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UNDERSTANDING THE SUCCESS AND FAILURE OF OYSTER POPULATIONS:

PERIODICITIES OF PERKINSUS MARINUS, AND OYSTER RECRUITMENT,

MORTALITY, AND SIZE
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4111MonarchWay, 3rd Floor, Old Dominion University, Norfolk, VA 23529; 3Haskin Shellfish Research
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ABSTRACT Ten-year time series (1992 to 2002) of salinity, Dermo disease, and size-class structure and mortality measured for

an eastern oyster (Crassostrea virginica) population at a reef in Bay Tambour, Terrebonne Parish, LA, were analyzed using

wavelet techniques to determine dominant frequencies and correlations. Along the Gulf Coast of the United States, Dermo

disease (caused byPerkinsusmarinus) responds to the ElNiño-SouthernOscillation (ENSO) climate signal through its response to

salinity. During the La Niña portion of ENSO, decreased rainfall leads to an increase in salinity, which triggers a rise in Dermo

disease prevalence and intensity, producing increased oyster mortality. Although disease responds to the 4-y periodicity of ENSO

and salinity, the oyster population dynamics do not appear to be controlled by disease at this site. A significant 4-y coherency

exists between recruitment and salinity, with recruitment being higher during periods of high salinity. Recruit numbers and

submarket numbers also exhibit a strong 4-y periodicity. However, a relationship between the recruit time series and the

subsequent change in market-size abundance did not exist. The complexity of postsettlement processes and the extended time

over which these processes interact decrease the predictability of the recruit-to-market transition. Even the strong pulse of

recruits associated with La Niña and its locally elevated salinities did not result in an exceptional abundance of market oysters.

Understanding the environmental and biotic factors that favor the production of large oysters is critical because large oysters

not only supply the fishery, but, upon their death, contribute the bulk of the shell required for reef sustainability.

KEYWORDS: oyster,Crassostrea virginica, Perkinsus marinus, climate, wavelet analysis, recruitment, mortality, sustainability

INTRODUCTION

The success of oyster populations is determined by a complex
interaction between environmental variables and population
attributes such as recruitment, growth, and juvenile and adult

mortality. Along the Gulf Coast of the United States, eastern
oyster (Crassostrea virginica) populations are distinguished by
prodigious recruitment, rapid growth, and high mortality. Gulf
Coast oysters generally spawn early and often (Hopkins et al.

1953, Hayes & Menzel 1981). They reach sexual maturity in as
little as 1 mo, and the spawning season in the northern Gulf can
extend from April to November (Hopkins 1955). Major spawn-

ing events typically occur during the spring and/or fall,
although intermittent multiple spawns are possible throughout
the summer (Hopkins et al. 1953,Hopkins 1955,Hayes&Menzel

1981, Gauthier & Soniat 1989, Hofmann et al. 1994). The time
required for growth fromnewly settled spat to harvest-legal adult
($75 mm) can be as short as 12 mo, is rarely more than 24 mo,
and is typically about 18mo (Hopkins et al. 1953,Hopkins 1955).

Mortalities of market-size Gulf oysters resulting from the
endoparasitic protozoanPerkinsus marinus, which causes Dermo
disease, often exceed 50% (Mackin 1961,Mackin 1962). Dermo-

related mortality is size dependent, with smaller oysters generally
showing lower prevalence and intensity of disease (Mackin 1951).
However, populations of juvenile oysters in enzootic areas can

acquire disease prevalence and intensity that exceed those of the
adult population (Ray 1987). In addition to disease, predation
from mud crabs (Eurypanopeus depressus, Panopeus herbstii),

blue crabs (Callinectes sapidus), stone crabs (Menippe adina),
black drum (Pogonias cromis), and oyster drills (Stromonita
haemastoma) is a significant source of mortality for Gulf Coast

oysters. Predation, like disease, is typically greater at higher
salinities. However, unlike disease mortality, smaller size classes
experience greater predatormortality. The interaction of predation

with salinity and prey size is more complex than simple relation-
ships with size or salinity. Some predators are broadly eury-
haline (e.g., C. sapidus, E. depressus, P. herbstii) whereas others

are relatively stenohaline (e.g., M. adina, S. haemastoma), and
differences exist in the maximum size of exploited prey of the
various predators (White & Wilson 1996, Shirley et al. 2004).
For example, adult P. herbstii can open oysters up to about 25

mm in length (Bisker & Castanga 1987), whereas black drum
consume oysters up to 80 mm long (White & Wilson 1996).

