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regulate three core cellular processes: cell fate, cell survival 
and genome maintenance. With an evolving understanding of 
molecular mechanisms of cancer, treatment strategies using 
mutation-specific small molecule drugs or monoclonal antibodies 
have been developed to specifically target some cancers in the 
perspective of defined cancer hallmarks. One example is the 
treatment of B-RAF oncoprotein in melanoma, which provides 
sufficiency of growth signals [4]. However, tumors treated with 
B-RAF inhibitors nearly always develop resistance after about 
six to nine months of treatment, and the tumors return or begin 
growing again. Thus, new treatment modalities to treat cancer 
are needed. When these new modalities are introduced it should 
be of interest to determine which of the hallmarks of cancer are 
targeted. Furthermore, increasing evidence indicates that it is 
important to know mechanisms of cell death. 

During developmental and homeostatic cell death, 
apoptosis is anti-inflammatory and immunologically silent. 
However, a number of recent studies indicate that caspase-
dependent processes are important for immunogenicity [5]. 
In chemotherapy-induced cell death, some (anthracyclins), 
but not all (mitomycin C) caspase-inducing stimuli initiates’ 
immunogenic cell death [6], thus immunogenicity depends 
on factors other than caspase activation. Apoptosis has been 
shown to induce maturation of dendritic cells leading to T-cell 
activation and immunity [7] and apoptotic cells not only undergo 
degradation, but also deliver processed antigen to dendritic cells 
for cross-presentation [8]. Immunogenic cell death has obvious 
advantages for cancer treatment. 

Abbreviations
NsPEFs: Nanosecond Pulsed Electric Fields; mPTP: 

Mitochondria Permeability Transition Pore; VDAC: Voltage 
Dependent Anion Channel; ANT: Adenine Nucleotide Transporter; 
DISC: Death-Induced Signaling Complex; IRE: Irreversible 
Electroporation; HCC: Hepatocellular Carcinoma

Introduction
A major problem that cancer therapeutics faces today 

is coping with a diversity of cancer diseases. Hanahan and 
Weinberg [1,2] reasoned that since all mammalian cells express 
the same molecular mechanisms for proliferation, differentiation 
and death, cancers should share a limited number of systems 
that govern their behavior. This is insightful because cancers 
represent an array of diseases. To develop cancer research into 
a more logical science and to provide a focused characterization 
of cancer, Hanahan and Weinberg [1] defined six major hallmarks 
of cancer that control cell homeostasis and proliferation. These 
include self-sufficiency in growth signals, insensitivity to growth-
inhibitory (antigrowth) signals, evasion of apoptosis, limitless 
replicative potential, sustained angiogenesis, and tissue invasion 
and metastasis. Progress made in the last decade has added 
two emerging hallmarks including reprogramming of energy 
metabolism and evading immune destruction [2]. More recently 
Vogelstein et al. [3] defined a cancer genome landscape, finding 
that cancers are “pathway diseases” with two to eight “driver 
gene” mutations from a class of 12 signaling pathways that 
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There are advantages and disadvantages to investigating 
cell death mechanisms both in vitro and in vivo and in a word 
they are reciprocal. In vitro experiments with cells allow more 
flexibility in experimental designs, but they exclude systems of 
the entire living organism. In vivo studies include systems of 
the entire living organism, but they allow much less flexibility 
in experimental designs. Thus, approaches should include both 
experimental strategies and determine whether or not in vitro 
results translate into in vivo realities. 

Over the last decade, a novel cancer treatment strategy makes 
use of pulse power technology by applying nanosecond pulsed 
electric fields (nsPEFs) to cancer cells and tumors. Pulse power 
compresses electric energy and releases it in sub micro second 
bursts that achieve high power and low energy. When a stored 
joule of energy is released all at once in one second, the peak 
power delivered is only 1 watt (101). When it is released in a 
microsecond, the power is one megawatt (106); when it is release 
in one nanosecond the peak power is one giga watt (109). NsPEFs 
cause cell membrane supra-electroporation resulting in high 
density “nanopores” (nm diameter) in all cellular membranes 
[9,10]. Vernier et al. [11] demonstrated that nanopores facilitated 
voltage-driven phosphatidyl serine translocation in lipid bilayers 
and Pakhomov et al. [12] identified lipid nanopores in cell 
membranes that formed stable, ion channel-like conduction 
pathways. This is a unique transition of a technology used in 
high power physics to applications in biology and medicine. In 
this brief discussion, an overview of in vitro and in vivo results 
using nsPEFs is presented as an alternative therapy for cancer 
treatment. 

