� slice was cut out of the generic
bathymetry to allow insertion of a canyon shape (Figure 2).
The canyon was made of layers of 1 mm thick sheets of
polystyrene. The layers were joined using plastic cement
and the canyon model was covered with automotive filler
and sanded to produce a smooth finish and so join smoothly
with the generic shelf topography. The canyon was painted
flat black to allow flow visualization. The exact bathymetry

Table 1. Scales for Astoria Canyon [Hickey, 1997] and the

Laboratory and Numerical Models Considered Here

Number Astoria Lab Numerical

Hs 150 m 2.2 cm 2.2 cm
U 0.2 m s�1 1.2 cm s�1 1.2 cm s�1

f 1.05 � 10�4 s�1 0.52 s�1 0.052 s�1

L 21.8 km 8 cm 80 cm
W 8.9 km 2.4 cm 24 cm
r 4.5 km 1.4 cm 14 cm
N 7.5 � 10�3 s�1 2.2 s�1 2.2 s�1

Wsb 15.7 km 6.9 cm 69 cm
Ro 0.42 1.6 1.6
Fr 0.18 0.25 0.25
Bu 0.49 1.2 1.2
Ge 0.57 0.35 0.35

Figure 2. Schematic bathymetric map of the topography
in the tank. Contours are 1 cm apart. The vertical scale is
exaggerated compared to the horizontal scale by a factor of
10 (radius of tank is 50 cm). The ‘‘shelf’’ slope is 5� and the
‘‘slope’’ slope is 45�. The numerical geometry is similar
except: (1) for the stratified simulations the horizontal scale
is increased by a factor of 10 (so there is no vertical
exaggeration in the numerical model) and (2) only 60% of
the tank is simulated.
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was determined by digitizing photographs. Horizontal light
sheets were used to illuminate the canyon surface. The line
of illumination marked an isobath with depth dependent on
the height of the horizontal light sheet. Each picture
produced one bathymetric contour and the contours were
taken 1 cm apart. This bathymetry was used in the numer-
ical model.
[15] For the homogeneous experiments, the tank was

filled with fresh water and then accelerated to its starting
rotation speed ( f = 0.4 s�1). The table was allowed to rotate
until the fluid reached solid body rotation and was sta-
tionary with respect to the tank (about an hour).
[16] For the stratified case the table was first accelerated

to its starting rotation speed ( f = 0.4 s�1). Then the tank was
filled by gravity feed through a tube coming down from the
ceiling along the axis of rotation. The tank was filled from
the bottom using the Osler method of stratification [Osler,
1965]. In a tank with straight sidewalls the Osler method
results in a linear stratification. Because of the geometry of
the shelf slope topography, here the stratification is stronger
near the top (Figure 3). The table was allowed to rotate until
the fluid reached solid body rotation and was stationary with
respect to the tank (several hours). The tank stratification
was replaced each day to reduce the formation of ‘‘mixed’’
layers at the top and bottom of the tank.
[17] The flow was forced by accelerating the table from

f = 0.4 s�1 to f = 0.52 s�1 linearly over 27.3 s. This period
is about one revolution of the tank and is comparable to a
wind event of one day in the real world. The change in
rotation speed causes the bathymetry to accelerate relative
to the water, which due to inertia continues to rotate at the
slower rate. Relative to the tank, the water moves with
shallow water to its left. This forcing results in flow at the
shelf break of about 1.2 cm s�1.
[18] The flow in the vicinity of the canyon was visualized

using neutrally buoyant particles (pliolite) which were
added upstream of the canyon during the acceleration phase
of the experiment. The tank was lit by a slide projector with

a bicolored slit. The projector was mounted above the tank
attached to the table (i.e., it rotated with the table). The light
bounced off a 45� mirror set in the abyssal plain near the
axis of rotation. Two horizontal sheets of light of 1 cm
thickness resulted. The green light illuminated depths of 12
to 22 mm and the red light illuminated depths of 22 to 32
mm. A Hi-8 video camera mounted above the tank (rotating
with the table) recorded the movement of the particles.
[19] The flow was analyzed for a 5 s interval, 2.7 s after

the acceleration of the tank was complete. Using frame
capture software, frames from the video were captured onto
computer at 0.5 s intervals. Particles were traced manually
from frame to frame. The experiment was repeated 5–15
times. Composite photos of all the frames for the homoge-
neous case and the stratified case were generated and
digitized versions of these composite figures are used for
model comparison.
[20] Two major sources of error occur in the laboratory.

First, motion in the initial flow; second, vertical motion of
the pliolite with respect to the fluid. Errors are likely to be
different between different runs of the model. To estimate
error, two tracks very close in space but from different runs
were compared (see section 4, Figure 7b.) The location
difference after 2.5 s is 0.5 cm, with a resultant velocity
error of 0.2 cm s�1. Other minor sources of error include the
depth of the light sheets (estimated as plus or minus 0.1 cm
top and bottom), and errors in identifying and digitizing the
particles (estimated as plus or minus 0.1 cm).