Despite heavy mortalities, Gulf Coast oyster populations

persist and support a viable fishery. The sustainability of oyster
populations results from a balance between recruitment and
mortality. Assuming adequate spawning stock and suitable sub-

strate, recruitment is largely a function of salinity, with greater
recruitment occurring at higher salinity (Hopkins et al. 1953,
Hopkins 1955, Cake 1983, Chatry et al. 1983, Ray 1987).

Furthermore, high-salinity events and recruitment are closely
linked in time. However, the response time from the transition
of recruits to market oysters is greater than a year, during which
time multiple and interactive factors of mortality are operating

differentially on the various size classes.
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In a previous study (Soniat et al. 1998), we combined field ob-
servations with numerical modeling to investigate the complex

basis for population structure. We described key environmental
and biological interactions, and their spatial and temporal
variation. In a second contribution (Soniat et al. 2005), we in-
vestigated a particularly critical and likely causal sequence that

links water salinity to prevalence and intensity of P. marinus. In
the current study, time series of salinity, Dermo disease prev-
alence and intensity, and oyster size and mortality, measured

fromFebruary 1992 to February 2002 at a reef in Bay Tambour,
Terrebonne Parish, LA (Fig. 1), were examined for relation-
ships among recruitment, mortality, and environmental factors

that influence sustainability of oyster populations. Emphasis is
placed on identifying conditions that potentially result in an
exceptional abundance of market-size oysters that support the
fishery upon their harvest and disproportionately supply sub-

strate upon their death.
The following section describes the data sets and statistical

method used for analysis of the time series. This is followed by

results that show relationships among salinity, oyster recruitment,
oyster numbers, Dermo disease intensity, and oyster mortality.
The Discussion places these results in the context of sustainability

of exploited oyster reefs.

MATERIALS AND METHODS

Data Sets

Environmental variables were measured weekly, and oysters
(C. virginica) were sampled monthly from February, 2, 1992, to

February, 14, 2002, at a single reef. The site (29�11.18#N, 90�39.93#
W) lies at the intersection of Bayou Petit Calliou and Bay

Tambour, Terrebonne Parish, LA (Fig. 1). Water depth varied
from about 0.3–0.6 m.

Water was sampled from 0.3 m above the reef. Salinity was
measured weekly to the nearest 0.5 using a refractometer
(Beherns 1965). Oyster population parameters were measured
monthly. About 0.13 m3 of reef material was collected using

hand-operated tongs from a 5.1-m skiff. Live oysters, boxes
(articulated shells), and single shells were separated. Live
oysters and boxes were counted and assigned to 25-mm size

classes (0–24 mm, 25–49 mm, and so on). Single shells, boxes,
and live oysters were examined for the presence of spat, which
were also counted and assigned to a size class. Mortality

fraction, the ratio of dead to live oysters, was calculated for
submarket oysters (25–74 mm) and market oysters ($75 mm)
by dividing the number of boxes by the number of live oysters in
the respective size class.

Each month, 10 market-size ($75 mm) live oysters were
culled, cleaned of epifauna, and measured (anterior to posterior
length) to the nearest millimeter. A small piece (about 4 mm2) of

mantle tissue was used to assay P. marinus (Ray 1966). Level
of infection was scored using Mackin�s 0–5-point scale as
modified by Craig et al. (1989). Disease prevalence as percent

infection and infection intensity (II) were determined, where

II ¼ sum of Mackin0s disease code numbers
number of infected oysters

:

For each time series the mean, median, and range was cal-

culated (Table 1). Salinity showed the range of variability ex-
pected for a midlatitude temperate estuary. The submarket
and market boxes were about 10–15% of the number living

for each category. This gives average mortality fractions of
0.07–0.13, which are within values for oyster populations that
are not undergoing major population changes (Powell et al. 2009);

Figure 1. The location of the Bay Tambour sampling site in central

coastal Louisiana.