Some Lessons Learned from In Vitro Experiments
A series of studies highlighted here provided insight into 

effects of nsPEFs on plasma membranes, mitochondria and cell 
death mechanisms. In one series of studies we looked at effects 
of nsPEFs on plasma membranes as Ca2+ influx using Fluo-4 
and on intracellular organelles as changes in the mitochondria 
membrane potential  (ΔΨm) with TMRE. We used 4 different 
nsPEF waveforms that differed in their rise-fall times and 
bipolar components at the end of the pulse (bipolar tails) [13]. 
These studies are based on the hypothesis that high frequency 
components are important for intracellular effects of nsPEFs 
[14]. In another series, we looked at activation of caspase-3, -9 
and -8 and cell death in Jurkat cell mutants that were deficient in 
key protein in extrinsic (FADD, caspase-8) and intrinsic (APAF-1) 
apoptosis pathways [15]. Thus, the following results are a review 
of mostly recent work from the Beebe laboratory [13-22]. 

NsPEF induce plasma membrane poration at lower electric 
fields than that required for loss of the mitochondria membrane 
potential (ΔΨm), indicating that nsPEFs affect plasma membranes 
more readily that intracellular membranes or organelles. High 
frequency components of nsPEFs (frequency in Hz=1/time in 
sec) are most effective to dissipate the mitochondria membrane 
potential (ΔΨm), but are less important for plasma membrane 
permeabilization using Ca2+ influx as a marker. Thus, the pulse 

waveform appears to selectively affect ΔΨm and possibly other 
intracellular components. Cell death is closely correlated with 
loss of ΔΨm; high intracellular Ca2+ is necessary, but not sufficient 
for cell death. Thus, nsPEF-induced cell death requires both 
influx of extracellular Ca2+ and dissipation of ΔΨm [20,21]. This 
is consistent with a “two hit” hypothesis for cell death [23,24]. At 
electric fields sufficient to induce cell death in 40-60% of cells, 
dissipation of ΔΨm is calcium-dependent. At electric fields that 
induce cell death in 90% of cells, dissipation of ΔΨm is partially 
Ca2+-independent. This suggests two different thresholds for 
nsPEF effects on ΔΨm, the higher threshold, but not the lower 
one, is most likely permeabilization of the inner mitochondrial 
membrane. Plasma membrane permeabilization is not Ca2+ 
dependent, suggesting effects on ΔΨm at the lower threshold are 
due to events other than permeabilization. Since essentially all 
Ca2+-mediated effects depend on a protein(s), nsPEFs-induced 
dissipation of ΔΨm may include effects on a protein or protein 
complex [20,21]. Showing a direct electric field effect on a protein, 
nsPEFs inactivated the catalytic subunit of the cAMP-dependent 
protein kinase (PKA) [22]. The most likely protein complex for a 
nsPEF effect on ΔΨm is the mitochondria permeability transition 
pore (mPTP) complex. However, inhibitors of components of the 
mPTP complex or associated proteins, including cyclophilin D, 
voltage dependent anion channel (VDAC) and adenine nucleotide 
transporter (ANT), had no effect on nsPEF-induced loss of ΔΨm 
[22]. Furthermore, over expression of Bcl-xl, which binds to VDAC 
and attenuated heat stress- and genotoxic-induced apoptosis in 
the same Jurkat clone [25,26], had no effect on nsPEF-induced 
dissipation of ΔΨm or cell death [Beebe, unpublished]. 