2.2. Numerical Model Configuration

[21] The S-Coordinate Rutgers University Model Version
3.1 [SCRUM, Song and Haidvogel, 1994] developed at
Rutgers University was used for the numerical modeling
part of this study. SCRUM is a hydrostatic primitive
equation ocean circulation model with a free surface using
a vertical s (terrain-following) coordinate well suited for use
in simulations with variable bathymetry. The model also
allows for a curvilinear horizontal coordinate system which
enabled us to represent a cylindrical model geometry.
[22] The combination of steep topography and strong

stratification can cause errors in numerical simulations
[Haney, 1991]. The errors, usually in the form of mean
along isobath currents, are due to truncation errors in the
calculation of the horizontal pressure gradient term in
terrain-following coordinates. One current method to assess
errors is to initialize the model with horizontal isopycnals
and no forcing and evaluate the size of the observed error
flows [e.g., Petruncio, 1996]. The resulting flows are due to
pressure gradient errors and the boundary condition on
density at the bottom which requires isopycnals to have
no normal gradient at the bottom. The net effect of pressure
gradient errors on strongly stratified flows over steep top-
ography have been successfully assessed using laboratory
experiments [Kliem and Pietrzak, 1999]. Steep topography
and stratification can lead to other errors in s coordinate
numerical models (as we show here). Such errors cannot be
identified without forcing and have to date received little
attention.
[23] The large slopes of the tank canyon were too steep

for the model to accurately compute horizontal pressure
gradients. Therefore, for the stratification case only, the
length scale was increased to ten times that of the tank. To

Figure 3. Density profile in the tank and numerical
simulation. The initial density profile (solid) is calculated
assuming no extra mixing in the filling process. The
expected diffusion after 1 hour of spin-up is shown by the
dashed line. The numerical simulation used the solid profile
as its initial condition.
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use the same bathymetry, stratification and flow velocity as
the tank, the Coriolis parameter was reduced (from 0.52 s�1

to 0.052 s�1) and the vertical viscosity was reduced (from
the molecular value of 10�6 m2 s�1 to 10�7 m2 s�1) by a
factor of 10 in order to maintain the same Rossby, Burger
and Ekman numbers. The duration of the forcing was
increased by a factor of 10 so that the model, like the tank,
was accelerated over approximately one pendulum day.
[24] The model domain included 242 points in the azi-

muthal direction, 81 points in the radial, and 16 vertical
levels. The grid spacing in the vicinity of the canyon was
about 6.2 cm (Figure 4). The domain did not cover the
entire 2p radians in the azimuthal direction, but rather 0.6 �
2p (in order to save computation time) with a periodic
continuation in that direction. The duration of the simula-
tions was much less than the time required for disturbances
to wrap around the domain. In the radial direction, the
model domain was based on a tank with an inner wall 1 m
from the center, an outer wall 5 m from the center (10 � the
actual tank dimensions) and a no-slip condition for momen-
tum at both lateral walls. The gridded model bathymetry
was derived from the digitized tank depth contours using an
objective analysis scheme.
[25] The Laplacian horizontal mixing was along geo-

potential surfaces for both momentum and density with a
coefficient of 10�6 m2 s�1. Vertical mixing of momentum
and density used constant coefficients of 10�7 m2 s�1 and
1.5 � 10�10 m2 s�1 (one tenth of the value for molecular
diffusivity of salt in water [Weast, 1979]), respectively. A
simplified linear equation of state dr = �dT means that

temperature was used as an inverted proxy for density. For
the stratified simulation, the initial vertical density profile
was the same as for the tank (Figure 3) and the starting
density was horizontally uniform.
[26] At the start of the simulation the flow was zero and

the free surface was level. The water was forced to move
relative to the canyon by a body force over the entire water
column. The forcing was zero at the start, increased to a
maximum value over six seconds, held constant until 273
seconds and then set to zero. The forcing was in the angular
direction only and increased linearly with radial distance in
order to simulate the situation in the tank where the water is
initially in rigid body rotation before the tank is accelerated
with respect to the rotating water. Linear (Ekman) bottom
stress was applied as a body force over the bottom layer
(drag coefficient of 7.2 � 10�5 m s�1).

3. Homogeneous Comparison

[27] To compare the numerical and laboratory results,
tracer particles were introduced into the numerical simula-
tion at the time (0.063 rotation periods after acceleration
was complete) and place tracer particles were observed to
start in the laboratory experiment. Similarity and differences
between the flows were determined by comparing the tracks
of these particles (Figure 5). A value of 1 cm was chosen to
delineate ‘‘good’’ and ‘‘poor’’ agreement. This value was
determined using the estimate of the error in the laboratory
of 0.2 cm s�1 and the maximum track durations of 5 s. For
most tracks the final position of the particle according to the
numerical model is within 1 cm of the final position
according to the laboratory model (Figure 5a). The tracks
show good agreement upstream of the canyon and fair
agreement both across the mouth of the canyon and near
the head of the canyon.
[28] All tracks which finish more than 1 cm apart are

downstream of the canyon inshore of the shelf break. In
these cases the numerical tracks show stronger upwelling
(stronger flow toward the coast) than the laboratory tracks
(Figure 5b). The discrepancy suggests that greater cyclonic
vorticity is generated within the canyon in the numerical
model than in the laboratory model. All numerical tracks are
bent strongly inshore over the canyon by this vorticity.
[29] One explanation for the smaller vorticity generation