TABLE 1.

Mean, median, and range computed for the 10-y time series of

environmental and oyster population parameters measured in
Bay Tambour from 1992 to 2002.

Parameter Mean Median Minimum Maximum

Salinity 15.23 15.25 0.5 29.5

Infection intensity 0.95 0.87 0.00 2.96

Percent infection 79.30 85.45 0.00 100

Recruit numbers 52.24 45 12 233

Submarket numbers 34.86 33 8 97

Submarket boxes 3.50 2.81 0 23

Market numbers 32.64 33 13 60

Market box numbers 4.76 4.50 0 16

Market mortality

fraction

0.13 0.12 0.00 0.41

Submarket mortality

fraction

0.07 0.06 0.00 0.33

Niño 3.4 index 0.03 –0.07 –1.85 2.80

The ElNiño 3.4 indexwas obtained from theClimate PredictionCenter,

National Center for Environmental Prediction (www.cpc.ncep.noaa.

gov/data/indices/sstoi.indices).
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however, because the rate of disarticulationmay be greater in the
Gulf of Mexico than in more northern climes (Christmas et al.

1997, Ford et al. 2006), these mortality estimates are likely to
be conservative. Similarly, the measured percent infection and
infection intensity are within values expected for Gulf coast
oyster populations (Soniat 1996). Thus, the oyster population

used for this study was not undergoing major expansions or
contractions and had characteristics typical of a normally
growing population (Powell et al. 2009).

Data Analysis

Wavelet analysis (Daubechies 1992, Torrence & Compo

1998) was used to investigate interannual relationships among
water salinity, oyster disease, and oyster size-class structure and
mortality. This technique uses sets of data filters (wavelets) that
are designed to extract estimates of the amplitudes of specific

frequencies from time series. This approach identifies oscillation
periods in the time series even if the amplitude of the oscillation
is variable. Defining a particular mother wavelet sets the char-

acter of the frequency analysis, which in turn leads to a series of
functional forms that extract the oscillatory behavior of the time
series. In this analysis, aMorletmother wavelet was used because

it provides the best resolution in the frequency domain at the
cost of minimal smearing of signals in the time domain. The
wavelet analysis considered both the frequency content of

individual time series as well as correlations between time
series in the frequency domain (i.e., cross-wavelet analysis).
The latter analysis evaluated the correlation between the
periodicity of 2 variables.

For this analysis, the Niño 3.4 sea surface temperature index
was used (National Weather Service, Climate Prediction Cen-
ter: www.cpc.ncep.noaa.gov/data/indices/sstoi.indices/) to re-

present large-scale climate variability (Soniat et al. 2005). Local
environmental variability was represented by the salinity time
series. Responses of the oyster population to large-scale and

local environmental variability were represented by time series
of recruit numbers, submarket numbers, and market numbers.
Oyster population mortality was partitioned into a submarket
mortality fraction and amarketmortality fraction. Time series of

disease infection intensity provided ameasure of the contribution

of disease to oyster mortality. The time series were analyzed
independently (Table 2) as well as jointly (Table 3) to under-

stand size-class dynamics and to determine correlations
between environmental and biological processes, which suggest
causative linkages.

RESULTS

Individual Time Series

The salinity time series shows a significant periodicity at
4 y (Fig. 2, Table 2), which reflects the periods of high salinity
(>20) in 1992 and 1994 to 1996, and the extended high salinity

from 1999 to 2001 (Fig. 2, Table 2). The other environmental
time series, the Niño 3.4 index, also shows a dominant peri-
odicity at 4 y (Table 2); it is manifest of the ENSO cycle, because
it typically influences the Gulf coast (Douglas & Englehart

1981, Schmidt & Luther 2002, Soniat et al. 2005, Bergquist
et al. 2006).