Using Jurkat clones that were deficient in FADD and 
caspase-8, abolishing formation of the death-induced signaling 
complex (DISC) and other FADD complexes, did not prevent 
nsPEF-induced cell death, indicating that FADD and the DISC 
was not necessary for nsPEF-induced cell death [15]. However, 
cell survival in U937 cells and Jurkat cells following 10 ns pulse 
exposures depends on extrinsic apoptotic regulators cFLIP and 
FAS ligand, respectively [27]. Using a Jurkat clone that was APAF1-
deficient demonstrated that nsPEF-induced cell death (ten 60 ns 
pulses) is caspase-dependent at intermediate electric fields (20-
40 kV/cm) and caspase-independent at high electric fields (≥ 50 
kV/cm), underscoring that in response to nsPEFs, apoptosis is not 
the only executed form of cell death [15]. Cells can be driven into 
cell death subroutines that include necrotic features [28,29]. Cal 
pains, which are activated by nsPEFs [20,30], have been shown to 
be involved in calpain-dependent necrotic and/or apoptosis-like 
programmed cell death [31]. These data indicate that oncogenic 
mechanisms that block cell death by over expressing of Bcl-xl, 
blocking the DISC or FADD complexes or preventing caspase 
activation can be bypassed by nsPEF ablation. 

Cancer Therapy with Electric Fields
Approaches using electric fields as cancer therapy 

include electrochemotherapy delivering poorly permeable 
chemotherapeutic agents by electroporation [32,33] or 
electroporation to deliver DNA [34]. These topics have been 
recently reviewed [35,36]. Another therapy based on uses 

http://10.15406/jnmr.2015.02.00016


Mechanisms of Nanosecond Pulsed Electric Field (NsPEF)-Induced Cell Death in Cells and Tumors

Citation: Beebe SJ (2015) Mechanisms of Nanosecond Pulsed Electric Field (NsPEF)-Induced Cell Death in Cells and Tumors. J Nanomed Res 2(1): 
00016. DOI: 10.15406/jnmr.2015.02.00016

Copyright: 
 2015 Beebe 3/5

of electric fields is irreversible electroporation (IRE), which 
increases electric fields to produce cell necrosis through 
irreversible plasma cell membrane defects [37]. 

Treatment of Cancer using Pulsed Power with NsPEFs

Another extension of conventional electroporation takes 
greater advantage of pulsed power technology with nsPEFs, 
which continues to be explored for tumor ablation. Within the 
last decade, applications of ultra-high pulse power have been 
extended to biology, medicine and cancer therapy [19,38], as 
indicated by successful treatment of mouse B16 melanoma 
[39,40], a human basal cell carcinoma [41] and mouse ectopic 
hepatocellular carcinoma (HCC) [42]. More recently, an 
orthotopic rat N1S1 HCC has been successfully treated [43,44]. 
Efficacy of nsPEFs has been demonstrated for murine basal cell 
carcinoma [45] and human pancreatic carcinoma in a murine 
xenograft model [46]. It has also shown in the first human trial 
that nsPEFs or nano-electro-ablation eliminated 7 of 10 basal 
cell carcinomas, while 2 partially regressed. After treatment 
two of the 7 exhibited seborrheic keratosis in the absence of 
basaloid cells and one treated lesion recurred by week 10 and 
histologically had the appearance of a squamous cell carcinoma. 
These treatments left no visible scars at the treatment sites [47]. 

Treatment of Orthotopic Rat N1S1 HCC with nsPEFs

N1-S1 HCC tumors were initiated and treated 7 days later 
when tumors were about 55x55 mm. NsPEF treatments were 
delivered to tumor tissue using a 5 needle electrode array [44]. 
Treatments included pulses with 100 ns durations, electric field 
strengths of 50 kV/cm and various pulse numbers from 100 to 
1000 with repetition rates of 1 Hz. Tumor growth was followed 
by ultrasound. Rats were euthanized when heavy tumor burden 
was detected or at study end points. Tumors were weighed and 
volumes were determined or classified as complete response if no 
significant masses were observed; as a partial response if tumors 
were small, but still growing slowly; as stable, if tumors were 
present but not growing; and no response if tumors grew so large 
that euthanasia was required due to tumor burden. 