in the laboratory comes from careful inspection of the
vertical particle movement. The laboratory particles are
color coded based on their depth. Upstream of the canyon,
green particles become red particles as the flow drops down
into the canyon (Figure 5b). On the downstream side, red
particles become green particles as the flow is strongly
upwelled. These numerous changes in color illustrate the
strong vertical velocities occurring in the homogeneous
case. We suspect that because the laboratory model is
strongly vertically exaggerated nonhydrostatic flows occur
in the laboratory for homogeneous flows.
[30] To examine more carefully whether nonhydrostatic

effects are indeed occurring in the laboratory model a
visualization of the vertical shear downstream of the canyon
was performed. In a homogeneous flow the pressure gra-
dient is uniform with depth (barotropic) and vertical shear
can only be generated by differential body forcing (not
present) or in boundary layers. However, besides a clear and

Figure 4. The numerical grid for a cross-section through
the canyon. The vertical scale is in cm. The horizontal scale
is in grid points with �x � 6.2 cm for this cross-section.
The deepest cell at grid point 37 is used for the error
calculation in section 5.
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expected bottom Ekman layer, a middepth jet was observed
with a strong up-canyon component below a surface layer
flowing more slowly downstream (not shown). Thus mid-
depth vertical shear was strong in the laboratory consistent
with the presence of nonhydrostatic effects.
[31] The numerical model is hydrostatic and thus con-

strained to have no vertical shear above the bottom Ekman
layer. Fluid columns passing over the canyon are stretched to
the full depth of the canyon, producing the observed strong
cyclonic vorticity. In the laboratory model, columns passing
over the canyon are only more moderately stretched.

4. Stratified Comparison

[32] To compare the numerical and laboratory results,
tracer particles were placed in the numerical simulation at
the time and position tracer particles were observed to start
in the laboratory experiment. In the stratified case, vertical
shear is significant (Figure 6). In the laboratory, particle
depths were determined, by color, only to within 1 cm
depth. This resolution proved inadequate because of the
strength of the vertical shear. Therefore in the numerical
simulation, particles were seeded throughout the 1 cm depth
interval and the track that finished closest to the laboratory
track was chosen for comparison.
[33] As discussed in the overview (section 1.1), flow in

the canyon can be divided into three layers (Figure 1). Near-
surface flow is not affected or only weakly affected by the
canyon. Flow deep within the canyon turns cyclonically.
Active upwelling onto the shelf occurs between these two
layers. The upwelling layer includes water from both the
shelf and slope which turns cyclonically in the vicinity of

the canyon, flows up the canyon and exits the canyon near
the head. The discussion of the stratified results will be in
reference to these layers.
[34] The deep flow (below 2.15 cm) shows the expected

trapped cyclonic eddy within the canyon (Figure 7d). The
size of the eddy appears to be different between the
numerical and laboratory realizations: the eddy is wider
and longer in the lab, and shorter and narrower in the
numerical simulations. Also in the region of the mouth of
the canyon, the laboratory flow appears to slow more than
the numerical flow.
[35] Agreement between the numerical simulation and

the laboratory experiment is generally very good in the
actively upwelling layer (1.50–2.05 cm depth, Figures 7b
and 7c). The flow shows upwelling flow over the down-
stream rim and near the head of the canyon. Two system-
atic differences are apparent. Upstream of the canyon over
the slope the laboratory tracks show weak downwelling
flow (e.g., Figure 7b, track starting at x = �1, y = 2). This
flow is not observed in the numerical simulation where the
tracks follow the curvature of the tank. The difference in
the tracks is about 0.5 cm and occurs over about 2 s giving
a velocity error of 0.2 cm s�1. Downstream of the canyon
the opposite situation occurs with weak downwelling flow
in the numerical simulation but not in the laboratory flow
(e.g., Figure 7b, track starting at x = �4, y = 2). The tracks
of the numerical floats are consistent with the numerical
velocity so these differences are not due to the Lagrangian
tracking scheme. Flow above the canyon (between 1.25 cm
to 1.35 cm depth, Figure 7a) shows the same systematic
difference upstream of the canyon as seen in the active
layer.

Figure 5. A plan view of the particle tracks in the laboratory experiment (unfilled red and green
symbols) and the numerical simulation (filled blue symbols) for the homogeneous case. The depth
interval of the laboratory tracers was determined by the color-sheet illuminating them. The laboratory
particles here are color-coded by depth, green: 1.2–2.2 cm depth, red: 2.2–3.2 cm depth. The
bathymetric contours are shown in blue with depth in cm. The axes are in cm in the tank frame. The last
position is shown as a larger box. (a) Tracks that finish within 1 cm of each other. (b) Tracks that finish
more than 1 cm apart. Note that these tracks are all downstream of the canyon. The weaker upwelling
observed in the laboratory case is due to non-hydrostatic effects (see text).
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[36] To quantitatively measure the fit between the numer-
ical results and the laboratory results, a normalized error
was calculated for each particle at each point:

Error ¼ Position numericalð Þ � Position laboratoryð Þj j
LabFluctuationVelocity � time ð1Þ

where the position is the (x, y) position in lab coordinates of
the point, the laboratory fluctuation velocity is the velocity
error between runs estimated above at 0.2 cm s�1 and time
is the time since the particle started (Table 2).
[37] The deep point near the mouth of the canyon that is

within the deep eddy in the lab and not in the numerical
simulation has an error at the end of 6.05. This point is
very close to a flow separation point, dividing flow travel-
ing into the canyon (as the laboratory tracer does) and flow
traveling along the slope (as the numerical tracer does).
Removing this point, the remaining points have an average
endpoint error of 0.7 and an average error of 0.8. If the
error estimate for the laboratory measurement was accurate
and the model is reasonably accurate, a value near 1 would
be expected.