The recruit numbers (oysters <25 mm) time series shows

a significant periodicity at 4 y as well as at 1 y (Fig. 3, Table 2).
The 1-y periodicity results from the annual spawning cycle, which
is seen as an increase in recruit numbers in each year of the time

series (Fig. 3). The 4-y periodicity is driven by the increase in
recruit numbers in the latter part of the time series and suggests

TABLE 2.

Significant periodicities obtained from wavelet analysis of

individual time series.

Time Series

Period (y)

0.5 1 2 3 4 5 6

Salinity **

Niño 3.4 index **

Recruit numbers ** **

Submarket numbers * * **

Submarket mortality

fraction

**

Market numbers **

Market mortality

fraction

* **

Infection intensity * * * *

* P < 0.10, * * P < 0.05.

TABLE 3.

Significantly correlated periodicities, or lack thereof, between

population attributes as revealed by cross-wavelet analyses.

Time Series

Period (y)

0.5 1 1.5 2 3 4

Salinity3Niño 3.4 index * **

Salinity3 recruit

numbers

* **

Niño 3.4 index3 recruit

numbers

**

Salinity3 submarket

numbers

*

Niño 3.4 index3
submarket numbers

Salinity3market

numbers

** **

Niño 3.4 index3market

numbers

Recruit numbers3
submarket numbers

** * * **

Recruit numbers3
market numbers

Submarket numbers3
market numbers

** * * * *

Infection intensity3
submarket

mortality fraction

*

Infection intensity3
market mortality

fraction

* *

* P < 0.10, * * P < 0.05.

Blank table cells indicate the absence of a significant cross-correlation at

a ¼ 0.10.
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a possible relationshipwith the ENSO cycle and salinity. The only

other oyster population characteristic that shows a 4-y periodicity
was the submarket mortality fraction (Table 2). Population
Dermo infection intensity shows 4 significant periodicities, one

of which also was 4 y (Table 2). Analysis of the time series of
submarket numbers, market numbers, market mortality frac-
tion, and infection intensity show evidence of a 6-y periodicity

(Table 2). However the 10-y time series is too short to resolve
a 6-y periodic signal from a temporal shift trending through
the time series.

Cross-wavelet Analysis

Cross-wavelet analysis using the Niño 3.4 index and locally

measured salinity gave the expected significant 4-y signal and
a lesser 2-y signal (Fig. 4, Table 3). Phase analysis of the 4-y
signal (Fig. 4C) shows that the Niño 3.4 index and salinity
are nearly 180� out of phase. High salinities follow a lowNiño

3.4 index by about 2 y (phase/360 3 period, or 180/360 3 4).
The higher salinities are associated with low values of the Niño
3.4 index, the La Niña condition. La Niña is associated with

lower precipitation across the northernGulf ofMexico and hence
higher salinity in Gulf coast bays (Douglas & Englehart 1981,
Ropelewski & Halpert 1986, Schmidt & Luther 2002).

The cross-wavelet analysis between the salinity time series

and recruit numbers shows significant periodicities at 1.5 y and
4 y (Fig. 5, Table 3). A significant coherency at 4 y is also ob-
served between recruit number and the Niño 3.4 index (Fig. 6,

Table 3). The phase shift between the recruit number 4-y cycle
and the salinity 4-y cycle is near 0� (Fig. 5C). Recruitment is
higher at times of high salinity. The 4-y cycle between salinity

and recruit abundance is not recapitulated in cross-wavelet
analysis between salinity and submarket abundance; instead,
a 2-y cycle is apparent (Table 3). As in the cross-wavelet

analysis between salinity and submarket numbers, the 4-y cycle
is absent in the cross-wavelet analysis between the Niño 3.4
index and submarket abundance (Table 3).