Tumors that were treated with 100, 300 or 500 pulses were 
not visible at 2 weeks, but by 6 weeks had begun to grow again. 
In a large study, tumors received either sham treatment or 1000 
pulses, 100 ns, 50 kV/cm at 1 Hz. Greater than 80% of tumors were 
completely eliminated. Two tumors showed partial responses, 
one tumor was stable and three others continued to grow albeit 
slowly without a response. Sham-treated tumors readily grew, 
eventually requiring euthanasia due to tumor burden. Active 
caspases-3 and -9 were present in tumors 1, 2, 4 and 6 h after 
treatment, but not in sham-treated tumors. Active caspase-8 was 
not readily identified at any time points. By 6 h after treatment, 
about 50% and 40% of cells showed active caspase-3 and -9, 
respectively. Not all cells expressed active caspases indicating 
that not all cells die by apoptosis. 

In another large study, tumors ablated with 1000 pulses 
with 100 ns, 50 kV/cm and at 1Hz were followed by challenge 
injections of the same cells 7 weeks after treatment. Twenty 

animals were sham-treated and 23 were treated with nsPEFs. 
Within 40 days 21 or 91.3% of rats were tumor free while all 
sham-treated rats required euthanasia due to tumor burden. The 
21 surviving rats were then challenged with a second injection 
identical to the initial one in either the same lobe that carried the 
tumor or an adjacent right lobe. All 21 rats with nsPEF-ablated 
tumors remained tumor free for as long as 20 weeks, when 
the study was terminated. In contrast, 24 age-matched, naïve 
control rats (shipping mates of those initially treated) required 
euthanasia between 4-5 weeks after injection due to tumor 
burden. Thus a vaccine-like, protective affect is evident which 
prevents recurrence after complete nsPEF ablation. 

Possible Advantages for NsPEF Ablation as a Cancer 
Therapy

There may be several advantages for using nsPEF ablation 
as a means for cancer therapy as opposed to other physical 
methods that rely on overt necrosis for tumor cell death. One 
advantage is that nsPEFs target multiple programmed cell death 
mechanisms for apoptosis induction and anti-angiogenesis, two 
well-known cancer hallmarks, the latter necessary for a third 
cancer hallmark, invasion and metastasis [40]. In addition, 
the treatment is rapid, targeting multiple death mechanisms 
with minimal treatment exposures, which reduces chances 
for resistances and recurrences. The electric fields also target 
mitochondria-mediated programmed cell death, which can 
bypass many cancer-causing mutations. While nsPEFs exhibit 
some cell specificity, with high electric fields, a broad specificity 
for cell death induction occurs in the tumor mass and the 
microenvironment, including rapidly growing tumor cells, slower 
growing host cells that collaborate with tumor cells and cancer 
stem cells (the latter has not been shown directly). The treatment 
causes local infarction of small vessels, depriving tumors of feeder 
vessels, which disrupts nutrient and oxygen supplies inducing 
local stresses with minimal local and systemic side effects. Finally 
there is a possibility that nsPEFs enhance immune surveillance 
from cells undergoing apoptosis. There is accumulating evidence 
that the presence of apoptotic cells is advantageous for antigen 
presentation [6,7,47-50]. Surface exposure of immunogenic 
effectors is facilitated during early apoptosis, caspase activation 
and endoplasmic reticulum stress. This is followed by the release 
of soluble factors that are indispensable for effective immune 
response [51]. 

Conclusion
NsPEFs induce both caspase-dependent (apoptosis) and 

caspase-independent cell death in tumor cells and tissues through 
pathways that appear to be mediated, at least in part, by intrinsic 
mechanisms. It is clear that apoptosis is not the sole form of cell 
death executed in response to nsPEFs and that different nsPEF 
conditions may induce different mechanisms for cell demise. 
Two prominent events that lead to cell death are influx of Ca2+ 
through permeabilized plasma membranes and dissipation of 
the ΔΨm by a mechanism(s) that may include nsPEF-induced 
effects on a protein(s). Caspase-dependent (apoptotic) and 
caspase-independent cell death may enhance immunogenic cell 
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death that can possibly generate inherent resistances to further 
development of the treated type of cancer, mimicking a vaccine 
effect.
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