5. Discussion

[38] The utility of a numerical laboratory model compar-
ison lies in resolving differences between them. In the
following, we demonstrate the limitation of the numerical
model simulating stratified shear flows over steep topog-
raphy. The largest errors here are not due to the pressure
terms as investigated by previous authors [e.g., Haney,
1991; Kliem and Pietrzak, 1999] because for our grid

geometry these errors are small (see below) but are due to
errors in vertical advection of the density field.
[39] Although the average error in the stratified experi-

ments is less than the estimated laboratory error, the results
show systematic differences. These differences are most
obvious near the upstream rim of the canyon where the
laboratory flow is downwelling and the numerical flow is
not. Downwelling flow in this region is observed in the field
[Hickey, 1997; Allen et al., 2001]. A detailed search for the
origin of the differences was made. Running the model with
no forcing showed that pressure gradient errors are 50 times
too small to explain the error. The timescale of the simu-
lation is so short that errors due to diffusion are also too
small to explain the observed differences. The details of the
tracer advection scheme (fourth-order centered or upstream-
biased third-order (Gamma scheme)) make little difference.
Below we present an estimate of the nonhydrostatic effects
in the laboratory and an estimate of the error in the vertical
advection of density in the numerical simulation. Nonhy-
drostatic effects are shown to be too small and of the wrong
sign to be the origin of the error.

5.1. Estimate of Nonhydrostatic Effects

[40] The homogeneous case presented in section 3 illus-
trates that nonhydrostatic effects can sometimes explain the
difference between laboratory and numerical models. In the
stratified case however the strong stratification should be
enough to prevent nonhydrostatic flows (conditions calcu-
lated by Boyer et al. [2000] are met). Here we will
carefully evaluate the possible strength of the nonhydro-
static terms in the momentum equation for the stratified
case.

Figure 6. A cross-section of the cross-canyon horizontal velocity at about mid-canyon for the stratified
case. Positive velocities are to the right. View is toward the head of the canyon. Note the large vertical
shear over the canyon. The vertical scale is 5 cm from top to bottom. Units are cm s�1.
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[41] The vertical momentum equation is

ro
@w

@t
þ u

@w

@x
þ v

@w

@y
þ w

@w

@z

� �
¼

� @p

@z
� r0g þ m

@2w

@x2
þ @2w

@y2
þ @2w

@z2

� �
ð2Þ

where ro is a constant reference density, (u, v, w) is the
velocity, p is the pressure, r0 is the fluctuation density, g is
the gravitational acceleration and m is the viscosity.

[42] Scale analysis shows that the third largest term
(after the pressure and gravitational terms) is the horizontal
advection of the vertical momentum. After taking the
horizontal derivative of equation (2) with respect to x
and retaining only the three largest terms, equation (2)
becomes

�1

ro

@2p

@z@x
¼ g

ro

@r0

@x
þ u

@2w

@x2
ð3Þ

Figure 7. Plan views of the particle tracks in the laboratory experiment (unfilled symbols) and the
numerical simulation (filled symbols) for the stratified case. The bathymetric contours are shown with
depth in cm. The axes are in cm in the tank frame. The ends of the tracks are shown as larger boxes. Note
the generally good agreement. However, there are systematic errors upstream and downstream of the
mouth of the canyon. In particular in the active layer and near surface layer at x = 1 cm, y = 1–2 cm the
laboratory tracks show downwelling flow compared to the numerical tracks. (a) Tracks between 1.25 and
1.35 cm depth. (b) Tracks between 1.50 cm and 1.60 cm depth. (c) Tracks between 1.85 cm and 2.15 cm
depth. (d) Tracks between 2.15 ( just above rim depth) and 3.15 cm depth.
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where the first term on the right is due to the hydrostatic
pressure and the second term is the nonhydrostatic effect.
[43] The largest terms in the cross-shore momentum

equation are the pressure gradient and Coriolis terms (that
is, the flow is approximately geostrophic). Substituting
equation (3) into the z derivative of the cross-shore geo-
strophic balance gives

@v

@z
¼ �g

f ro

@r0

@x
� u

f

@2w

@x2
ð4Þ

So the nonhydrostatic effect on the velocity shear is

� u

f

@2w

@x2
ð5Þ

[44] To estimate the magnitude of the nonhydrostatic
effects in the laboratory where w was not measured we
need a magnitude for the vertical velocity. The numerical
vertical velocity (Figure 8) is in error (see below). A local
minimum in vertical velocity is expected over the upstream
rim of the canyon but the maximum should not occur until
the downstream rim of the canyon based on observed
isopycnals over Astoria Canyon [Hickey, 1997]. Estimating
the vertical velocity as the radial velocity (u = 1 cm s�1)
multiplied by the slope of the canyon edge in the tank gives
an upper estimate for the magnitude of the vertical velocity
(w � �1 cm s�1). Using the width of the canyon as an
appropriate scale for x implies equation (5) is of order
�0.04 s�1. Because v is near zero near the surface, the
nonhydrostatic effect gives positive (upwelling) flows, the