Cross-wavelet analysis confirms the absence of a 4-y cyclic

interaction between salinity and market abundance. Rather,
salinity and market abundance show significant coherency at
periods of 1.5 y and 2 y (Fig. 7, Table 3). Phase analysis shows

that a change in market abundance lags about 1 y behind
a change in salinity. The timescales, 1.5 y and 2 y, are consistent
with the 18-mo, more or less, growth time from recruitment to

market size, but also are consistent with modeling that suggests
a multiyear trajectory for Dermo disease epizootic development
and decay (Powell et al. 1996). Paralleling the lack of corre-
spondence between salinity and market numbers (Fig. 7), the

Figure 2. (A) Time series of the zero-mean unit-variance salinity derived from weekly measurements made in Bay Tambour, LA. (B) Power and

periodicity (solid line) obtained for the salinity time series from the wavelet analysis. The amplitude of the peak represents the strength of the signal.

The dashed lines represent the P < 0.10 (left) and P < 0.05 (right) significance levels.

Figure 3. (A) Time series of the zero-mean unit-variance recruit numbers derived from monthly measurements made in Bay Tambour, LA. (B) Power

and periodicity (solid line) obtained for the recruit numbers time series from the wavelet analysis. The amplitude of the peak represents the strength of the

signal. The dashed lines represent the P < 0.10 (left) and P < 0.05 (right) significance levels.
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results of the cross-wavelet analysis between the Niño 3.4 index
and market numbers revealed no significant coherency (Fig. 8,

Table 3).
Although peaks in recruit numbers corresponded to peaks

in the number of submarket oysters, there was no correspon-

dence between recruit numbers and market oyster numbers.
Cross-wavelet analysis of the recruit number time series with
the submarket number time series showed dominant periods
of 2 y or less (Fig. 9, Table 3), but no significant periodicity

with the market number time series (Fig. 10, Table 3). Cross-
wavelet analysis of the time series of the submarket numbers
and market numbers also showed significant periodicities

at the shorter timescales as well as at 4 y, in this case (Fig.
11, Table 3). Oysters recruit and grow to adult size in 18 mo,
more or less; hence, the dominance of these shorter time-

scales is expected. Indeed, phase analysis shows that the
submarket index lags the recruit index by about 0.75 y,
a typical time for growth from spat size to submarket size.
For the submarkets, the 4-y signal shows that submarket

abundance leads to market abundance in about a year, a
time frame consistent with growth dynamics of the oyster in
the Louisiana region. Interestingly, the same phase analysis

shows a shift in the 2-y signal throughout the time series, in
that the cycles begin 0.5 y out of phase early in the time series
and come into phase later (Fig. 11C). This behavior offers one

possible explanation for the failure of the recruit time series
and market time series to show significant periodicities. Phase
analysis of recruit and market abundance shows that the 2-y

relationship between these time series is in phase (0�) early in
the time series, and out of phase (180�) later in the time series

(Fig. 10C). This is consistent with the inferred trend in market
abundance throughout the course of the time series, which
suggests an evolving relationship between recruitment and

market abundance.
Dermo disease is strongly influenced by salinity (Hofmann

et al. 1995, Powell et al. 1996). Cross-wavelet analysis of the
time series of Dermo disease infection intensity with the 2 time

series for submarket and market mortality fraction show
significant periodicities at 4 y for submarket mortality
(Fig. 12), and at 4 y and 1.5 y for market mortality (Fig. 13).

In both cases, an increase in Dermo infection intensity leads
to an increase in mortality by about two thirds of a year. This
lag time is consistent with the time to development of lethal

infection levels observed empirically and experimentally
(Soniat 1985, Saunders et al. 1993, Soniat et al. 1998). The
4-y periodicity corresponds to that of the high-salinity phase
of ENSO when oyster mortality from Dermo is elevated

along the Gulf coast (Powell et al. 1992, Wilson et al. 1992,
Kim & Powell 1998).

DISCUSSION

Perspective on Periodicity

The oyster population examined in this study is character-
ized by 3 distinct periodicities. The dominant periodicity was at

Figure 4. (A) Time series of the zero-mean unit-variance salinity (solid line) and Niño 3.4 index (dashed line) derived from monthly measurements made

in BayTambour, LA. (B) Power and periodicity (solid line) obtained from the cross-wavelet analysis. The amplitude of the peak represents the strength of

the signal. The dashed lines represent the P < 0.10 (left) and P < 0.05 (right) significance levels. (C) Phase diagram. Note that for the 4-y periodicity,

salinity and the Niño 3.4 index are nearly 180� out of phase.