Table 2. Initial Positions, Final Depth Position (Numerical) and

Errors Between the Numerical and Laboratory Simulationsa

Point
Number X Start Y Start Z Start Z Finish Aver Error End Error

1 �3.8 5.3 3.2 3.2 0.99 0.81
13 4.6 0.2 3.2 3.2 1.26 1.24
8 �0.7 2.5 3.2 3.1 2.63 2.14
11 0.8 0.6 3.2 3.1 0.82 1.04
27 �0.7 �4.4 3.2 3.0 0.79 0.28
12 2.9 0.4 3.0 3.0 1.24 1.03
23 4.4 �0.1 3.0 3.0 0.32 0.47
18 1.8 0.1 2.5 2.4 0.78 0.55
25 0.0 �2.0 2.2 2.2 5.13 6.05
30 1.6 �5.0 2.2 2.2 0.42 0.72
6 4.5 5.5 2.2 2.1 0.38 0.19
7 �1.3 2.2 2.2 2.1 0.91 1.05
26 1.6 �1.1 2.2 2.1 0.66 0.60
17 1.1 �0.2 2.0 2.1 1.08 0.41
2 0.6 5.2 2.0 2.0 0.48 0.49
28 0.5 �3.6 2.0 2.0 0.71 0.51
33 3.5 0.8 1.9 1.9 0.17 0.14
21 3.6 �0.9 1.9 1.8 0.29 0.13
22 4.5 �0.2 1.9 1.8 0.53 0.86
19 2.1 0.4 1.6 1.6 0.39 0.28
24 5.0 �1.0 1.6 1.5 0.28 0.06
29 1.3 �5.1 1.5 1.6 0.69 0.08
4 2.2 4.2 1.5 1.5 0.98 0.92
20 3.5 �1.3 1.5 1.5 0.30 0.12
15 6.1 1.0 1.5 1.4 0.63 0.24
3 1.2 6.3 1.4 1.4 0.26 0.32
14 5.2 1.4 1.3 1.2 1.36 1.13
5 2.3 5.4 1.2 1.3 0.50 0.50
31 2.7 �6.2 1.2 1.3 3.09 2.77
9 3.6 3.9 1.2 1.2 0.73 0.65
10 �3.9 1.1 1.2 1.2 0.69 0.45
16 �4.2 �0.7 1.2 1.2 0.13 0.14
aData are sorted in-depth order.

Figure 8. A cross-section of numerical model true vertical velocity at about mid-canyon for the stratified
case. Positive velocities are upward. The vertical scale is 5 cm from top to bottom. Units are cm s�1 in the
numerical model. Note the small scale of the variations compared to the width of the canyon.
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opposite of the observed effect. Assuming 1 cm is an
appropriate depth for the strong downward flow gives an
up-canyon, nonhydrostatic flow of 0.04 cm s�1. This error
is one order of magnitude too small (the observed difference
is 0.2 cm s�1). Since nonhydrostatic effects are the only
reason the laboratory results could be ‘‘wrong’’, we now
turn to the numerical model to find the origin of the lab-
numerical difference.

5.2. Vertical Velocity and Vertical Advection

[45] The numerical vertical velocity (Figure 8) shows
unexpected spatial small-scale features. In particular the
upward vertical velocity, just inside the rim of the canyon,
is counter to our physical understanding based on observa-
tions of isopycnals over Astoria Canyon [Hickey, 1997].
The downward velocities at the downstream rim are also
questionable. We expect similar error near both rims but
here will concentrate on the upstream rim.
[46] Just below the upstream rim the numerical horizon-

tal cross-canyon velocity is about 0.2 cm s�1 (Figure 6) the
slope is about 1 in 20, the up-canyon velocity is about 0.05
cm s�1 and the slope is about 1 in 60. Thus from the
bottom boundary condition (no flow through the canyon
wall) we would expect a negative vertical velocity of about
0.01 cm s�1, not the positive velocities observed.
[47] The vertical velocity is not a dynamic variable within

the model; it is calculated as a diagnostic variable. Temporal
fluctuations can thus be large but here are less than 1%. The
vertically important dynamic within the model is the vertical
advection of density (Figure 9). The calculated isopycnals
reflect the calculated vertical velocity; they tilt gently down

before the canyon and then abruptly upward over the
canyon. The total deflection of the isopycnals in the numer-
ical model results is very small (about one tenth the magni-
tude) compared to observations [Hickey, 1997]. If we assume
the isopycnals are tilted in the laboratory as they are in the
field we can estimate the generated down-canyon flow using
the thermal wind equation (N2Di