OYSTER POPULATION DYNAMICS AND PERIODICITY 639



4 y and occurred in the recruit and submarket abundances,
Dermo infection intensity, and submarket mortality fraction
time series, and in the ENSO and local salinity time series.

Shorter term periodicities (1–1.5 y) were associated with the
transitions from recruit to submarket to market size for the
oyster and the proliferation rate of Dermo disease. Cross-wavelet

coherency fit the expected time frame for oyster growth and
Dermo proliferation for Gulf coast oyster populations. Market
abundance showed a longer term periodicity. Shorter term

coherences revealed by cross-wavelet analysis between other
population attributes and market abundance showed phase
shifts throughout the time series; that is, the relationships were

not stable temporally. This behavior reinforces the conclusion
that market abundance followed a different trajectory from
other population attributes. The evolution of the oyster

population at this Bay Tambour site was, therefore, influenced
by a range of cyclic signals, one of which—the 4-y cycle—was
obviously explained by the environmental variables included in

Figure 5. (A) Time series of the zero-mean unit-variance salinity (solid line) and recruit numbers (dashed line) derived frommonthly measurements made

in Bay Tambour, LA. B) Power and periodicity (solid line) obtained from the cross-wavelet analysis. The amplitude of the peak represents the strength of

the signal. The dashed lines represent the P < 0.10 (left) and P < 0.05 (right) significance levels. C) Phase diagram. Note that for the 4-y periodicity,

salinity and recruit numbers are nearly in phase.

Figure 6. (A) Time series of the zero-mean unit-variance Niño 3.4 index (solid line) and recruit numbers (dashed line) derived from monthly

measurements made in Bay Tambour, LA. (B) Power and periodicity (solid line) obtained from the cross-wavelet analysis. The amplitude of the peak

represents the strength of the signal. The dashed lines represent the P < 0.10 (left) and P < 0.05 (right) significance levels.
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the analysis, and another (the short-term periodicities) was an
integral manifestation of the life cycle of the oyster and its
disease.

Large-Scale Climate and Mortality

Previous analyses of coincident environmental, oyster, and
disease data sets fromGulfwide (Powell et al. 1992,Wilson et al.
1992, Kim & Powell 1998, Kim et al. 2001) and local sites

(Soniat et al. 2005) identified significant correlations between
ENSO and Dermo disease in Gulf of Mexico oyster popula-
tions. These studies showed essentially the same correlations at

the large and local spatial scales. During the La Niña portion
of ENSO, which influences the Gulf of Mexico at approxi-
mately 4-y intervals, decreased rainfall leads to increased sa-
linity, which triggers a rise in Dermo disease prevalence and

intensity. Increased disease burden then results in increased
mortality. The results from the current study are consistent with
these other studies. The 4-y periodicity in Dermo infection

intensity, and its coherence with the submarket and market
mortality fraction observed in the cross-wavelet analysis,
highlights the underlying influence of ENSO in this Bay

Tambour oyster population. However, the relationship be-
tween Dermo and oyster mortality is less clear. Increased

disease infection intensity affected the submarket and market
mortality fractions, but not the submarket and market num-
bers (Table 3). This suggests that Dermo may influence the

number of market-size boxes present; however, the resulting
increment in mortality rate imposed by Dermo was insufficient
to produce a clear decline in the abundance of market-size
oysters at the study site.

The salinity regime of the Bay Tambour study site is fa-
vorable for oyster growth and production (Cake 1983, Chatry

et al. 1983, Soniat & Brody 1988), and does not necessarily
support epizootic levels of Dermo disease. The study site has
not experienced recent killing floods, salinity typically remains
within an optimal range for oysters, and frequent lower

salinity events have kept disease in check (www.oystersentinel.
org). Therefore, in the absence of a simple and straightfor-
ward control of oyster mortality by salinity and its effect on

Dermo disease, the population is likely controlled by multi-
ple factors of mortality interacting in complex ways. For
example, the suite of predators changes with changing salin-

ity. These predators impact oysters of different size classes
differentially. Background predation at low salinity (5–15)
is likely the result of euryhaline crabs such as mud crabs
(E. depressus, P. herbstii) and blue crabs (C. sapidus). At

salinities greater than 15, oyster drills (S. haemastoma) and

Figure 7. (A) Time series of the zero-mean unit-variance salinity (solid line) andmarket numbers (dashed line) derived frommonthlymeasurements made

in BayTambour, LA. (B) Power and periodicity (solid line) obtained from the cross-wavelet analysis. The amplitude of the peak represents the strength of

the signal. The dashed lines represent the P < 0.10 (left) and P < 0.05 (right) significance levels.

Figure 8. (A) Time series of the zero-mean unit-variance Niño 3.4 index (solid line) and market numbers (dashed line) derived from monthly

measurements made in Bay Tambour, LA. (B) Power and periodicity (solid line) obtained from the cross-wavelet analysis. The amplitude of the peak

represents the strength of the signal. The dashed lines represent the P < 0.10 (left) and P < 0.05 (right) significance levels.
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other predators (e.g., P. cromis and M. adina) become more
abundant, and at salinities greater than 20, Dermo becomes
an additive factor of mortality (Mackin 1962, Bisker &

Castanga 1987, White & Wilson 1996, Hofmann et al. 1995,
Shirley et al. 2004).

Oyster Recruitment and Growth

Rapid growth and heavy recruitment are the principal
defenses against parasites for many host populations, including

oysters (Hofmann et al. 1995, Powell et al. 1996). Rapid growth
of the host ‘‘dilutes’’ the parasite, and recruitment replaces the
old, diseased, and dying with the young, uninfected, and robust.

Populations of Gulf oysters, because they grow quickly and
recruit often and prodigiously, seem especially resistive to para-
sitic demise.

Our analysis identifies a significant relationship between

recruitment and salinity (Fig. 4, Table 3), with the recruitment
rate being higher during periods of high salinity. Recruit numbers
and submarket numbers also exhibit a strong 4-y signal. Higher

Figure 9. (A) Time series of the zero-mean unit-variance recruit number (solid line) and submarket numbers (dashed line) derived from monthly

measurements made in Bay Tambour, LA. (B) Power and periodicity (solid line) obtained from the cross-wavelet analysis. The amplitude of the peak

represents the strength of the signal. The dashed lines represent P < 0.10 (left) and P < 0.05 (right) significance levels.

Figure 10. (A) Time series of the zero-mean unit-variance recruit numbers (solid line) and market numbers (dashed line) derived from monthly

measurements made in Bay Tambour, LA. (B) Power and periodicity (solid line) obtained from the cross-wavelet analysis. The amplitude of the peak

represents the strength of the signal. The dashed lines represent the P < 0.10 (left) and P < 0.05 (right) significance levels. (C) Phase diagram. Note the

phase shift over the time series for the 2-y periodicity of recruit numbers and market numbers.
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(more optimal in this case) salinity supports increased recruit-

ment and, after a lag for growth, increased submarket abun-
dance. In general, oyster larvae are influenced positively by
higher salinity, with growth rates increasing with increasing sa-

linity (Dekshenieks et al. 1993). A relationship between salinity
and oyster recruitment has been noted for other Gulf coast bays
(Hopkins et al. 1953, Hopkins 1955, Cake 1983, Chatry et al.

1983, Ray 1987).