2/fDx) where the isopycnal
drop Di observed in the field is about 25 m which would
correspond to about 0.2 cm in the lab, andDx is a lengthscale
for the drop taken as one quarter of the canyon width. The
resulting flow is 0.2 cm s�1 in agreement with the observed
flow error.
[48] The calculation of the advection of temperature in

the numerical model uses the Shchepetkin and McWilliams
[1998] Gamma advection scheme to reduce dispersive error.
This scheme uses a large number of terms. The truncation
error in the vertical velocity can be calculated for this
scheme but the algebra is dense. To more easily illustrate
the error, we will use the diagnostic calculation for the
vertical velocity instead. The derivation for the Gamma
advection scheme is in the Appendix. In the following, (1)
the link between density advection and vertical velocity will
be shown mathematically. Then (2) the truncation error in
the vertical velocity will be calculated, followed by (3) the
results (only) of the Gamma advection scheme.
[49] The calculations will use the numerical values for a

10 m diameter tank. However, unlike the nonhydrostatic
calculation above, the calculation of the advection error can
simply be scaled to give values for a field simulation.
Factors (based on Astoria Canyon) are 23 � 103, 6.8 �
103, 17, 5.0, for horizontal distance, vertical distance,

Figure 9. A cross-section of the density at about mid-canyon. The vertical scale is 5 cm from top to
bottom. Units are st. Very small isopycnal deflections are seen compared to field observations [Hickey,
1997]. In particular, over the canyon near the upstream rim (yellow band) isopycnals tilt upwards to the
right in a region observed to have strongly descending isopycnals.
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horizontal velocity and vertical velocity, respectively. Per-
centage errors are the same, regardless of scale.
5.2.1. Step One: Density Advection and Vertical
Velocity
[50] Consider a case in which the density (temperature

here) only varies vertically. Then the time variation of
temperature T is given by

@T

@t
¼ �w

@T

@z
: ð6Þ

The advection of temperature is calculated within the model
as

@T

@t
¼ �u

@T

@x
� v

@T

@y
� �

@T

@s
ð7Þ

where s is the terrain-following vertical variable and � =
Ds/Dt. Equation (7) can be rewritten as

@T

@t
¼ �u

@z

@x

@T

@z
� �

@z

@s

@T

@z
ð8Þ

where variation in y has been neglected and temperature has
been assumed to only vary vertically. The problem with
equation (8) is that the two terms on the right-hand side
almost cancel, so that the calculation of @T/@t is based on
the small difference between two large terms. Combining
terms we can relate the density advection in the model to the
vertical velocity in the following way:

@T

@t
¼ � u

@z

@x
þ �

@z

@s

� �
@T

@z
ð9Þ

where the term in brackets is the model vertical velocity as
shown in equation (6). The numerical model does not use
dT/dz (only @T/@x and @T/@s) and so equation (9) is not
computed. However, this equation illustrates how the model
calculated vertical velocity is related to the actual advection
of a vertical temperature gradient. The vertical velocity is
found from the small difference between the two large terms
u@z/@x and ��@z/@s. The actual calculation of the
advection of temperature in the model is complicated by
the chosen discretization. However, the error identified here
is due to the estimation of the vertical velocity. The small
differences due to the discretization will be discussed in
step 3.
5.2.2. Step Two: Error in the Vertical Velocity
[51] The second step is to estimate the truncation error in

the model vertical velocity given by equation (9). The flow
over the canyon is about 0.5 cm s�1 with a vertical shear of
about 1.6 s�1. Only the shear contributes to the error in the
vertical velocity, so we will set the background flow to zero.
This choice reduces the magnitude of the terms in equation
(9) so the fact the problem is the small difference between
two large terms will be partially obscured. For reference,
with the observed background flow u@z/@x��0.02 cm s�1,
from the model w =�@z/@s� 0.01 cm s�1 and so the vertical
velocity is about�0.01 cm s�1. We will assume that the flow
at the bottom is parallel to the topography and that the flow
in the up-canyon (y) direction is zero. Variations in y will be
neglected.

[52] Consider a single grid cell (Figure 10) near the
upstream rim of the canyon (Figure 4). The velocity at the
lower depth is taken as zero, and the velocity at the upper
depth is U where

U ¼ � @u

@z

@z

@x
�x ð10Þ

The diagram shows that @z/@x = �tan �a.
[53] The vertical sigma velocity is w = �Hz where � =

Ds/Dt and Hz = dz/ds. The value of w at the top of the cell is
found from

w ¼ �
Z

r � uHzð Þds ð11Þ

which, using the expansion formula [Hedström, 1997], and
assuming v = 0 gives

wjs¼ wj s��sð Þ�
udzð Þj xþ�x=2ð Þ� udzð Þj x��x=2ð Þ

� �
�x

¼ U
�Z

�x
ð12Þ

[54] The vertical velocity is calculated at the centre point
as

w ¼
wj sþ�s=2ð Þþwj s��s=2ð Þ

� �
2

þ
u @z
@x

� ���
xþ�x=2ð Þþ u @z

@x

� ���
x��x=2ð Þ

� �
2

¼ U�Z

2�x
þ U

2

@z

@x

����
x��x=2ð Þ

ð13Þ

These two terms are of opposite sign near the upstream
canyon rim. The first, �Z/�x is positive whereas the
second, @z/@x is negative. Substituting for U gives the
expression for the numerical w

wnum ¼ 1

2

@u

@z
tan �a �Z ��x tana‘ð Þ ð14Þ

where a‘ = 1/2 (a1 + a2).
[55] Now w at the bottom (here taken on the straight line