However, although a pattern in the transition of recruits

to submarket oysters (Fig. 9, Table 3), and submarkets to
market-size oysters (Fig. 11, Table 3), is apparent from cross-
wavelet analysis, the data fail to reveal a relationship between

the recruit time series and the subsequent change in market-size
abundance (Fig. 10, Table 3). This apparent disconnect may
arise because the market-size oysters consist of multiple cohorts

accreted over a number of years. No recruitment event, not even

Figure 11. (A) Time series of the zero-mean unit-variance submarket number (solid line) and market numbers (dashed line) derived from monthly

measurements made in Bay Tambour, LA. (B) Power and periodicity (solid line) obtained from the cross-wavelet analysis. The amplitude of the peak

represents the strength of the signal. The dashed lines represent the P < 0.10 (left) and P < 0.05 (right) significance levels. (C) Phase diagram. Note that

for the 4-y periodicity, submarket numbers andmarket numbers are nearly 90� out of phase throughout the entire time series; in contrast, the phase of the

2-y periodicity shifts throughout the time series.

Figure 12. (A) Time series of the zero-mean unit-variance Dermo infection intensity (II; solid line) and submarket mortality fraction (dashed line)

derived from monthly measurements made in Bay Tambour, LA. (B) Power and periodicity (solid line) obtained from the cross-wavelet analysis.

The amplitude of the peak represents the strength of the signal. The dashed lines represent the P < 0.10 (left) and P < 0.05 (right) significance

levels.
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the one that follows the ENSO cycle (Fig. 6, Table 3) is sufficient
to affect market-size abundance significantly.

The Conundrum of Market Abundance

The absence of a 4-y signal in market abundance belies the

strength of the ENSO signal in modulating recruitment and
early growth. The transition time from recruits to market oys-
ters is longer than the transition time of recruits to submarket

oysters or submarket oysters to market oysters. The complexity
of postsettlement processes and the extended time over which
these processes interact, decreases the predictability of the
recruit-to-market transition. Thus, even the strong pulse of

recruits associated with La Niña and its locally elevated salinities
did not result in an exceptional increase in abundance of market
oysters. One possible explanation is that the enhanced mortality

from Dermo disease, also associated with the La Niña phase,
more or less balances the increased recruitment. Growth and
disease proliferation occur on similar timescales, which would

allow this compensation to occur at subannual timescales.
The relationship between recruit and market oysters may

prove predictable in this way and thus minimize the effect of the

4-y cycle on market-size abundance, but longer term changes in
market abundance also occur.Market-size oysters are produced
almost continuously from submarket-size individuals (Fig. 11,
Table 3), but a large pulse in the number of market oysters is

rare. The wavelet analysis suggests either a 6-y cyclicity or a
long-term trend in the submarket numbers, market numbers,
market mortality fraction, and Dermo infection intensity data

(Table 2). This longer periodicity is not apparent in any of the
other population or environmental characteristics followed in
this study. The large influx of market oysters does not coincide

with the 4-y periodicity associated with salinity, ENSO, and
recruit number (Table 2). The pulse in market numbers is pre-
saged by the low-frequency, interannual 6-y pulse of submarkets
(Table 2).

A pulsed production of large numbers of market-size oysters
promotes sustainability of commercially exploited reefs. When

the abundance of these larger animals exceeds themarket demand,
they remain as part of the reef habitat and, upon their death,
provide the bulk of the shell required for reef maintenance

(Powell et al. 2006, Powell &Klinck 2007). The results from this
analysis suggest that that production of large numbers ofmarket-
size oysters is a rare event that is explained inadequately by trends
in salinity, which explain so much of the oyster population

dynamics. Dermo disease also did not offer any explanatory
power, perhaps because of the limited importance of the disease
in mortality and the need for near-lethal infection levels to

reduce growth and reproduction (Choi et al. 1989, Paynter
1996, Dittman et al. 2001). Thus, no simple combination of
environmental and biological factors seems to result in the

production of market-size oysters at this site. Enhanced
production of market (large) oysters is important for main-
taining use of the resource while also maintaining the reef

habitat. Understanding how this happens requires extensive,
long-term monitoring of oyster reef systems at sites that
represent a range of environments. The central dilemma for
oyster fisheries management is balancing the goals of fishing,

which removes animals and their shells, with reef maintenance,
which requires large oysters to die and remain in place (Mann
et al. 2009, Powell et al. in press). This latter need emphasizes

the requirement of understanding the controls on market
abundance.
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