between the two u grid points) is �u tan ab where ab = 1/2
(a2 + a4) and as there is no horizontal change in u, w is
constant with depth. So

wreal ¼
1

2

@u

@z
�Z 0 ��x tanabð Þ tanab ð15Þ

The correct velocity is also found from the difference of two
terms. There is truncation error in both numerical terms
which becomes even more significant because the vertical
velocity is the difference between them.
[56] The four angles for the grid cell at the upstream corner

are: a1 = 0.0094, a2 = 0.012, a3 = 0.086, a4 = 0.105. The
size of this grid cell is � x = 6.2 cm by �Z = 0.31 cm.
The vertical shear was estimated from the numerical results
(Figure6) as@u/@z=1.6 s�1 givingwnum=0.0103cms�1.The
length �Z0 = �Z + �x/2 [tan(a2) + tan(a4) � tan(a1) �
tan(a3)] is 0.373 cm and wreal = 0.00047 cm s�1. This differ-
ence results in an upward velocity error of 0.010 cm s�1
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in the same direction as the observed error. The error in the
vertical velocity is of the same size as the actual velocity.
This positive vertical velocity error at the upstream canyon
edge gives a positive density anomaly and therefore positive
(upwelling) flow error upstream of the canyon.
[57] The grid cell at the upstream corner and the corre-

sponding grid cell at the downstream corner are expected to
give the largest errors in the domain because they have
strong topography curvature (angles on the right are differ-
ent from the angles on the left) and are in regions of strong
vertical shear.
[58] Equations (14) and (15) can be combined and assum-

ing �x and �Z are sufficiently small, the error can be
shown to be of second order in these quantities. However, it
is important to note that for the case considered here �x and

�Z are too large for the error to be dominated by the leading
terms.
5.2.3. Step Three: Error in Advection
[59] We have shown that (1) the vertical velocity and the

vertical advection of temperature are linked and (2) that
there are large truncation errors in the calculated vertical
velocity calculation. However, the vertical velocity calcu-
lated above is not directly used by the model in the
advection of temperature. One can, however, similarly
calculate the equivalent vertical velocity used in the Gamma
scheme for advection of a vertical gradient in temperature
(see Appendix A). This gives

� @T

@t
¼ @T

@z
0:007 cm s�1
� �

ð16Þ

Figure 10. Sketch of a single grid cell with a sharp change in orientation. This grid cell sits at the
upstream rim of the canyon (Figure 4). Four angles (a1–a4) and the vertical (�Z ) and horizontal (�x)
grid sizes characterize its geometry. Horizontal flow is sheared with U at the higher left-hand grid-edge
and 0 at the lower right-hand grid-edge. The vertical velocity is w and the cross-grid ‘‘vertical’’ velocity
is w.
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The error is smaller (by 30%) but still very significant at
about 70% of the expected real vertical velocity (including
the background flow).
[60] To illustrate the effects of the truncation error on

vertical velocity the model was run with two finer grids, one
which does not reduce the size of the changes in bottom
slope (Figure 11a) and one which does (Figure 11c). The
first finer grid has a horizontal grid size one half that of the
original grid (Figure 4) but the same bottom topography.
The smaller horizontal grid size leads to smaller scales in
the vertical velocity (Figure 11b) and no decrease in the
magnitude of the positive velocities over the upstream rim.

Close examination of equations (14) and (15) reveals that
the difference is primarily dependent on the change of
bottom angle. The first fine grid still contains a cell with
the same angle change and thus the same large error in
vertical velocity.
[61] The second finer grid slightly smoothes the bottom

topography (Figure 11c). The maximum change in angle is
reduced by 25%. The vertical velocity (Figure 11d) shows
a similar reduction in error. However, the vertical velocity
error is still very large. The density field and particle
trajectories are not significantly altered. For the current
configuration, reducing the vertical grid size would

Figure 11. Grids and vertical velocities near the upstream rim for two grids with smaller grid spacing in
the horizontal. (a) Grid with no smoothing. (b) Vertical velocity for grid with no smoothing. (c) Grid with
smoothing of bottom topography. (d) Vertical velocity for grid with smoothing. Vertical velocity units are
cm s�1 (positive upward) in the numerical model. Note the smaller vertical velocities in the smoother
case.
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actually increase the error. Although the error is related to
grid size and the numerical scheme does converge as the
grid size approaches zero, reducing the error by reducing
the grid size is onerous because both the vertical and
horizontal grids must be reduced. Other possibilities for
reducing the error are smoothing the topography or using
an advection scheme that accounts for strong vertical
shear. Calculation of the vertical advection errors for the
smooth broad canyons used by Perenne et al. [2001] show
that their truncation errors are small, consistent with the
good match they found between laboratory and numerical
results. However, canyons in the ocean have steep, sharp
topography.

6. Conclusions

[62] Upwelling over submarine canyons has been inves-
tigated using both a numerical and a physical model.
Although qualitative results are similar, the results show
systematic differences between the models. In the homoge-
neous case, the differences can be accounted for by non-
hydrostatic effects in the laboratory model.

[63] In the stratified case, nonhydrostatic effects are too
small and have the wrong sign to account for the observed
differences. However, the numerical truncation error in the
calculation of the vertical advection was shown to be large
enough and to have the correct sign to account for the
differences. The presence of this error requires (1) strong
vertical gradients in density, (2) vertical shear in the
horizontal velocity, (3) topography with strong vertical
curvature, and (4) the use of terrain-following coordinates.
As the first three conditions are typically found in coastal
environments, a solution to this error will be important for
simulations that use realistic topography. In the model
configuration used here, the error in the vertical advection
is calculated to be 70%. As the canyon shape used is similar
to Astoria Canyon the error for field-scale numerical sim-
ulations is the same, 70% in vertical advection. A similar
error has been found by the authors in realistic simulations
of Astoria Canyon. Because the error is dependent on both
the vertical and horizontal grid size, reduction in grid size is
an expensive approach to the problem. Higher order esti-
mates of the vertical velocity that account for the vertical
shear are likely required.

Figure A1. Expanded view of grid in the vicinity of the upstream rim of the canyon. The center of the
cell used for error estimation is marked by T. The geometry of the grid is needed farther upwards and
upstream for the vertical advection calculation. Values of the angles and grid spacing are given. Note that
the vertical scale is exaggerated.
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Appendix A: Advection of a Vertical Gradient in
Temperature

[64] In section 5.2, an error in the vertical velocity was
calculated. Here we will calculate the dynamically impor-
tant error, the error in the vertical density advection. Con-
sider the same grid cell. To calculate vertical advection, we
must consider flow further upstream and further up. Con-
sider the extended mesh shown in Figure A1.
[65] The change in temperature at the center point

(marked T) should be

@T

@t
¼ �wreal

@T

@z

assuming that the temperature only varies vertically and
wreal is given by equation (15). The spatial discretization for
the calculation of the density advection is:

� @
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u xþ�x
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; s
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� �
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T x; sð Þ þ T x; s��sð Þ
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ðA1Þ

neglecting the additional ‘‘Gamma’’ term in the Shchepet-
kin-McWilliams advection scheme. It will be discussed
below. To calculate the value for the center of the grid cell
we will ignore the uniform horizontal velocity and include
only the vertical shear. Thus without loss in generality we
assume u(x + �x/2, s) = 0 and u(x � �x/2, s) = U. As w(x, s
� �s/2) is on the topography it is zero and as before �Hz =
w. We note that 0.5 (Hz(x � �x, s) + Hz(x, s)) = �Z/�s,
Hz(x, s) = 0.5 (Z + Z0)/�s, and that equation (12) gives w(x,
s + �s/2) = U�Z/�x.
[66] Then equation (A1) becomes

� �Z þ�Z 0

2�s

� �
@T

@t
¼� U�Z

2�x�s
T x; sð Þð þT x��x; sð ÞÞ

þ U�Z

2�s�x
T x; sþ�sð Þð þT x; sð ÞÞ ðA2Þ

[67] Using the geometry shown in Figure A1, we can
expand

U ¼ @u

@z
tan �a�x

T x; sþ�sð Þ ¼ T x; sð Þþ 1

2

dT

dz
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2
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�
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�x

2
tana1 þ tana2ð Þ

where a0 and �Z1 are defined on Figure A1. Thus
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� �Z þ�Z1ð ��x

2
tana2 þ 2 tana1 þ tana0ð Þ

�
2�Z

�Z þ�Z 0

� �

This expression is similar to wnumdT/dz with wnum given by
equation (14). There are three differences. The expression
for the vertical velocity wnum uses a2 rather than the
weighted average of a0, a1 and a2 and uses �Z rather than
the average of �Z and �Z1. The last factor does not appear
in the calculation of wnum. The first change is a detriment,
the second and third are improvements.
[68] In particular, for the coarse grid:

� @T

@t
¼ @T

@z
0:009cm s�1
� �

;

which is an improvement of 10% reducing the error to 90%
of the expected total vertical velocity including that
background horizontal velocity as well as the shear.
[69] The Shchepetkin-McWilliams advection scheme has

an additional term (�d1) in the compution of a tracer flux
through a grid cell surface where � = �1/4 and d1 = T(x) �
2T(x � �x) + T(x � 2�x) for U positive. This term only
affects the horizontal advection. Also, for the vertical
temperature advection a four-grid point calculation is used.
Using these expressions instead of the simple second order
center difference scheme, equation (A2) for our chosen box
becomes

� �Z þ�Z 0

2�Z�s

� �
@T

@t
¼ U

�x

9

16
T x; sþ�sð Þ

	
� 1

16
T x; sþ 2�sð Þ

� 3

4
T x��x; sð Þ þ 1

8
T x; sð Þþ 1

8
T x� 2�x; sð ÞÞ




where we note that the code uses the no-heat flux bottom
boundary condition. To evaluate this expression it is
necessary to consider the structure of the grid further
upwards and farther to the right. The geometric parameters
are given on Figure A1 and the result is

� @T

@t
¼ @T

@z
0:007cm s�1
� �

[70] This scheme is an improvement over the direct
calculation of w and reduces the error to about 70% of
the estimated vertical velocity. Thus the vertical advection
of the velocity field (which should be strongly downward in
this region) is reduced to 70%.
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